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Quaternions play a vital roIe in the representation of rotations in computer graphics, primarily
for animation and user interfaces. Unfortunately, quaternion rotation is often left as an ad-
vanced topic in computer graphics education due to difficulties in portraying the four-
dimensiona) space of the quaternions. One tool for overcoming these obstacles is the quaternion
demonstrator, a physical visual aid consisting primarily of a belt. Every quaternion used to
specify a rotation can be represented by fixing one end of the belt and rotating the other.
Multiplication of quaternions is demonstrated by the composition of rotations, and the resulting
twists in the belt depict visually how quaternions interpolate rotation.

This article introduces to computer graphics the exponential notation that mathematicians
have used t.a represent unit quaternions. Exponential notation combines the angle and axis of
the rotation into a concise quaternion expression. This notation allows the article to present more
clearly a mechanica[ quaternion demonstrator consisting of a ribbon and a tag, and develop a
computer simulation suitable for interactive educational packages. Local deformations and the
belt trick are used to minimize the ribbon’s twisting and simulate a natural-appearing interac-
tive quatemion demonstrator.
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1. INTRODUCTION

The method of specifying rotations and orientations of coordinate systems via
unit quaternions was formally introduced to the computer graphics commu-
nity by the publication of Shoemake [ 1985]. Quaternions were used in graph-
ics programming informally mostly by geometers because Sir William Rowan
Hamilton’s [Hamilton 1866] beautiful invention is not regularly taught in
college. Quaternions encode rotations by four real numbers (or two complex
numbers), whereas the linear representation of these transformations as
3 X 3 matrices requires nine. Moreover, Hamilton impressed explicit geomet-
rical meaning into every detail of his algebraic system, which guides intuition
and facilitates implementation [Francis and Kauffman 1994].

Interpolating the quaternionic representation of a sequence of rotations is
more natural than doing so for the familiar Euler angles, such as yaw, pitch,
and roll. The quaternions occupy a smooth, seamless, isotropic space which is
a generalization of the surface of a sphere. Thus, there is no need for special
care to avoid singularities, such as gimbal lock, where two rotation axes
collapse into one and thus make the interpolation irreversible.

Bezier curves were used in Shoemake [ 1985] to spline the quaternions
representing rotations, while Barr et al. [1992] used energy-minimizing
curves for demonstrably smoother motions. Quaternions provide an easy
mechanism for specifying an arbitrary rotation about an arbitrary axis. This
has long been exploited in keyboard user interfaces, and most recently for
specifying 3-dimensional rotations with a 2-dimensional mouse [Hanson 1992;
Shoemake 1992].

1.1 Overview

This article builds on previous work in quaternion rotation to derive an
implementation of the quaternion demonstrator. The first half of the article
summarizes various recent works on the quaternions. Section 2 reviews the
quaternion representation of three-dimensional rotation, based on Shoemake
[ 1985] and Francis and Kauffman [ 1994], and describes the quaternion
demonstrator, as devised originally in Kauffman [ 1987; 1991]. Section 3
describes the belt trick, summarizing Kauffman [ 1991] and Francis and
Kauffman [ 1994] and explaining the mathematics behind the animation “Air
on the Dirac Strings” [Sandin et al. 1993].

These sections form the basis for this article’s original contribution, found
in the second half of the article. Beginning with Section 4, techniques from
differential geometry model the quaternion demonstrator, regulating the
twists and motions of the belt. Section 5 describes the resulting implementa-
tion and outlines directions for further research.

1.2 Background

An object P is assumed to be defined with respect to some canonical coordi-
nate frame. The orientation of @ is represented by a rotation that takes the
object from its canonical coordinate frame to its current state.

ACM Transactions on (lraph,cs, Vol. 13, No. 3, (July 1994



258 . John C. Hart et al

This article relies heavily on the deformation techniques developed in Barr
[1984]. We use globally and locally specified deformations. A globally speci-
fied deformation alters explicitly the positions of points in an object whereas
a locally specified deformation affects the tangent space of an object, and new
positions result only after an integration over the deformed tangent space.

2. THE QUATERNIONS

The four-dimensional space, H, of quaternions is spanned by the real axis,
and three further orthogonal axes, spanned by vectors i, j, k, called the
principal imaginaries, which obey Hamilton’s rules

iz=jz=kz=ijk= –1. (1)

These imaginaries signify the three-dimensional vectors

i = (1,0,0),

j = (0,1,0),

k = (0,0,1).

Multiplication of these imaginaries resembles a cross product

ij=k, jk=i, ki=j,

ji=–k, kj =-i, ik=–j (2)

and is clearly noncommutative. Quaternion multiplication causes rotation:
multiplication on the right by j causes a 90 degree rotation in four-dimen-
sional space, rotating the i axis into the k axis, and rotating the k axis into
the – i axis. Quaternion multiplication differs from the cross product in that
ii=~=kk=–l whereasi Xi=jxj=k Xk=O.

