

### **European School in Materials Science**

## The Hume-Rothery rules for Structurally Complex Alloy Phases

**Uichiro Mizutani** 

**Toyota Physical & Chemical Research Institute, Japan** 

The 3rd Euroschool 2008, Ljubljana, Slovenia Complex Metallic Alloys: Surfaces and Coatings May 29, 2008

### OUTLINE

- 1. Prior fundamental knowledge for the discussion of phase competition in CMAs
- 2. What is the Hume-Rothery electron concentration rule?
- 3. Two different definitions of electron concentration: VEC versus e/a
- 4. Historical survey
- 5. Why do we need the first-principles FLAPW band calculations?
- 6. Why have we chosen a series of gamma-brasses?
- 7. Hume-Rothery stabilization mechanism
- 8. Different stabilization mechanisms in  $AI_8V_5$  and  $Ag_5Li_8$  gamma-brasses
- 9. Stability mechanism in the AI-TM-Cu-Si (TM=Fe and Ru) approximants
- 10. 2k<sub>F</sub> versus K<sub>p</sub> condition. Issues on VEC versus e/a. Which is more critical parameter to discuss the phase stability of CMA phases?

## **Concept of a cohesive energy in a solid**



The curve  $\varepsilon_o(r)$  represents the lowest energy of electrons with the wave vector **k**=0 while the curve  $\varepsilon_{kin}$  represents an average kinetic energy per electron.  $\varepsilon_1$  represents the ionization energy needed to remove the outermost 3s electron in a free Na metal to infinity and  $\varepsilon_c$  is the cohesive energy. The position of the minimum in the cohesive energy gives an equilibrium interatomic distance  $r_o$ .

