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1 Basic Concepts

An axiomatic system contains a set of primitives and axioms. The primi- This lesson is in
two parts. Part 1
begins here.

Correlation to
Hvidsten
supplementary text
and MA402
syllabus noted in
the margins.

tives are object names, but the objects they name are left undefined. This is
why the primitives are also called undefined terms. The axioms are sentences
that make assertions about the primitives. Such assertions are not provided
with any justification, they are neither true nor false. However, every subse-
quent assertion about the primitives, called a theorem, must be a rigorously
logical consequence of the axioms and previously proved theorems. There
are also formal definitions in an axiomatic system, but these serve only to
simplify things. They establish new object names for complex combinations
of primitives and previously defined terms. This kind of definition does not
impart any ‘meaning’, not yet, anyway. Hvidsten 1.4, 1.5.

Lesson A3, A6
If, however, a definite meaning is assigned to the primitives of the axiomatic
system, called an interpretation, then the theorems become meaningful asser-
tions which might be true or false. If for a given interpretation all the axioms
are true, then everything asserted by the theorems also becomes true. Such
an interpretation is called a model for the axiomatic system.

∗From Post-Euclidean Geometry: Class Notes and Workbook, UpClose Printing &
Copies, Champaign, IL 1995, 2004
†Prof. George K. Francis, Mathematics Department, University of Illinois, 1409 W.

Green St., Urbana, IL, 61801. (C) 2010 Board of Trustees.
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In common speech, ‘model’ is often used to mean an example of a class of
things. In geometry, a model of an axiomatic system is an interpretation of
its primitives for which its axioms are true. Since a contradiction can never
be true, an axiom system in which a contradiction can be logically deduced
from the axioms has no model. Such an axiom system is called inconsistent.
On the other hand, if an abstract axiom system does have a model, then
it must be consistent because each axiom is true, each theorem is a logical
consequence of the axioms, and hence it is true, and a contradiction cannot
be true.

Finally, an axiom system might have more than one model. If two models
of the same axiom system can be shown to be structurally equivalent, they
are said to be isomorphic. If all models of an axiom system are isomorphic
then the axiom system is said to be categorical. Thus for a categorical axiom
system one may speak of the model; the one and only interpretation in which
its theorems are all true.

All of these qualities: truth, logical necessity, consistency, uniqueness were
tacitly believed to be the hallmark of classical Euclidean geometry. At the
start of the 19th century, a scant 200 years ago, philosophers and theologians,
physicists and mathematicians were all persuaded that Euclidean geometry
was absolutely the one and only way to think about space, and therefore
it was the job of geometers to develop their science in such a way as to
demonstrate this necessary truth. By the end of the century, this belief had
been thoroughly discredited and abandoned by all mathematicians.1

The main theme of our course concerns the evolution of this idea, and its
replacement by the much richer, far more illuminating, post-Euclidean ge-
ometry of today. It is about a method of thought, called the axiomatic
method. Although at one time this method may have developed merely from
a practical need to verify the rules obtained from the careful observation of
physical experiments, this changed with the Greek philosophers. The ax-
iomatic method has formed the basis of geometry, and later all of mathemat-
ics, for nearly twenty-five hundred years. It survived a crisis with the birth
of non-Euclidean geometry, and remains today one of the most distinguished
achievements of the human mind.

1Curiously, it persists even today among some irresponsible, but influential amateurs.
See “Ask Marilyn”, by Marilyn Vos Savant, Parade Magazine, November 21, 1993.
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As we noted earlier, the transition of geometry from inductive inference to
deductive reasoning resulted in the development of axiomatic systems. Next,
we look at four axiom systems for Euclidean geometry, and close by con-
structing a model for one of them.

2 Euclid’s Postulates:

Earlier, we referred to the basic assumptions as ‘axioms’. Euclid divided
these assumptions into two categories — postulates and axioms. The as-
sumptions that were directly related to geometry, he called postulates. Those
more related to common sense and logic he called axioms. Although mod-
ern geometry no longer makes this distinction, we shall continue the ancient
custom and refer to axioms for geometry also as postulates.

