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1. Introduction
 

To help you to read Chapter 14 of our textbook, we take a novel approach. By introducing extra concept, null sequences , or just nulls , the subject becomes
enormously simpler, especially the proofs and the solving the problems. It consists of an adaptation to an elementary level of the Landau Symbols of
mathematical analysis. The concept carries over to continuous and differentiable functions, and even to a matrix based advanced calculus course.
 

1.1. Relaxed Notation
 

Note, by the way, that the text-authors have moved on to a more relaxed expository style, replacing "limn→∞ an = L" by "an → L" . But they still revert to a
primitive ε, δ argument in each proof. We will go a small step further. We shall agree that null sequences , i.e. sequences αn → 0 , are defined as usal, using ε, δ :
 

Definition of a Null Sequence

αn → 0 means the same as (∀ ε > 0)(∃ N)(∀ n > N)(∣αn∣ < ε).

 

Definition of a Limit
an → L means the same as (∃ αn → 0)(an = L + αn)

 

Henceforth, we shall use Roman letters for arbitrary sequences, but Greek letters means "null" even if we don't always say so.
 

1.2. Application to an Example

In the [Text, Lemma 14.3] has the hypotheses an = L + αn and bn − an = γn . So, adding, bn = L + (αn + γn) . Done!
 

Of course, we need a theorem that says that "the sum of nulls is null" and so forth.
 

2. The Arithmetic of Null Sequences
 

For this concept to work for us, we need to know its rules of manipultion. We develop this here, but you can remember it simply as this: If a proposition makes
sense and is true for the number 0 then it holds for null sequences. Just as 0 ± 0 = 0 and 0×k = 0 for any constant, the sum of two or (finitely) many more null
functions is null. So is their difference, and their products. Also, the product of a null sequence with a convergent sequence is null. Quotients are another matter,
just as 0 / 0 is forbidden.
 

Proof of [Text 14.5] Suppose *  stands for the operations +, − , × and maybe ÷ , but see below. Then we can compute
an * bn = (L + αn) * (M + βn) = (L * M) + γn

Where γn is null, being the sum, difference, and product of null functions.
 

Question 1.
Calculate γn from the equations, and identify each rule used to show that γn → 0 .
 

For the product, you'll need the distributive law. Then you'll need that a constant multiple of a null sequence is null, that the product of two null sequences is null,
and the sum of any finite number of null sequences is null. These in turn follow nicely from the definition, using epsilons.
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2.1. Quotients of Sequences

Let's see what you have to do with a quotient. The first step is always mechanical:
an
bn

= L + αn
M + βn

= L
M + βn

+
αn

M + βn
.

 

The RHS has two summands, and they are treated differently. But first let's take care of the denominator. We need to assume that M ≠ 0 . So first we must make
n > N

1
 so that (∀ n > N

1
)(βn <∣M∣ / 2) where N

1
 is guaranteed to exist by half the hypotheses (which half?). This keeps the denominators on the RHS from

being zero by keeping it larger than ∣M∣ / 2 .
 

We can now dispose of the second summand, by choosing an N
2
 so that

(∀ n > N
2
)(∣αn∣ <

∣M∣
2

ε
2

).

(What good is that?) This leaves the first summand and we're still not done.
 

We want to show that L
M +βn

= L
M + γn for some null sequence γn . So solve for

γn = −
L
M

βn
M + βn

.

Check my arithmetic. And now, pick a (possibly bigger) N
3
 for βn so that that ∣γn∣ < ε

2
 . (More arithmetic.)

 

Moral of the Story: The calculus of null functions is a nearly mechanical way of proving tricky limit statements.
 

Proof of [14.7]: This one is actually a statement about null functions and generalizes the idea of multiplying 0k = 0 to a null function times a bounded function.
 

Question 2.
Show that if αn → 0 and ∣bn∣ < B then αnbn is null. Hint: Choose the Nα for ε / B and complete the arithmetic.
 

Theorem [14.10]: If 0 ≤ x < 1 and bn+1bn
= x + βn then bn is a null sequence.

 

Proof: This is an interesting application of two concepts. First, suppose that bn = L + βn , i.e. that the given sequence converges, and L ≠ 0 . Let's, for simplicity,
assume everything is positive, which eliminates a lot of absolute value signs. Then substituting, and applying the rules of null functions, yields

b
n+1

bn
=

L + β
n+1

L + βn
= L

L+βn
+

βn+1
L+βn

→ 1.

Note the denonminators are all bounded below by L / 2 once the ∣βn < L / 2 . That L / 2 was our epsilon for the "eventually". Since this contradicts the

hypothesis, we're done. L = 0 and bn is null. But we are not told to assume that bn converges. That comes first. For x < 1 we can insure that bn+1bn
< 1 eventually.

But multiplying through establishes the bn to be a monotonically decreasing sequence bounded below by 0 .
 

Question 3.
Explain why the limit x of b

n+1
/ bn needs to be in [0, 1) for bn to converge using the above argument.

 

3. Preview of Null Functions
 

[This section is optional and will not be tested on the final in MA348SP11.]
 

This brings us up to the high point of this chapter, the Bolzano-Weierstrass Theorem , which we'll take up in the next edition of these notes.
 

But anticipating Ch15, we can define null functions to be functions with this property:
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(∀ ε > 0)(∃ δ > 0)(∀ − δ < h < 0 and 0 < h < δ)(∣α(h)∣ < ε)
The region {h∣ − δ < h < 0 and 0 < h < δ} is called a punctured neighborhood of 0 .
 

This allows us to work with the practical expression
f (a + h) = f (a) + α(h) for lim

x→a
f (x) = L.

 

Exercise 1. See how many of the above theorems above about convergent sequences carries over, statement and proof, to functions.
 

A function is said to be continuous at x if in a punctured neighborhood of 0 for h we have that f (x + h) = f (x) + θ(h) , for some null function θ(h) .
 

A function is said to be differentiable at x , with derivative f ′(x) = m , if in a punctured neighborhood of 0 for h we have that
f (x + h) = f (x) + (m + θ(h))h

for some null function.
 

Exercise 2. See how many properties of derivatives you can now { alculate} directly from this definition.
 

If you'll do the sum and product rules of differentiation, then I'll do the chain rule, which is the most remarkable improvement over the usual exposition in
standard calculus books.
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