A quaternion q = r + xi + y j + z k consists of a real part r and a pure
part xi + y j + zk [Hamilton 1866]. We will call quaternions with zero real
part (r = O) pure quaternions. Pure quaternions will also be simultaneously
represented as a column vector

()x
v= Y =xi+yj+zk,

z
(3)

Under this notation, the same symbol can simultaneously represent both a
vector and a pure quaternion, depending on its context. For example,

V2 =
—v-v (4)

because the LHS of (4) treats v as a pure quaternion whereas the RHS of (4)
treats v as a vector.

Let q ~ = al + VI and q2 = az + V2 be two quaternions. Their sum is

ql +qz= (al +a2)+(vl +Vz),

and their product is

q1q2 = a1a2 – VI *V2 + alvz + a2v1 + VI X V2.
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The quaternion q = a + v also decomposes into a + b u which resembles a
complex number, where the imaginary u is a unit three-vector

i]

a-/b

U = v/b = ‘i + ‘j + ~k,
Ilvl Ilvll Ilvllz/b

such that Ilull= 1, and x, y, z are the same coordinates used in (3). The pure
unit-magnitude quaternion u resembles ‘~- ‘—--: ----- : C--— ‘~- --—-1 ---
plane in that Uz = – 1.

Let q = a + bu be a quaternion. Its
magnitude is

L1l~lllltl~lllii[y 1 llU1ll L1le Gt)lll JJleX

conjugate is @ = a – bu, and its

Ilqll = qq = @ =

2.1 Quaternion Rotation

Rotations in computer graphics are typically represented by quaternions of
unit magnitude [Shoemake 1985], which we will call unit quaternions. The
unit quaternions {q : Ilqll = 1) form a hypersphere S:) c HI. In particular, for
any unit quaternion q G S“], (5) implies

q
l_–

– q. (6)

In other words, to invert a unit quaternion, we simply negate its pure part.
In Shoemake [ 1985], a rotation of 0 about the axis u was represented as

the unit quaternion

1
q=cos~O+sin~Ou

which matches the complex-like form of a quaternion q = a + bu, where a is
the real component and b the imaginary component along the new imaginary
axis specified by the unit vector (pure quaternion) u. The abbreviation
e ‘(’ = cos O + i sin 0, borrowed from complex analysis, has a long history of
use in the engineering sciences. We can similarly represent the aforemen-
tioned unit quaternion q more concisely using exponential notation as

In the same manner that engineers read the expression e‘”, the reader should
likewise understand the notation e{1‘ 2)(’” not as e to some imaginary power
but simply as the quaternion that represents a rotation of o about the axis u.

Exponential notation was chosen to represent quaternion rotations berein
to promote consistency between the converging fields of computer graphics
and mathematics. Such quaternion exponential notation has a lengthy his-
tory in mathematics (e.g., as the so-called exponential map in different
geometry [Spivak 1965]). However, since quaternion multiplication is non-
commutative, likewise quaternion exponentiation does not in general follow
the rules of real or complex exponentiation (e.g., e{] 2)’””~e’1 “’”u’ +
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e(l\2x@’”’ +““’)). Quaternion exponentiation is formally defined in Francis and
Kauffman [1994], along with a discussion of its properties illustrated by
several examples.

Given a unit quaternion q that represents a rotation, the question remains
of how to apply this rotation to an arbitrary vector (pure quaternion) v = R 3.
From Shoemake [ 1985], we find two results: a function R(q) that returns the
3 x 3 (nonhomogeneous) transformation matrix corresponding to the rotation
represented by q, and a two-to-one correspondence between unit quaternions
S3 and the space of all rotations S0(3) (the group of special-orthogonal 3 x 3
matrices). As a consequence of these two results, we have

R(q)v=qvq-1. (7)

The LHS of(7) treats v as a column vector and yields a new column vector of
the same length by left-multiplying the special-orthogonal matrix returned by
the function R. The RHS of(7) treats v as a pure quaternion and yields a new
pure quaternion of the same magnitude. In fact, both apply the rotation
represented by the unit quaternion q to v. We denote rotations with the
notation on the LHS of(7), but implement rotations more efficiently using the
formula on the RHS of (7). (Since q = S3, q -1 simplifies to @.)

Hence, the otherwise complicated procedure of rotating a vector about an
arbitrary axis simplifies in our notation to

R(e+@u)v

which rotates v ● R!3 about the u G S2 axis by an angle of O [Francis and
Kauffman 1994].

2.2 The Quaternion Demonstrator

The quaternion demonstrator [Kauffman 1987; 1991] is a mechanical unit
quaternion multiplier. It consists primarily of a ribbon, called the belt, with
one end fixed and the other end free. Fastened to the free end of the belt is a
rectangle, called the tag. (An alternative demonstrator was discovered by
Kauffman and E. Oshins [Kauffman 1991] that uses only one human arm.)