Here is a paraphrase2 of the way Euclid expressed himself.

Let the following be postulated: Hvidsten 2.1. Class
lessons E1 ff

Postulate 1: To draw a straight line from any point to any point.

Postulate 2: To produce a finite straight line continuously in a straight line.

Postulate 3: To describe a circle with any center and distance.

Postulate 4: That all right angles are equal to one another.

Postulate 5: That, if a straight line falling on two straight lines makes the
interior angles on the same side less than two right angles, the two
straight lines, if produced indefinitely, meet on that side on which the
angles are less than two right angles.

Note that the wording suggests construction. Euclid assumed things that he
felt were too obvious to justify further. This caused his axiomatic system to
be logically incomplete. Consequently, other axiomatic systems were devised
in an attempt to fill in the gaps. We shall consider three of these, due to

2Thomas L. Heath, “The Thirteen Books of Euclid’s Elements”, Cambridge, 1908.
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David Hilbert, (1899), George Birkhoff, (1932) and the School Mathematics
Study Group (SMSG), a committee that began the reform of high school
geometry in the 1960s.

3 Hilbert’s Postulates:

In the late 19th century began the critical examinations into the foundations
of geometry. It was around this time that David Hilbert(1862 - 1943) intro-
duced his axiomatic system. The primitives in Hilbert’s system are the sets
of points, lines, and planes and relations, such as

incidence: as in ‘a point A is on line `’
order: as in ‘C lies between points A and B’
congruence: as in ‘ line segments AB ∼= A′B′’

An example of a formal definition would be that of a line segment AB as the
set of points C between A and B. He partitioned his axioms into five groups;
axioms of connection,order, parallels, congruence and continuity.3 Hilbert’s
axiom system is important for the following two reasons. It is generally
recognized as a flawless version of what Euclid had in mind to begin with. It
is purely geometrical, in that nothing is postulated concerning numbers and
arithmetic. Indeed, it is possible to model formal arithmetic inside Hilbert’s
axiomatic system.

We wish to show how Euclidean geometry can be modelled inside arith-
metic.4 For this purpose, we want the shortest possible list of primitives and
postulates, for then, we have less to check. Birkhoff meets this requirement.

3cf. Wallace and West, op.cit., Chapter 2 for a more detailed discussion of Hilbert’s
axioms.

4The historical significance of these two exercises in building models of formal systems
is the irrefutable demonstration that geometry and arithmetic are equi-consistent. That
means, if you believe the one to be without contradiction, then you are obliged to accept
the other also, and vice-versa. Hilbert’s program for a proof that one, and hence both of
them are consistent came to naught with Gödel’s Theorem. According to this theorem,
any formal system sufficiently rich to include arithmetic, for example Euclidean geometry
based on Hilbert’s axioms, contains true but unprovable theorems.
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4 Birkhoff’s postulates

The primitives here are the set of points, a system of subsets of points called Here ends Part 1 of
this lesson. Part 2
begins here and is
treated in the
module on
Cartesian
Geometry:
Hvidsten 3.6. Class
lessons C1 ff

lines, and two real-valued functions, ‘distance’ and ‘angle’. That is, for any
pair of points, the distance d(A,B) is a positive real number. For any ordered
triple of points A,Q,B, the real number m 6 AQB is well defined5 modulo 2π.

Euclid’s Postulate: A pair of points is contained by one and only one line.

Ruler Postulate: For each line there is a 1:1 correspondence between its
points and the real numbers, in such a way that if A corresponds to
the real number tA and B corresponds to tB then

d(A,B) = |tB − tA|

.

Protractor Postulate: For each point Q, there is a 1:1 correspondence of
its rays6 and the real numbers7 modulo 2π, in such a way that if ray r
corresponds to the circular number ωr and ray s to ωs then

m6 RQS = ωs − ωr(mod2π)

where R is a second point on r and S on s .

simSAS Postulate: If m6 PQR = m6 P ′Q′R′ and d(PQ) : d(P ′Q′) =
d(QR) : d(Q′R′) = k then the other four angles are pairwise equal,
and the remaining side pairs have the same ratio.