### **Cohesive energies (kJ/mole) of elements in periodic table**

| Na       Mg       Mg       Mg       M4       Mg       Si       P       S       CI       Ar         108       148       148       148       148       148       148       148       148       148       148       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110                                                                                                                                                                                                                                                                                                                                                                 | Li<br>159 | Be<br>322        |           |           |                       |                  |                 |           |                  |                  |           |           |               | 5               | B<br>61   | C<br>711  | N<br><u>477</u> | O<br><u>251</u>  | F<br><u>84</u>   | Ne<br><u>2.1</u> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-----------|-----------|-----------------------|------------------|-----------------|-----------|------------------|------------------|-----------|-----------|---------------|-----------------|-----------|-----------|-----------------|------------------|------------------|------------------|
| K       Ca       Sc       Ti       V       Cr       Mn       Fe       Co       Ni       Cu       Zn       Ga       Ge       As       Se       Br       Kr       11         P1       176       379       469       511       396       288       414       424       428       338       130       269       374       289       206       118       11         Rb       Sr       Y       Zr       Nb       Mo       Tc       Ru       Rh       Pd       Ag       Cd       In       Sn       Sb       Te       I       Xe       15         83       164       423       610       720       658       Tc       Ru       Rh       Pd       Ag       286       112       247       301       Sb       Te       I       Xe       15         Cs       Ba       La       Hf       Ta       W       Re       Os       Ir       Pt       Au       Hg       TI       Pb       Bi       Po       At       Pn       At       Pn         80       179       434       611       781       837       782       783       670       565                                                                                                                                                                                                                                                                                                                                                                                                                          | Na<br>108 | Mg<br>148        |           |           |                       |                  |                 |           |                  |                  |           |           |               | 3               | AI<br>22  | Si<br>448 | P<br><u>332</u> | S<br>277         | CI<br><u>135</u> | Ar<br><u>7.7</u> |
| Rb       Sr       Y       Zr       Nb       Mo       Tc       Ru       Rh       Pd       Ag       Cd       In       Sn       Sb       Te       I       Xe         83       164       423       610       720       658       1c       639       555       380       286       112       247       301       259       193       107       15         Cs       Ba       La       Hf       Ta       W       Re       Os       Ir       Pt       Au       Hg       TI       Pb       Bi       Po       At       Rn         80       179       434       611       781       837       782       783       670       565       365       67       181       197       208       144       1       144       1       144       1       144       1       144       1       144       1       144       1       144       1       144       1       144       1       144       1       144       1       144       1       144       1       144       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>K<br/>91</td><td>Ca<br/>176</td><td>Sc<br/>379</td><td>Ti<br/>469</td><td>V<br/>51</td><td>C<br/>1 39</td><td>r<br/>96</td><td>Mn<br/>288</td><td>Fe<br/>414</td><td>Co<br/>424</td><td>Ni<br/>428</td><td>Cu<br/>338</td><td>Z  <br/>3   13</td><td>n (<br/>0 2</td><td>Ga<br/>69</td><td>Ge<br/>374</td><td>As<br/>289</td><td>Se<br/>206</td><td>Br<br/><u>118</u></td><td>Kr<br/><u>11</u></td></t<> | K<br>91   | Ca<br>176        | Sc<br>379 | Ti<br>469 | V<br>51               | C<br>1 39        | r<br>96         | Mn<br>288 | Fe<br>414        | Co<br>424        | Ni<br>428 | Cu<br>338 | Z  <br>3   13 | n (<br>0 2      | Ga<br>69  | Ge<br>374 | As<br>289       | Se<br>206        | Br<br><u>118</u> | Kr<br><u>11</u>  |
| Cs         Ba         La         Hf         Ta         W         Re         Os         Ir         Pt         Au         Hg         TI         Pb         Bi         Po         At         Rn           80         179         434         611         781         837         782         783         670         565         365         67         181         197         208         144                                                                                  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rb<br>83  | Sr<br><u>164</u> | Y<br>423  | Zr<br>610 | Nk<br>72              | ) M<br>0 6       | lo<br>58        | Тс        | Ru<br>639        | Rh<br>555        | Pd<br>380 | Ag<br>286 | C<br>5 11     | d<br>2 2        | ln<br>47  | Sn<br>301 | Sb<br>259       | Те<br>193        | l<br><u>107</u>  | Xe<br><u>15</u>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cs<br>80  | Ba<br><u>179</u> | La<br>434 | Hf<br>611 | Та<br>78 <sup>-</sup> | i V<br>1 83      | V<br>37         | Re<br>782 | Os<br><u>783</u> | lr<br>670        | Pt<br>565 | Au<br>365 | 5 <u>6</u>    | g<br><u>7</u> 1 | TI<br>81  | Pb<br>197 | Bi<br>208       | Po<br><u>144</u> | At               | Rn               |
| Fr Ra Ac<br>Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fr        | Ra               | Ac        |           | Ce                    | Pr               | Nd              | Pm        | Sm               | Eu               | Gd        | Tb        | Dy            | Но              | Er        | Tm        | Yb              | Lu               |                  |                  |
| 460         373         323         203         174         399         393         297         293         322         247         151         427           Th         Pa         U         Np         Pu         Am         Cm         Bk         Cf         Es         Fm         Md         No         Lr           572         527         522         440         385         251         Bk         Cf         Es         Fm         Md         No         Lr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                  |           |           | 460<br>Th<br>572      | 373<br>Pa<br>527 | 323<br>U<br>522 | Np<br>440 | 203<br>Pu<br>385 | 174<br>Am<br>251 | 399<br>Cm | 393<br>Bk | Cf            | Es              | 322<br>Fm | Md        | 151<br>No       | 427<br>Lr        |                  |                  |

Cohesive energy represent an energy needed to separate all atoms in a solid at absolute zero into the assembly of neural atoms. The values underlined refer to those either at 298.15 K or at the melting point. The values are in the units of kJ/mole converted from the values in the units of cal/mole. C.Kittel, "Introduction to Solid State Physics", (Third Edition, John Wiley & Sons, New York, 1967), Chapter 3.

#### The number of intermediate phases increases, as $\Delta H$ at x<sub>B</sub>=0.5 increases. Neighboring phases are competing within <u>+</u>10kJ/mole.



The number of intermediate phases increases from unity up to five as the heat of mixing increases in a negative direction from zero, -37 and -75 kJ/mole in A-B binary system. [F.R.de Boer, R.Boom, W.C.M.Mattens, A.R.Miedema and A.K.Niessen, "Cohesion in Metals", (North-Holland 1988)]

### Electron theory of metals is an essential ingredient to deepen understanding of an alloy phase competition



e/a: electron concentration defined as an average valency of constituent atoms in an alloy.

Construction of the Fermi sphere. The reciprocal space is quantized in units of  $2\pi/L$  in the  $k_x^-$ ,  $k_y^-$  and  $k_z^-$ directions and is made up of cubes with edge length  $2\pi/L$  as indicated in the figure. Electrons of up and down spins occupy the corner of each cube or integer set  $(n_x, n_y, n_z)$  in accordance with the Pauli principle while making  $n_x^2 + n_y^2 + n_z^2$  as low as possible. The sphere with radius  $k_F$  represents the Fermi sphere.