The orientations of the tag, along with the twists in the belt, represent the
unit quaternions. The tag is inscribed with labels indicating the quaternion it
currently represents. The top side of the tag is inscribed with a 1 and an
upside-down j. Its bottom side is inscribed with a k and an upside-down i, in
the fashion suggested by Figure 1. (If you wish to follow along using your
right arm, your right hand will be the tag. Your fingerprints are 1; your palm
is j; your fingernails are k; and the back of your hand is i. As a tag, your hand
will represent the quaternion associated with the part of your hand facing up
and toward the same direction you are facing.)

First we orient the quaternion coordinate frame such that the imaginaries
form a right-handed coordinate system where i points right, j up, and k
toward the viewer. The belt of the quaternion demonstrator is embedded in
the i – k plane centered along the k axis with the fixed end at the origin and
the tag at + k. The eyepoint is assumed to be somewhere in the positive j – k
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Fig.  1. The quaternion  demonstrator  in the 1 state  (top and bottom  views).  This figure  uses the
computer  simulation of the quaternion  demonstrator,  which  does not use a tag.  Instead  it
superimposes  the 1, i. j, and k labels directly  onto  the tag end of the  belt.

quadrant.  (In your arm’s  coordinate  system,  the origin  is your right shoulder;
the i axis points  toward  your left shoulder;  the j axis points  up; and the k
axis points  in the direction  you are facing.)

The canonical  state of the demonstrator consists of the untwisted belt in
this configuration.  This  state represents  the value  1, and is shown  in Figure
1. (Extending your arm out in front  of you with your palm up puts your arm
in the 1 state.)

Rotating the tag by 180 degrees  with respect to the i axis puts the tag
underneath  the belt. This state  represents the value  i as can be read on the
tag end of the belt (Figure 2 red). Call this rotation  a “flip.” (Keeping your
arm and wrist straight,  rotate  180 degrees  about your shoulder’s  axis by
dropping your arm to your waist and raise  it back up behind  you such that
your palm is facing down. The back of your hand  is facing up and toward  the
front,  so your arm now represents  the quaternion i.1

Reset  the system  to the canonical state  1. Rotating the tag by 180 degrees
with respect  to the j axis puts the tag to the right of the fixed  end of the belt.
This  state represents  the value  j as can also be read on the tag end of the belt
(Figure 2 green).  Call this rotation  a “spin.” (From the 1 state, rotate  your
arm horizontally until  you touch your chest with your fingertips.
Your palm faces  up and toward the front,  and your arm now represents the
quaternion j.1

Resetting to 1 again  and rotating the tag - 180 degrees  with respect  to the
k axis flips the tag over. This  state  represents  the value  k, as indicated by the
upright k on the tag end of the belt (Figure 2 blue). Call this rotation  a
“turn.” (From the 1 state, turn your wrist about  your arm’s  axis until  your

ACM  Transactions  on Graphics.  Vol. 13. No 3, July 1994
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Fig. 2. The  quatemion  demonstrator  multiplica-
tion by each of i (red), j (green), and k (blue).

palm is facing down.  Your fingernails face  up and to the front,  and your arm
now represents  the quaternion k.)

The fact that  positive  k is obtained  by a negative  rotation  in the right-
handed  coordinate  system  is an artifact of the belt-centered coordinate sys-
tem. Centering a right-handed coordinate  system on the tag with k extending
along  the belt,  j up, and i to the right yields rotations consistent with the
right-handed coordinate  system.  (For the quaternion demonstrator’s task of
teaching quaternion multiplication the simplicity of the belt-centered coordi-
nate system outweighs the familiarity of the right-handed rotation rules  of
the tag-centered coordinate  system.)

The negative  quaternion imaginaries are likewise  produced  by the opposite
flips,  twists,  and turns, respectively.  Although the labels  on the tag have  no
signs,  we can tell a positive  imaginary from a negative  imaginary by the
direction  of the twists in the belt. (The  quaternion -i is represented from the
1 state  by bending your arm at the elbow  - 180 degrees  about your shoulder’s
axis, with your palm facing down  as if to pat yourself  on the back. The
quaternion -j is represented  by spinning your hand horizontally - 180
degrees  about  the up axis into the position a waiter would use to hold  a tray.
The quaternion -k is physiologically impossible to represent in the arm
coordinate  system.)

In this system, multiplication is represented by the composition of corre-
sponding rotations  of the tag. For example,  to demonstrate ij = k, we find
that a flip followed  by a spin  is equivalent to a turn (after a little  translation
of the tag-moving the tag does not rotate  it and does  not change the state  of
the demonstrator).  A reverse turn (multiplication by - kl returns  the system
to its original  state. (From the 1 state,  flip 180 degrees  around  your shoulder’s
axis by dropping your arm to your waist and raising it up again  behind you
with your palm  facing down  into the i state. Using your shoulder,  spin about  j
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Fig. 3. The belt trick equation:  k’ = ( -k? proven visually  using a quaternion demonstrator.
The ends of the belt remain  parallel through  the transformation. Each step  of the transformation
represents the value - 1.

180 degrees  by swinging your arm out and back to the front  with your palm
down. Your arm is now in front of you,  palm down,  representing k.)