One says that such triangles are similar, 4PQR ∼ 4P ′Q′R′ with scaling
factor k. Of course, for k = 1, 4PQR ∼= 4P ′Q′R′ .

5To distinguish the figure 6 AQB, which we call an ‘angle’, the number m6 AQB is
called the angular measure of the angle. Moreover, two real numbers that differ by a
multiple of 2π measure the same angle.

6Note that once we can apply a ruler to a line, we can identify one of the two half-lines,
or rays, at a point Q as those points P on the line for which tP > tQ.

7We might call these the circular numbers because they lie on the number circle, just
as one speaks of the real numbers lying on number line.
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5 The SMSG Postulates

There are 22 of these,8 and they combine the flavor of Hilbert and Birkhoff.
With Birkhoff, rulers and protractors are postulated, under the valid impres-
sion that children already know how to deal with real numbers by the time
they study geometry. There are many postulates so that proofs of interesting
theorems can be constructed without the tedium of proving hundreds of lem-
mas first. Of course, unlike Birkhoff’s foursome, the SMSG postulates are
redundant, in that some postulates can be logically derived from others. The
pedagogical wisdom and usefulness of the SMSG axiom system is a matter
of some debate among educators.

6 A Cartesian Model of Euclidean Geometry

We next give an example of an axiomatic system and a model for it. For this Hvidsten 3.6. Class
lesson C2purpose we choose a very familiar area of mathematics in which to interpret

the primitives and to test the truth of the axioms. We all know analytic plane
geometry from high school, also known as Cartesian geometry. Birkhoff’s
four postulates for Euclidean geometry appear compact enough for us not to
lose our way.

We interpret the points A,B,C... as ordered pairs, (x, y), of real numbers.
Lines shall be solution sets to linear equations of the form ax+ by+ c = 0. A
point (p, q) is incident to the line ax+ by + c = 0 if it satisfies the equation,
i.e. if ap + bq + c = 0 is true. Remember that the distance between two
points and the angle measure are also primitives and need an interpretation.
We shall do that later.

With just this much we can already attempt to verify the first postulate which
asserts the existence and uniqueness of a line through two given points. You
could do this yourself by deriving the formula for the line through two points
(x0, y0), (x1, y1) in any of the many ways you learned to do this in high school.
Here we do this by solving this system of two linear equations for the as yet

8Cf. Appendix of Wallace and West, op.cit.
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unknown parameters a, b, c :

ax0 + by0 + c = 0
ax1 + by1 + c = 0

a(x1 − x0) + b(y1 − y0) = 0

The third equation eliminates c for the moment; we can recover it as soon as
we know a, b, for example thus:

c = −ax0 − by0.

One plausible choice for a,b would be

a = −(y1 − y0), b = (x1 − x0)

because it fits the third equation and yields

c = x0y1 − x1y0 =

∣∣∣∣∣ x0 y0

x1 y1

∣∣∣∣∣
While this shows that both points lie on some line, it does not demonstrate
the uniqueness of this line. Indeed, our interpretation is incomplete. If we
really want the first postulate to hold we must agree that the same line may
have more than one equation, provided the same set of points is the solution
set for each. We therefore amend our interpretation of a line by stressing
that

a0x+ b0y + c0 = 0
a1x+ b1y + c1 = 0

define the same line provided the parameters are proportional:

a0 : a1 = b0 : b1 = c0 : c1.

The distance function d(A,B) Birkhoff had in mind is, of course, the Eu-
clidean distance as derived from the Pythagorean theorem:

For A = (x0, y0), B = (x1, y1),

d(A,B) =
√

(x1 − x0)2 + (y1 − y0)2
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We are now ready to verify Birkhoff’s ruler postulate in a particularly useful
fashion. First we give our two arbitrary points more mnemonic names: Q =
(x0, y0), I = (x1, y1). Now there is a canonical way of labelling all other points
on the line QI with real numbers t in several useful ways as follows:[

xt

yt

]
=

[
x0

y0

]
(1− t) + t

[
x1

y1

]

In vector notation this might be written as

Pt = Q(1− t) + tI = Q+ t(I −Q).