#### A gain in the electronic energy amounts to several 10 kJ/mol, which is large enough to stabilize a given phase among competing phases



Kinetic energy increases in this direction and becomes the maximum at the Fermi level. Examples to stabilize a system by formation of (pseudo)gap at E<sub>F</sub>

- 1. A structurally complex phase by increasing the number of atoms in a unit cell
- 2. A superconductor by forming the superconducting gap
- 3. A quasi-one-dimensional organic molecular metal by introducing new modulations through deformation of the lattice. This is known as the Peierls transition.

#### What about the mechanism for the formation of the pseudogap?

Covalent bondings⇒orbital hybridization between neighboring atoms Metallic bonding (FsBz interaction)⇒long-range interaction throughout a crystal

# Anti-Bonding energy level LUMO AI-3p E<sub>F</sub> Mn-3d Bonding energy level HOMO

Orbital hybridization effect would occur not only in crystals but also in noncrystalline systems like liquid metals and amorphous alloys.



Fermi surface-Brillouin zone

Electrons having the wave length  $\lambda_F$  resonate with a set of lattice planes with lattice spacing 2d.

The FsBz interaction is unique in well-ordered systems like crystals and quasicrystals

$$\lambda_F = \frac{2\pi}{k_F} \propto \frac{1}{\left(e/a\right)^{1/3}}$$

## The concept of the Brillouin zone

Stationary waves are formed and an energy gap opens, when the electron wave length matches the lattice periodicity.



The Brillouin zone is a polyhedron bounded by planes, which are formed by perpendicularly bisecting the relevant reciprocal lattice vectors like G=<110> in the reciprocal space. An energy gap opens across each zone face.

I. bcc, N=2, dodecahedron with 12 zone faces



II. fcc, N=4, truncated octahedron with 14 zone faces



### The Brillouin zone of Three Complex Alloy Phases

II. 1/1-1/1-1/1 approximant, N=160, polyhedron with 84 planes



The larger the number of atoms in the unit cell, the more the number of zone faces, across which an energy gap opens. This in turn results in a deeper pseudogap on the DOS. As a result, the electronic energy can be more efficiently lowered by increasing the number of atoms in the unit cell.

### What is the Hume-Rothery electron concentration rule?

Hume-Rothery (1926) pointed out a tendency for a definite crystal structure to occur at a particular *electron concentration e/a*. Mott and Jones (1936) made its first interpretation in terms of the Fermi surface-Brillouin zone interaction on the basis of the nearly free electron model.



William Hume-Rothery (1899-1968)



N.F.Mott (1905-1996)

H.Jones (1905-1986)



There exist two different definitions for electron concentration:

### e/a versus VEC

# Various physical properties fall on a universal curve, when plotted against the VEC (number of electrons per atom in the valence band)

## Slater-Pauling curves Saturation magnetization against VEC



#### **Matthias rule** Superconducting transition temperature against VEC



p- and n-type thermoelectric alloys Fe<sub>2</sub>VAI doped with various elements



# Electron concentration in the Hume-Rothery electron concentration rule is not VEC but should be e/a (averaged number of valencies of constituent atoms).



| H  | 2A |    |    |    |    |    |    |     |    |    |    | 3B | 4B | 5B | 6B | 7B | He |
|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|----|
| Li | Be |    |    |    |    |    |    |     |    |    |    | В  | С  | Ν  | 0  | F  | Ne |
| Να | Mg | 3A | 4A | 5A | 6A | 7A | 8A | 8A  | 8A | 1B | 2B | Al | Si | Р  | S  | Cl | Ar |
| К  | Ca | Sc | Ti | V  | Cr | Mn | Fe | Со  | Ni | Cu | Zn | Gα | Ge | As | Se | Br | Kr |
| Rb | Sr | Υ  | Zr | Nb | Мо | Тс | Ru | Rh  | Pd | Ag | Cd | In | Sn | Sb | Те | Т  | Xe |
| Cs | Βα | Lα | Hf | Τα | w  | Re | Os | lr. | Pt | Au | Hg | τι | Pb | Bi | Ро | At | Rn |