By (11, the - 1 state is achieved  by two flips (i’), two spins  (i” 1, two turns
(k” 1, or a flip-spin-turn  (ijk).  Each of these  operations  returns the tag to its
original  orientation  but puts a 360 degree  twist in the belt. (From  the 1 state,
twist your wrist 360 degrees  about  the arm’s axis until your palm faces up
again (k2). Your fingerprints are facing up and in front,  but with a full  360
degree  twist  in your arm, which  now represents - 1.)

We can also create  - 1 by two reverse  flips  (( -i)” 1 which  also returns  the
tag to its original  orientation  but puts the opposite  ( - 360 degrees)  twist in
the belt  (more on this in the next  section.)

3. THE BELT  TRICK

In the quaternion  demonstrator, - 1 can be represented  as k’ by two turns
which  return  the tag to its original  state  but cause  a 360 degree  twist in the
belt. Two reverse  turns represents - 1 also, as ( - kJ2, but cause  a - 360
degree  twist  in the belt. The quaternion demonstrator has (at least)  two
distinct  representations for - 1.

These two representations are equivalent,  however.  Consider  the demon-
strator in the k2 state,  after  two turns.  Without rotating the tag, move  the
tag in a positive  360 degree  arc around  the fixed  end of the belt. This belt
trick changes  the 360 degree  twist  in the belt  into a -360 degree  twist, and
proves  the Belt  Trick Equation  shown  in Figure  3.

(You can perform  a variation of the belt  trick called  the plate  trick, shown
live in Sandin  et al. 119931,  with your arm by representing j4 = 1. From the 1
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state, multiply by j by touching your chest with your fingertips. Multiply by j
again by moving your hand under your arm and back out, always keeping the
palm up, into the – 1 state. Multiply by j again by swinging your hand into
the –j state, the waiter position, again always keeping your palm up.
Multiply by j one final time back into the 1 state. You have rotated your hand
720 degrees without incurring the associated, and painful, 720 degree twist
in your arm. Section 3.2 explains how this is possible.)

Discussions of the belt trick can be found in Misner et al. [1973], Bolker
[1973], Kauffman [1987], Francis [1987], Kauffman [1991], aqd Francis and
Kauffman [1994]. The rest of this section follows Kauffman [1991] and
Francis and Kauffman [1994], developing a globally specified deformation for
simulating the belt trick topologically, treating the belt more like a rubber
band than a ribbon. Thus we find that the quaternions are neatly represented
by a combination of rotational mechanism and appropriate topology.

3.1 The Belt Trick Deformation

Whereas Figure 3 demonstrates the belt trick using the quaternion demon-
strator, where the belt is fixed at one end and free at the tag, the following
discussion uses an equivalent but alternate construction. This new system
consists of a belt connecting two concentric spheres, and is described quanti-
tatively as follows.

Let

S(r) =rS2 = {X:11X11=r)

specify a sphere of radius r centered at the origin. The hollow ball

M.B = (Js(r),
r = r<)

where O < r. < 1 is the radius of the hollowed-out part, will serve to define
the space in which the belt performs its trick.

The spheres S(l), S(rO ) are called the outer sphere and the inner sphere,
respectively. The outer sphere will represent the fixed end of the belt, and the
inner sphere will represent the tag of the quaternion demonstrator. We can
use intervals to represent a belt connecting the inner sphere to the outer
sphere as

.99= ([-p, p], 0,[0, l])n HEl

where p < r. is half the width of the belt.
The belt-trick can now be illustrated as a global deformation 11~:R’3 ~ R 3

parameterized by time t = [0, 1]. At t = O, B~(&Z’)deforms the belt ~, giving
it a 360 degree twist. Aa t + 1, the belt will continuously deform into a belt
with a – 360 degree twist without rotating the inner or outer spheres—keep-
ing the ends of the belt fixed.

ACMTransactionson Graphics,Vol. 13, No. 3, July 1994.
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Fig.  4. Unit  quaternion  paths  corresponding to various  stages  of the belt trick  deformation.  The
sphere  S’ is a slice  of the hypersphere  S”, consisting of unit quaternions whose  j components  is
zero  (similar to the figures  at the end of Barr  et al. [ 19921).

The belt  trick deformation  shears  the belt,  rotating each increasingly larger
spherical  “shell” in WB by angles  of increasingly larger value  about  an axis
that changes over  time. The rotation  angle  function is

1 - Ml
O(x) = 27-7

0
(8)

whereas  the rotation  axis function is

u(t) = e”‘jk = (sinrt,O,cosnt). (9)

The function  R, from (71, specifies  rotation  about  an arbitrary axis, and is
used to define  the belt  trick deformation

B,(x)  = R( e+H(x)u(l))X, (10)