Notice that P0 = Q and P1 = I, and that the points on the segment QI are
given by the set

{Pt|0 < t < 1}.

Problem 1: Recall that these are called parametric equations for the line; the non- These problems are
assigned for
submission
elsewhere. As you
study this lesson
and as you solve
these problems,
enter their
solutions into your
Journal for future
reference.

parametric equation is obtained by elimination of the t from the system of two linear
equations. Verify this.

There is still something to prove here, namely that the Euclidean distance is
in fact measured by our ruler. Once again we were too hasty in ruling lines.
For the Euclidean distance

d(Q, I) =
√

(x1 − x0)2 + (y1 − y0)2

which need not equal the parametric distance, which is 1. We may, however,
rescale our ruler by a unit u = d(Q, I), to yield another parameter, s = tu,
for which the points Ps on the line are given by Ps = Q+ sU , where U is the
unit vector, U = (I −Q)/d(I,Q), in the direction if I from Q . This way, I
is the correct distance, d(I,Q), away from Q on this ruler for the line.

For the remaining pair of Birkhoff’s postulates we need a protractor, i.e. a
device for measuring angles. The simplest way of doing this in our model is
to recall the definition of the dot product of two vectors and interpret:

m6 AQB = arccos(
A−Q
d(A,Q)

· B −Q
d(B,Q)

).

Problem 2: Show that with this interpretation, Birkhoff’s protractor postulate is true.
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Birkhoff’s axiom system achieved its remarkable economy by postulating
what turns out to be the quintessential property of Euclidean geometry.
What distinguishes it from non-Euclidean geometry are the properties of
geometric similarity. Two shapes are similar if they differ only in scale.
Birkhoff postulates that two triangles with a similar corner, are wholly sim-
ilar. By a corner we mean, of course, a vertex and its adjacent edges. If the
proportionality factor is 1, then this postulate says that two triangles are
congruent as soon as they have one congruent corner.

We shall verify the simSAS postulate, which makes an assertion about two
triangles, by carefully measuring one triangle. Just as today we exchange
goods by means of their price, instead of bartering items for each other, so
modern geometry compares shapes by comparing their measurements.

Given a triangle 4ABC, vital statistics consists of six numbers, the three
angles and sides,

α = m6 A
β = m6 B
γ = m 6 C
a = d(B,C)
b = d(C,A)
c = d(A,B).

The law of cosines, which generalizes the Pythagorean theorem to arbitrary
triangles by resolving the square of a side in terms of the opposite corner:

c2 = a2 + b2 − 2ab cos γ.

allows us to measure c in terms of the measures of two sides and the included
angle.

Problem 3: Use vector algebra and the definition of the dot product to verify the law of
cosines. Hint: Multiply out

C2 = (B −A)2 = ((B − C)− (A− C))2.

Thus, knowing a, b and γ, we calculate c. If a and b are stretched, or shrunk
by the same factor, so is c, provided γ remains the same.
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Problem 4: Apply the law of cosines to the other two sides to calculate α and β as
functions of a, b and γ.

Problem 5: A generalization of Euclid’s proof of the Pythagorean theorem leads to
another proof of the law of cosines. Label an arbitrary acute triangle in the standard way.
Construct squares on two of its sides, say b and c. Extending the altitudes from C and B
partitions the squares into rectangles

b2 = bb1 + bb2
c2 = cc1 + cc2

Euclid’s argument (do it!) proves that cc1 = bb2

Now drop the third altitude from A. Of course (can you prove this?) it passes through
the same point where the first two altitudes intersected,9 and partitions the third square
into two rectangles.

Finally, we can measure the rectangle, summarize our inferences and come up with the
law of cosines.

aa2 = bb2 = ab cosC
c2 = cc1 + cc2

= bb2 + aa1

= (b2 − bb1) + (a2 − aa2)
= b2 + a2 − 2ab cosC

Problem 6: Generalize the above argument to work also for an obtuse triangle. Hint:
Sometimes you need to add instead of subtract and vice-versa.

9This point is called the orthocenter of the triangle.
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