e/a  

$$e/a(Cu_{5}Zn_{8}) = \frac{1 \times 5 + 2 \times 8}{13} = \frac{21}{13}$$

$$e/a(Cu_{9}Al_{4}) = \frac{1 \times 9 + 3 \times 4}{13} = \frac{21}{13}$$
/EC  

$$VEC(Cu_{5}Zn_{8}) = \frac{11 \times 5 + 12 \times 8}{13} = \frac{151}{13}$$

$$VEC(Cu_{9}Al_{4}) = \frac{11 \times 9 + 3 \times 4}{13} = \frac{111}{13}$$

# Model of Jones for the interpretation of the Hume-Rothery rule on $\alpha/\beta$ phase transformation in Cu-Zn system



Hume-Rothery commented in 1961 that "the work of the last ten years has made the theory of alloy structures appear less satisfactory than was the case twenty-five years ago. It is now definitely established that the assumption of a spherical Fermi surface for pure Cu is quite unjustified...".

Current understanding of fcc/bcc phase transformation of Cu on the basis of the first-principles FLAPW electronic structure calculations in combination with density functional theory

> Total energy of a system at absolute zero W.Kohn and L.J.Sham, Phys.Rev. <u>140</u> (1965) A1133

$$U = \sum_{i} \varepsilon_{i} - \frac{1}{2} \iint \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' + \int n(\mathbf{r}) [\varepsilon_{xc}(n(\mathbf{r})) - \mu_{xc}(n(\mathbf{r}))] d\mathbf{r}$$
  
average interaction energy exchange-correlation energy of electrons known as the Hartree term  
One-electron band structure electron interaction term  
hergy due to both valence and core electrons

 $\mathcal{E}_i$  is the solution of the effective one-electron Schrödinger equation of a system given by

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + \mathbf{v}_{eff}(\mathbf{r})\right]\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r})$$

$$U_{valence} = \int_{E_{bottom}}^{E_F} D(E)(E - E_0) dE$$

e

This is a quantity evaluated by Jones and corresponds to the contribution from the valence electrons in the first term.

### FLAPW valence band structure and van-Hove singularities in fcc-Cu





The first-principles band calculations prove that the ignorance of the Cu-3d band was a vital failure in the model of Jones. This led him to a wrong location of van-Hove singularities and overestimation of their sizes in both fcc and bcc Cu.



You can see that the van-Hove singularities are negligibly small in both fcc- and bcc-Cu. The band structure energy difference arises essentially from the difference in Cu-3d bands and amounts to about 10 kJ/mole in favor of the bcc structure.

# The stability of fcc Cu is correctly predicted, only if the electron-electron term is properly evaluated.

|                                                            | fcc-Cu       | bcc-Cu       | ∆U=U <sub>bcc</sub> -U <sub>fcc</sub><br>(kJ/mole) |
|------------------------------------------------------------|--------------|--------------|----------------------------------------------------|
| lattice constant (A)                                       | 3.6048       | 2.8639       |                                                    |
| total energy U (kJ/mole)                                   | -4336455.852 | -4336453.49  | +2.37 $U_{bcc} > U_{fc}$                           |
| valence-band structure<br>energy U <sub>bs</sub> (kJ/mole) | 5257.9289    | 5226.4769    | -31.45                                             |
| core electron energy U <sub>core</sub><br>(kJ/mole)        | -2483799.964 | -2483807.338 | -7.37                                              |
| U <sub>electron-electron</sub> (kJ/mole)                   | -1857913.837 | -1857872.647 | +41.19 $U_{bcc} > U_{fc}$                          |

As is clear from the argument above, the interpretation of  $\alpha/\beta$  phase transformation in the Cu-Zn system is still far from our goal.

We believe the situation in complex alloy phases to be different from that in fcc and bcc Cu, where van-Hove singularities are too small to affect the total energy.

# A pseudogap across the Fermi level plays a key role in stabilizing a complex alloy phase



T.Fujiwara, Phys.Rev.B 40 (1989) 942

---First-principles LMTO band calculations---

The origin of the pseudogap was attributed to the Mn-3d/Al-3p orbital hybridizations

### We are interested in e/a-dependent phase stability





Orbital hybridization effect would occur not only in crystals but also in noncrystalline systems like liquid metals and amorphous alloys.



Resonance of electrons having the wave length  $\lambda_{\text{F}}$  with a set of lattice planes with spacing 2d.