Consider the unit quaternions used for rotations  in the belt  trick deforma-
tion. These  are plotted  in Figure  4. At t = 0, as 11x/J ranges  from p. to 1, the
unit  quaternions form an arc from 1 through  k to - 1. As t: 0 + 1 this arc
rotates  about  S3 from one side to the other.  At t = l/2 this arc extends  from
1 through  i to - 1, and at t = 1 this arc extends  from 1 through -k to - 1.
Since  the arcs all begin  at 1, the orientation  of the inner sphere,  and end at
- 1, the orientation  of the outer  sphere,  the inner and outer spheres  do not
rotate  during the belt trick.
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3.2 The Unfurling Deformation

Composing the belt trick with a twist along the h axis produces a belt trick
that takes the 720 degree twisted belt into an untwisted belt, and is given in
Francis and Kauffman [1994] as

~,, t(x) = R(e;o(x)u(f))l?(e+’z’’k)x

—_ ~(e; Wdu(f)e+s2mk
)x (11)

where s E [ – 1, 1] is used to twist the belt. At s = – 1 and t = O, the
deformation B.,, leaves the belt $5’ unchanged. As s -+ 1 while t = O the
deformation B,, ~ rotates the inner spheres – 720 degrees, which puts a – 720
degree twist in the belt and returns the sphere to its original orientation.
Then, while s = 1 as t + 1, the – 720 degree twist unfurls around the inner
sphere, returning the system to its original state with an untwisted belt. This
process is illustrated by Figure 5. (The Appendix describes the ray-tracing
technique used to render this figure.)

The unit quaternions used for rotations in the unfurling deformation are
plotted in Figure 6. At s = 1, t = O, as 11xIIranges from pO to 1, the unit
quaternions form a circle from 1 through k through – 1 through – k and back
to 1. As t :0 + 1 this circle contracts around S~, always intersecting 1. At
t = 1/2 the circle extends from 1 through i and back to 1, and at t = 1 circle
degenerates to the point 1. Since the circles all begin and end at 1, as with
the belt trick, the inner and outer spheres do not rotate during the unfurling.

4. SIMULATING THE QUATERNION DEMONSTRATOR

The belt trick and unfurling deformations are global deformations. They
maintain the belt’s volume (for the same reason the twist deformation [Barr
1984] preserves volume) but stretch the length of the belt like a rubber band
such that the inner and outer spheres remain centered about the origin. The
belt in the quaternion demonstrator maintains a constant length, but the tag
is free to move about. This suggests that a local deformation should be used
to simulate the belt in the quaternion demonstrator. Furthermore, this local
deformation should minimize the twisting of the belt.

First, the orientation of the tag is represented by a quaternion q. Then a
geodesic (a great arc on S3 ) of unit quaternions interpolates the orientations
along the belt from the orientation of the fixed end of the belt, 1, to the
orientation of the tag, q. Finally, changes to this geodesic resulting from
rotations of the tag must be carefully monitored to prevent drastic changes in
the shape of the belt.

4.1 Simulating the Tag

In the physical quaternion demonstrator, the tag is a small rectangle at-
tached to the free end of the belt. In the simulation, we consider the tag to be
the edge of the free end of the belt.

Let VF represent the orientation of the edge of the belt’s fixed end as a
vector from one corner to the other. Let VT denote the orientation of the tag,

ACMTransactionsonGraphics,Vol. 13,No.3, July 1994.
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Fig. 5. The unfurling,  using a global defor-
mation  to show  how to remove a 720 degree
twist from  a ribbon without  moving  either
end.

Fig. 6. Unit  quaternion  paths corresponding  to various stages of the unfurling  deformation

as the vector  connecting the corresponding corners at the edge of the belt’s
free end. Let q E S” be a unit  quaternion denoting the state of the quater-
nion demonstrator.  Then the orientation  of the tag with respect  to the
orientation  of the fixed end of the belt  is given  by

V - R(q)vf..T-

Multiplication  of q by an imaginary rotates  the tag 180 degrees  discretely.
In the simulation,  these  rotations  are performed  incrementally and appear

ACM  Transactions on Graphics.  Vol 13. No 3. .July 1994
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Fig. 7. The belt as the union of rotated line 
segments (left). The orientation of v,, the 
fixed edge of the belt, corresponds to one 
whereas the orientation of vT, the tag edge of 
the belt, corresponds to q. The geodesic on 
!S3 (right) connects 1 to q, and specifies the 
orientations of the segments interpolating v, 
to VT. 

continuous. With the physical quaternion demonstrator, multiplication by i is 
performed by flipping the tag. In the simulation, multiplication by i is 
accomplished by pressing and holding the “i” key and watching the tag slowly 
flip. 

Let q0 be a unit quaternion denoting the current orientation of the tag. 
Then incremental multiplication of the tag is simulated by 

q1 = qoecu, (12) 

where unit quaternion q1 specifies the new tag orientation; u is one of i, j, or 
k, and E is a small rotation angle. In our implementation, setting E = 0.02 
radians resulted in a pleasing ribbon animation speed. 

4.2 Simulating the Belt 

In Section 3, the belt was sheared by a family of rotating concentric spheres. 
Here, the belt is best represented by a family of rotating line segments. As 
before, let v, represent the vector at the edge of the fixed end of the belt, and 
let vr represent the vector at the tag. 

