1. Seminar of Limits of Sequences,

Revised 5apr16.
This is a continuation our collection of problems that illustrate the ideas we have been developing over the past 2 weeks. We will discuss their solution "in-seminar", which means that I expect class participation. See syllabus.

Problem 1. Suppose that the sequence θ_{n} is not a null sequence. Show that this statement is false, and correct it There exists $\varepsilon>0$ so that for all $n,\left|\theta_{n}\right|>\varepsilon "$
Problem 2. Show how every irrational number is the limit of a (weakly) decreasing sequence of rational numbers. (Weakly decreasing means $x_{n+1} \leq x_{n}$.)
Problem 3. Suppose $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$, then determine whether the following are true or not. If true, prove it. Else find a counterexample, correct and prove the statement.
3a If $a<b$ then $(\exists N \in \mathbb{N})\left(n \geq N \Rightarrow a_{n}<b_{n}\right)$
3b If $a \leq b$ then $(\exists N \in \mathbb{N})\left(n \geq N \Rightarrow a_{n} \leq b_{n}\right)$
3c The $\lim _{n \rightarrow \infty}\left(a_{n}-\frac{1}{b_{n}}\right)=a-\frac{1}{b}$.
Problem 4. Find and verify the $\lim _{n \rightarrow \infty} x^{n}$ for $x \in \mathbb{R}$.
Problem 5. Determine the limiting behavior of:

$$
\frac{x^{n}}{x^{n}-1}, \frac{1}{x^{n}+1}, \frac{1}{x^{n}-1}, \frac{1}{x^{n}+x^{-n}}, \frac{1}{x^{n}-x^{-n}} .
$$