FsBz interaction is unique in well-ordered systems like crystals and quasicrystals

$$\lambda_F = \frac{2\pi}{k_F} \propto \frac{1}{\left(e/a\right)^{1/3}}$$

# An increase in the number of atoms in unit cell accompanies an increase in Brillouin zone planes

I. bcc, N=2, dodecahedron with 12 planes

II. fcc, N=4, truncated octahedron with 14 planes



III. gamma-brass, N=52, polyhedron with 36 planes





The gamma-brass is complex enough to produce a sizeable pseudogap at the Fermi level but is still simple enough to perform the FLAPW band calculations with an efficient speed.

IV. 1/1-1/1-1/1 approximant, N=160, polyhedron with 84 planes



V. Quasicrystal, N is infinite, polyhedron with 60 planes



(543)

 $G^{2}=50$ 

### Gamma-brasses with the space group P43m and I43m



The 26-atom cluster forms either bcc or CsCI-structure and contains 52 atoms in the unit cell.

### Our objective is to explore if all gamma-brasses listed here are stabilized via the same mechanism at e/a=21/13





Empirical Hume-Rothery e/a rule for gamma-brasses in the past

|   | gamma-<br>brass                  | e/a   |   | gamma-<br>brass                  | e/a   |   | gamma-<br>brass                  | e/a   |
|---|----------------------------------|-------|---|----------------------------------|-------|---|----------------------------------|-------|
|   | $Ag_5Cd_8$                       | 21/13 |   | Cu <sub>9</sub> In <sub>4</sub>  | 21/13 |   | Ni <sub>2</sub> Be <sub>11</sub> | ?     |
|   | Ag <sub>5</sub> Zn <sub>8</sub>  | 21/13 | 1 | Ag <sub>9</sub> In <sub>4</sub>  | 21/13 |   | Ni <sub>2</sub> Cd <sub>11</sub> | ?     |
|   | $\mathrm{Cu}_{5}\mathrm{Cd}_{8}$ | 21/13 |   | Au <sub>9</sub> In <sub>4</sub>  | 21/13 | 2 | Mn <sub>2</sub> Zn <sub>11</sub> | ?     |
| 1 | Cu <sub>5</sub> Zn <sub>8</sub>  | 21/13 |   | Ni <sub>2</sub> Zn <sub>11</sub> | 1.6   |   | Pt <sub>2</sub> Zn <sub>11</sub> | ?     |
|   | $Au_5Cd_8$                       | 21/13 |   | Fe <sub>2</sub> Zn <sub>11</sub> | 1.6   |   | $AI_8V_5$                        | 1.46  |
|   | Au <sub>5</sub> Zn <sub>8</sub>  | 21/13 | 2 | Co <sub>2</sub> Zn <sub>11</sub> | 1.6   |   | Mn <sub>3</sub> In               | ?     |
|   | Cu <sub>9</sub> Al <sub>4</sub>  | 21/13 |   | Pd <sub>2</sub> Zn <sub>11</sub> | 1.6   | 2 | Agli                             | 21/13 |
|   | Cu <sub>9</sub> Ga <sub>4</sub>  | 21/13 |   | Ir <sub>2</sub> Zn <sub>11</sub> | ?     | 3 | Ay₅LI <sub>8</sub>               | ?     |

In literature, all isostructural gamma-brasses above had been implicitly assumed to be stabilized at e/a=21/13 or the valency of the partner element to be forced to take a value to fulfill the total e/a equal to 21/13.

## **DOS of Cu<sub>9</sub>Al<sub>4</sub> gamma-brass**



The FsBz interaction is really responsible for the formation of the pseudogap?

Principle for the extraction of the FsBz interaction from the first-principles FLAPW (Full-potential Linearized Augmented Plane Wave method) band calculations

Adoption of spherically symmetric muffin-tin potential

$$r \le a \qquad \chi_{\mathbf{k}}(\mathbf{r}) = \sum_{\ell m} \left[ A_{\ell m}^{\mathbf{k}} u_{\ell}(E_{\ell}, \mathbf{r}) + B_{\ell m}^{\mathbf{k}} \dot{u}_{\ell}(E_{\ell}, \mathbf{r}) \right] Y_{\ell m}(\theta, \phi)$$

$$r \ge a$$
  $\chi_{\mathbf{k}}(\mathbf{r}) = \exp(i\mathbf{k} \cdot \mathbf{r})$ 

$$\psi_{\mathbf{k}}(E,\mathbf{r}) = \sum_{\mathbf{G}_{hkl}} C(\mathbf{k} + \mathbf{G}_{hkl}) \chi_{\mathbf{k} + \mathbf{G}_{hkl}}(E,\mathbf{r})$$