The orientation of the fixed end of the belt v, corresponds to the unit 
quaternion 1 whereas the orientation of the tag end of the belt vr corre- 
sponds to q. Let I c S3 be the geodesic connecting 1 to q. Then the belt 
consists of the union of line segments whose orientations interpolate the 
orientation of v, into the orientation of vr, specifically the orientations 
represented by points along the geodesic I, as shown in Figure 7. 

We describe the local deformation of the belt by applying the rotations 
represented by the quaternions along the geodesic I to the tangent space of 
the belt. The deformed belt is then constructed as an initial-value problem by 
integrating the belt over these deformed tangent vectors. 

First, decompose q into exponential form as 

q=r+v, 

0 = 2cos-l r, 
V V 

u=J(vI1= Sin*8 

q = eieu, 
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Fig. 8, The Frenet frame along the spine of the belt,
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always returns values in the range ( – n, n]. This form reveals
q represents. The geodesic r extending from 1 to q on S3 is

where cos -1
the rotation
parameterized by the function Y(s) G r for s G [0, l]-as

y(s) = e+sou. (13)

The unit quaternion function y(s) specifies the orientations the belt twists
through on its path from its fixed end to the tag. (Quaternion exponentiation
maps the line segment in R 3 connecting the origin to (1/2)0 u to the geodesic
in S3 connecting 1 to q.)

Let XO = O be the position, and to = k, b. = i, and nO = j be the Frenet
frame (tangent t, binormal b, and normal n) of the center of the fixed end of
the belt, as in Figure 8.

The local description of points along the spine of the belt is given by the
Frenet frame

t(s) = R(y(s))to,

b(s) = R(y(s))bo,

n(s) = R(y(s))no.

Integrating the tangent t(s) produces points along the spine of the belt

x(s) =X. + J‘t(dck. ( 14)
o

The belt is formed as a ruled surface consisting of line segments connecting
the vertices

x(s) ~ pb(s),

where, as before, p is one-half the width of the belt. The twisting of the belt
visualizes the interpolation of orientations of a line segment from its fixed
end to the tag end.

Since the Frenet frame is just rotated by these functions, the length of the
belt remains unchanged under the deformation. (By the way, if the locally
specified deformation were not simply a rotation, then the normal vector

ACM Transactions on Graphics, Vol. 13, No. 3, July 1994.



270 . John C. Hart et al.

transformation rule [Barr 1984] would apply. In such a case, the transformed
binormal would be found via the inverse transpose of the Jacobian matrix of
R( ), and the normal would be constructed from the cross product of the
tangent vector with the binormal vector.)

4.3 Limiting Belt Velocity

The orientation interpolation geodesic on S3 is an arc extending from 1 (the
north pole) to q. As q passes by – 1 (the south pole) the geodesic generated
by (13) will move from one side of S3 to the other (since the range of cos -1 is
(–m, n]).

This movement keeps the belt from accumulating unnecessary twists. Since
the geodesic connecting 1 to q is the shortest path on S3, belt tricks occur
naturally as the tag is rotated to avoid twists of greater than 2 T in the belt.
This movement has one disadvantage in that certain small movements of q
near the south pole cause the geodesic to swing around quickly to the other
side of S3 resulting in a belt trick that is too fast for the user to follow. In
fact, if the tag rotates directly through – 1, the geodesic snaps from one side
of S3 to the other, causing an instantaneous belt trick (an instant reverse of
the twist in the belt).

For example, turning the tag about the k axis from the initial 1 state
produces eventually a 2 n twist in the ribbon about the k axis. Turning the
tag slightly causes an instantaneous belt trick, snapping the belt from a 2 m
twist to a – 2 IT twist. Although both configurations are nearly equivalent,
representing nearby quaternion values, their appearance to the user is quite
different.

There are two remedies for handling instantaneous belt tricks. The first
remedy senses when the tag orientation path crosses – 1, or nearly misses it.
When it does, this remedy assumes control of the demonstrator from the user
and performs an explicit animated belt trick to remove the excess twist in the
belt.

The second remedy capitalizes on numerical error to perform belt tricks
automatically, as necessary. As (12) rotates the tag incrementally, small
numerical errors will accumulate in the quaternion representation of the
tag’s orientation. In other words, turning the tag about the k axis will
introduce slight rotations about the i and j axes as well. By the time the tag’s
turning has twisted the belt by 2 n and more, these perturbations will cause
the tag’s orientation quaternion q to miss the south pole. The resulting
geodesics will quickly swing across S3 producing a belt trick, although
possibly at a very fast rate.

We chose to implement the second remedy in the simulation of the quater-
nion demonstrator for its elegance and because it never assumes control of
the demonstrator away from the user. This elegance may give the impression
that the second remeby avoids belt tricks, which are an essential point of the
quaternion demonstrator. To the contrary, belt tricks resulting from near
misses of the south pole are indiscernible from the belt trick required to
simulate the belt continuously through a direct hit. The dependence of this
remedy on numerical noise affects its robustness in that a direct hit on the
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south pole would lock up the quaternion demonstrator simulation. Such a
direct hit is highly unlikely and has never occured in our experience. The only
remaining task is to regulate the rate at which the quaternion demonstrator
performs automatic belt tricks.

The speed of the automatic belt trick is regulated by controlling the speed
at which the geodesic ~ flips around Ss, which, in turn, is controlled from the
rate of rotation of the tag by regulating the ● in (12). The rest of this section
is devoted to deriving the amount of regulation of ~ necessary to control the
speed of the automatic belt tricks when they occur.

Following Misner et al. [ 1973], we can describe a unit quaternion r + xi +
yj + ,zk in spherical coordinates with three angles a, @, and 0 as

x = sin u sin ~COs$,

y = sinasin~sin~,

z = sinocos~,
r = coscY.

The inverse is computed as

a=cos-lr,

+.cosd -
sin a ‘

“z

f)=cos-l
sin a sin 0

Y
= sin 1

sin a sin 0 ‘

Also from Misner et al. [ 1973], the differential of geodesic length is given by

dsz =dcr2 + sin2(a)(d@2 + sin2(@)d02). (15)

Geodesics extending from the north pole to q have fixed d, (-), and an a
that ranges from O at the north pole to a positive value at q.

Specify the original tag orientation qO in polar form as ( aO, 00, flo) and
likewise with the new tag orientation q ~. The geodesic r. connecting 1 to qO
is of the polar form ([0, aO], #0, 190),and the new geodesic rl is ([0, all, 41, O1).
We are only concerned with geodesics that extend from the north pole to near
the south pole, at least where a., a, > IT/2. We also assume, without loss of
generality, that @o < dl and 00< 6’].

Let corresponding points on r. and rl be points of equal a. By observation,
the maximum distance between corresponding points on rO and rl occurs at
the equator, where a = 1/2. Let the distance geodesic r~ denote the geodesic
between corresponding equatorial points of r., I’l. By regulating the length of
r~, we regulate the rate of the belt trick.

Let lid = #Jl – 40 and A(I = @l – O.. From (15) we can approximate the
length of rd with

s’ = A@2 + sin2(@O)A02 (16)

since the change in a on r~ is zero and sin2 ( 7r/2) = 1
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Let s~,X be the maximum allowed length of rd—the maximum rate of
change between rO and rl. If the length of r~ exceeds the maximum allowed
length s~.X then we must reduce the increment of q. Let

A = sma./s (17)

be the amount rd needs to be scaled back to meet the maximum allowed
length. Then

s&X = A’s’

= A2(A~2 + sin2(@O)A62),

= (A A@)2 + sin2(@O)(AAO)2.

Changing the polar values # and 9 of qO by no more than AA@ and AA8
prevents the geodesic from rotating too fast around S3—prevents the belt
from moving too quickly. Hence, the incremental rotation

q~ = qoe*’”, ( 18)

where A is given in (17) as the quotient of the parameter s~aX and the
“distance” between successive geodesics s, produces a new tag orientation
sufllciently close to the original to limit belt movement properly when neces-
sary. In practice, setting s~,X = 0.1 disciplines the belt into reasonable
behavior.

5. CONCLUSION

Using the methods of Section 4, we have constructed a simulated quaternion
demonstrator, as described in Section 5.1. The simulated quaternion demon-
strator not only demonstrates unit quaternion multiplication, like its physical
counterpart, but also illustrates the quaternion interpolation of orientation
from one end of the belt to the other. The initial success of this prototype has
inspired several ideas for further research in this direction, which are de-
scribed in Section 5.2.

5.1 Results

Our implementation of the quaternion demonstrator, titled “quatdemo,” was
developed on an SGI Indigo Elan, and can be obtained via anonymous ftp to
the Imaging Research Laboratory at irl.eecs.wsu.edu from the directory
/pub/IRL/quatdemo.

It consists of the coordinate axis and a belt. The imaginaries are labeled at
the tag end of the belt, in their corresponding orientations. Pressing and
holding the “i,””’ “j, or “k key rotates the tag end of the belt, causing minimal
twists in the belt. The current unit quaternion value is represented visually
by the configuration of the demonstrator and is verified by a formatted text
version of the current unit quaternion value.

Our implementation simulates the spine of the belt discretely with 256
samples, using the Euler method to approximate the integral (14). Euler
integration is highly susceptible to accumulated error, but errors in the
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position of the tag end of the quaternion demonstrator are of little conse-
quence. The only state where the position of the tag is noticeable is – 1,
where the tag end of the belt should be coincident with the fixed end of the
belt. We are again fortunate in that the numerical noise accumulated in the
incremental rotations of the tag, statistically, prevents this state from being
represented exactly.

Figure 2 displays the various states of the quaternion demonstrator simu-
lated by the methods discussed in Section 4. As expected, belt tricks occur
automatically when necessary to remove excess twists in the belt; the belt
never contains more than a full 360 degree twist in any direction. Figure 3
displays an automatically occurring belt trick, which results at the midway
point when holding the “k key down.