 $\chi_{\mathbf{k}+\mathbf{G}_{hkl}}(E,\mathbf{r})$ : FLAPW basis function

$$\psi_{\mathbf{k}}(E, \mathbf{r}) = \sum_{\mathbf{G}_{hkl}} C(\mathbf{k} + \mathbf{G}_{hkl}) \exp[i(\mathbf{k} + \mathbf{G}_{hkl}) \cdot \mathbf{r}]$$
(1)  
$$\mathbf{E}_{\mathsf{F}} = \frac{1}{2}(1, 1, 0)$$





### **FLAPW-Fourier Analysis**

We extract the electronic state  $\mathbf{k}+\mathbf{G}_{hkl}$  having the largest Fourier coefficient in wave function (1) at symmetry point N with the energy eigen-value near the Fermi level. This is nothing but the extraction of the set of lattice planes resonating with electron waves.

## Cu<sub>5</sub>Zn<sub>8</sub> and Cu<sub>9</sub>Al<sub>4</sub> gamma-brasses in group 1

|   | gamma<br>-brass                 | e/a   |   | gamma<br>-brass                  | e/a   |   | gamma-<br>brass                  | e/a   |
|---|---------------------------------|-------|---|----------------------------------|-------|---|----------------------------------|-------|
|   | Cu <sub>5</sub> Zn <sub>8</sub> | 21/13 |   | Cu <sub>9</sub> In <sub>4</sub>  | 21/13 | 2 | Ni <sub>2</sub> Be <sub>11</sub> | ?     |
|   | Ag <sub>5</sub> Cd <sub>8</sub> | 21/13 | 1 | Ag <sub>9</sub> In <sub>4</sub>  | 21/13 |   | Ni <sub>2</sub> Cd <sub>11</sub> | ?     |
|   | Ag <sub>5</sub> Zn <sub>8</sub> | 21/13 |   | Au <sub>9</sub> In <sub>4</sub>  | 21/13 |   | Mn <sub>2</sub> Zn <sub>11</sub> | ?     |
| 1 | Cu <sub>5</sub> Cd <sub>8</sub> | 21/13 |   | Ni <sub>2</sub> Zn <sub>11</sub> | 1.60? |   | Pt <sub>2</sub> Zn <sub>11</sub> | ?     |
| I | Au <sub>5</sub> Cd <sub>8</sub> | 21/13 |   | Pd <sub>2</sub> Zn <sub>11</sub> | 1.60? |   | $AI_8V_5$                        | 1.46? |
|   | Au <sub>5</sub> Zn <sub>8</sub> | 21/13 | 2 | Fe <sub>2</sub> Zn <sub>11</sub> | 1.60? |   | Mn <sub>3</sub> In               | ?     |
|   | Cu <sub>9</sub> Al <sub>4</sub> | 21/13 |   | Co <sub>2</sub> Zn <sub>11</sub> | 1.60? | 2 | Aali                             | 21/13 |
|   | Cu <sub>9</sub> Ga <sub>4</sub> | 21/13 |   | Ir <sub>2</sub> Zn <sub>11</sub> | ?     | 3 | Ay <sub>5</sub> LI <sub>8</sub>  | ?     |

### E-k dispersions and DOS derived from FLAPW for Cu<sub>5</sub>Zn<sub>8</sub> gamma-brass



### E-k dispersions and DOS derived from FLAPW for Cu<sub>9</sub>Al<sub>4</sub> gamma-brass





1: {211}, 2: {310}, 3: {321}, 4: {411}+{330}, 5: {332}, 6: {510}+{431}, 7: {521}, 8: {530}+{433}, 9: {611}+{532}

The Fourier coefficient is extremely large at  $G^2$ =18. This implies that electron waves near the Fermi level exclusively resonate with the set of {411} and {330} lattice planes with  $G^2$ =18, resulting in the formation of the pseudogap.

### Evaluation of the e/a value by means of the FLAPW-Fourier method ---Hume-Rothery plot---

We have so far limited ourselves to the extraction of the largest plane wave component of the FLAPW wave function only near the Fermi level and only at the symmetry point N.