After an automatic belt trick, enough error accumulates to cause the spine
of the belt to return to a position slightly offset from its original state. In our
implementation, pressing the space bar resets the quaternion demonstrator
to the 1 state.

5.2 Further Research

The concept of illustrating the track of a rotation through the use of attached
belts to objects is basic to the quaternion demonstrator. In this article we
have considered the resulting symmetries of a rectangle in three-dimensional
space. The same results apply to the symmetry of any object in three-
space R ‘).

Formally, Let @ c R’:i be a subset of R’:] containing the origin. Let S0(3)
denote the set of rotations about the origin of R ‘3. Let Symm( F ) denote the
subgroup of 50(3) consisting in those rotations g = S0(3) for which g(~) = ~
setwise, Now the three-sphere Ss of unit quaternions covers the S0(3) doubly
via the map

77: S:)+ s0(3) :V+l?(q)v=qvq ‘, (19)

where v is a pure quaternion—hence v is a vector in R:). This is an abstract
description of our representation of rotations by quaternions.

Now, the set of unit quaternions, n 1(Symm( @ )), covering the symmetry
group of the object, is a subgroup of S?, called the binary group of Symm( F).
If the object F“ is the rectangular tag Y, this group is the eight-element
quaternion group,

(20)

This is the abstract description of what the quaternionic demonstrator has
demonstrated.

An extension of the demonstrator (by attaching a belt to another object, P)
can ill ustrate the binary group for the symmetries of any object. These
groups, in the case of regular solids such as the tetrahedron, octahedron, or
icosahedron, are of great interest both practically and mathematically. This
extension of our demonstrator is one of the immediate prospects for further
research.
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It is also possible to extend our methods to study the structure of rotations
of four-space and to the study and illustration of properties of octonians
[Cayley 1897], which are an eight-dimensional generalization of the quater-
nions.

APPENDIX

RENDERING

The most straightforward method for rendering a deformed object is to
polygonize its surface, apply the deformation to the polygon vertices, then
render the resulting polygons. Special-purpose hardware can render polygo-
nal objects in real time, permitting interactive modeling. For example, the
local deformation of the belt used in the quaternion demonstrator was
rendered in this fashion. Polygonization can be problematic when investigat-
ing deformations in that the result of deforming vertices produces a polygon
that may be a poor fit when compared to the deformation of the entire
polygon, requiring some form of detection and dynamic subdivision.

Alternatively, we can render the deformed object directly as an implicit
surface, preserving, at least to pixel precision, the detail of the deformed
geometry. Let ~(x) be a function implicitly defining the set A c R3 such that

f(x) <o-x Ez4, (21)

f(x)= O=x GdA, (22)

f(X)> O= XGlR3\A, (23)

and let D: R 3 + R 3 denote the deformation function. Then the deformed set
D(A) is implicitly defined by the function ~ o D l(x).

With few exceptions, ray tracing is the means for direct visualization of
implicit surfaces. Some recent ray intersection methods require the Lipschitz
constant of the function [Kalra and Barr 1989; Hart 1993]. The Lipschitz
constant of a function f A + B from metric space (A, dA ) to metric space
(B, d~ ) is the smallest positive value A such that

dB(f(x), f(y)) < AdA(x, y) (24)

for all x, y = A. The Lipschitz constant bounds the amount a transformation
can expand an object. If f R’ + R, then the Lipschitz constant of f indicates
the steepest slope in the graph of f. One can use the Lipschitz-based
ray-tracing method to investigate the “unfurling,” the global deformation
described in Section 3.2.

By observation, the largest dilation caused by B,,,, occurs when s = 1,
t = O. This deformation winds the segment [r, l]i twice around the origin.
Reducing to R’2, the parametric equation of this curve takes the x axis from
[r, 1] into the twice-winding curve as

f,(x) =X COS26NX), (25)

(Y(x) =xsin20(x) (26)
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with derivatives

f~(x) ==cos2#(x) - 20’(x) sin2@(x), (27)

f{,(x) =sin20(x) +20’(x) cos26(x). (28)

21r
o’(x)” –—

1 – r,,
(29)

Where (29) corresponds to (8). The arc length of this double twist is found
using

167T2
=1+ (31)

(1 – ro)2°

Since dsz reaches its maximum (over the proper domain) when x = 1, we
have the Lipschitz constant

(32)

The deformation B] ~,dilates more than any other B,,,, for all s E [ – 1, 1]
and t e [0, 1]. Equation (32) is an upper bound of the Lipschitz constant for
B.,,, and under a similar argument, for the belt trick deformation B,. Hence,
(32) is a suitable (though not necessarily optimal for all parameters s and t )
Lipschitz bound for ray-tracing the results of the belt trick and unfurling
deformations.

This Lipschitz constant was used to render the unfurling demonstration in
Sandin et al. [ 1993], excerpted in Figure 5.
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