This technique is now extended to a whole valence band. We need to do this only in the irreducible wedge of the Brillouin zone. The wedge is divided into 200 elements and the electronic state  $(\mathbf{k}_i + \mathbf{G})$  having the largest Fourier coefficient for the wave function at energy E in the *i*-th element is extracted. This is done for all elements over *i*=1 to 200 and an average value of  $(\mathbf{k}_i + \mathbf{G})_{av}$  is calculated. In this way, a new single-branch dispersion relation E- $(\mathbf{k}_i + \mathbf{G})_{av}$  for electrons extending outside the MT sphere is derived in the extended zone scheme.

 $\left|\mathbf{k} + \mathbf{G}\right|_{E} \equiv \sum_{i=1}^{N=200} \omega_{i} \left|\mathbf{k}_{i} + \mathbf{G}\right|_{E}$ 

The variance  $\sigma$  must be small to validate this approach.

Once the E-(k+G) is determined, the Fermi diameter  $2k_F$  is obtained from the value of 2(k+G) at  $E_F$ .



The e/a is immediately calculated by inserting the Fermi diameter  $2k_F$  into the relation below:

$$(e/a)_{total} = \frac{\pi}{3N} (2k_F)^3$$

N=52:number of atoms in the unit cell



### Studies of TM<sub>2</sub>Zn<sub>11</sub> (TM=Ni, Pd, Fe, Co) gamma-brasses in group 2

|   | gamma<br>-brass                 | e/a   |   | gamma<br>-brass                  | e/a   |   | gamma-<br>brass                  | e/a   |
|---|---------------------------------|-------|---|----------------------------------|-------|---|----------------------------------|-------|
|   | Cu <sub>5</sub> Zn <sub>8</sub> | 21/13 |   | Cu <sub>9</sub> In <sub>4</sub>  | 21/13 |   | Ni <sub>2</sub> Be <sub>11</sub> | ?     |
|   | Ag <sub>5</sub> Cd <sub>8</sub> | 21/13 | 1 | Ag <sub>9</sub> In <sub>4</sub>  | 21/13 | 2 | Ni <sub>2</sub> Cd <sub>11</sub> | ?     |
|   | Ag <sub>5</sub> Zn <sub>8</sub> | 21/13 |   | Au <sub>9</sub> In <sub>4</sub>  | 21/13 |   | Mn <sub>2</sub> Zn <sub>11</sub> | ?     |
| 1 | Cu <sub>5</sub> Cd <sub>8</sub> | 21/13 |   | Ni <sub>2</sub> Zn <sub>11</sub> | 1.60? |   | Pt <sub>2</sub> Zn <sub>11</sub> | ?     |
| I | Au <sub>5</sub> Cd <sub>8</sub> | 21/13 |   | Pd <sub>2</sub> Zn <sub>11</sub> | 1.60? |   | $AI_8V_5$                        | 1.46? |
|   | Au <sub>5</sub> Zn <sub>8</sub> | 21/13 | 2 | Fe <sub>2</sub> Zn <sub>11</sub> | 1.60? |   | Mn <sub>3</sub> In               | ?     |
|   | Cu <sub>9</sub> Al <sub>4</sub> | 21/13 |   | Co <sub>2</sub> Zn <sub>11</sub> | 1.60? | 2 | Aali                             | 21/13 |
|   | Cu <sub>9</sub> Ga <sub>4</sub> | 21/13 |   | Ir <sub>2</sub> Zn <sub>11</sub> | ?     | 3 | Ay <sub>5</sub> LI <sub>8</sub>  | ?     |

Ekman (1931) studied the TM-Zn gamma-brasses and proposed that they obey the Hume-Rothery electron concentration rule with e/a=1.60, provided that the valency of the TM element is zero.

W.Ekman, Z.Physik.Chem. B <u>12</u> (1931) 57

### FLAPW-derived E-k relations and DOS for Ni<sub>2</sub>Zn<sub>11</sub> gamma-brass



# FLAPW-Fourier spectra just below and above the pseudogap in Ni<sub>2</sub>Zn<sub>11</sub> gamma-brass



### **FLAPW-derived E-k relations and DOS for Pd<sub>2</sub>Zn<sub>11</sub> gamma-brass**



# FLAPW-Fourier spectra just below and above the pseudogap in Pd<sub>2</sub>Zn<sub>11</sub> gamma-brass



### **FLAPW-derived E-k relations and DOS for Co<sub>2</sub>Zn<sub>11</sub> gamma-brass**



# FLAPW-Fourier spectra just below and above the pseudogap in Co<sub>2</sub>Zn<sub>11</sub> gamma-brass



### **FLAPW-derived E-k relations and DOS for Fe<sub>2</sub>Zn<sub>11</sub> gamma-brass**



# FLAPW-Fourier spectra just below and above the pseudogap in Fe<sub>2</sub>Zn<sub>11</sub> gamma-brass



E-(k+G)<sup>2</sup> relations for itinerant electrons for TM<sub>2</sub>Zn<sub>11</sub> (TM=Ni, Pd, Co, Fe) gamma-brasses ---Hume-Rothery plot---



#### Gamma-brasses in group 1 obey the Hume-Rothery e/a law with e/a=21/13

|                                                              | Cu <sub>5</sub> Zn <sub>8</sub> | Cu <sub>9</sub> Al <sub>4</sub> | Ni <sub>2</sub> Zn <sub>11</sub> | Pd <sub>2</sub> Zn <sub>11</sub> | Co <sub>2</sub> Zn <sub>11</sub> | Fe <sub>2</sub> Zn <sub>11</sub> |
|--------------------------------------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| A pseudogap<br>formed below E <sub>F</sub>                   | 0                               | 0                               | 0                                | 0                                | X                                | X                                |
| G  <sup>2</sup> deduced<br>from the FLAPW-<br>Fourier method | 18                              | 18                              | 18                               | 18                               |                                  |                                  |
| (2k <sub>F</sub> ) <sup>2</sup> deduced<br>form the H-R plot | 18.47                           | 18.45                           | 19.36                            | 19.27                            | 19.5                             | 20.0                             |
| (e/a) <sub>total</sub>                                       | 1.60                            | 1.60                            | 1.72                             | 1.70                             | 1.73                             | 1.80                             |
| (e/a) <sub>TM</sub>                                          | 0.96                            | 0.97                            | 0.15                             | 0.07                             | 0.26                             | 0.70                             |
| VEC                                                          | 11.6                            | 8.5                             | 11.7                             | 11.7                             | 11.538                           | 11.385                           |
|                                                              |                                 | gr                              |                                  | group (2)                        |                                  |                                  |

The Hume-Rothery stabilization mechanism refers to the mechanism, in which a pseudogap is formed across the Fermi level as a result of electron waves resonating with a particular set of lattice planes and thereby the particular e/a value is specified.

## Summary for gamma-brasses in groups 1 and 2

|   | gamma<br>-brass                 | e/a   |   | gamma<br>-brass                  | e/a   |   | gamma-<br>brass                  | e/a   |
|---|---------------------------------|-------|---|----------------------------------|-------|---|----------------------------------|-------|
|   | Cu <sub>5</sub> Zn <sub>8</sub> | 1.60  |   | Cu <sub>9</sub> In <sub>4</sub>  | 21/13 |   | Ni <sub>2</sub> Be <sub>11</sub> | ?     |
|   | Ag <sub>5</sub> Cd <sub>8</sub> | 21/13 |   | Ag <sub>9</sub> In <sub>4</sub>  | 21/13 |   | Ni <sub>2</sub> Cd <sub>11</sub> | ?     |
|   | Ag <sub>5</sub> Zn <sub>8</sub> | 21/13 | 1 | Au <sub>9</sub> In <sub>4</sub>  | 21/13 | 2 | Mn <sub>2</sub> Zn <sub>11</sub> | ?     |
| 1 | Cu <sub>5</sub> Cd <sub>8</sub> | 21/13 |   | Ni <sub>2</sub> Zn <sub>11</sub> | 1.72  |   | Pt <sub>2</sub> Zn <sub>11</sub> | ?     |
| I | Au <sub>5</sub> Cd <sub>8</sub> | 21/13 |   | Pd <sub>2</sub> Zn <sub>11</sub> | 1.70  |   | $AI_8V_5$                        | 1.46? |
|   | Au <sub>5</sub> Zn <sub>8</sub> | 21/13 |   | Fe <sub>2</sub> Zn <sub>11</sub> | 1.80  |   | Mn <sub>3</sub> In               | ?     |
|   | Cu <sub>9</sub> Al <sub>4</sub> | 1.60  | 2 | Co <sub>2</sub> Zn <sub>11</sub> | 1.73  | 2 | Aali                             | 21/13 |
|   | Cu <sub>9</sub> Ga <sub>4</sub> | 21/13 | Z | Ir <sub>2</sub> Zn <sub>11</sub> | ?     | 3 | Ag <sub>5</sub> LI <sub>8</sub>  | ?     |