illiMath04 Notes — June 25, 2004 — Dr. Peter
Brinkmann

William Baker
June 25, 2004

1 Using Interactive Python Prompt While Run-
ning a Distributed Scene Graph Program

There are two different ways to run a python graphics program:
e At the OS prompt type: ”python foo.py”
e Enter Python and then type from foo import *

There are important differences between these two ways of running a Python
program. If you use the first option, and start the program from the OS prompt,
then you will enter the program’s main loop. This results in the program running
normally including animation. However, in this mode the Python command
prompt will be unavailble while the program is running. If the second option is
used, then the Python interactive command prompt will be availible.

When the second option is used (first entering Python and then importing
the program), the interactive Python command prompt stays availble. However,
the program’s animation will not run, and any sort of mouse or keyboard inter-
ation there might normally be will be unavailible. Even with these restrictions,
it is still possible to control the program by calling its functions manually, and
this can prove to be very useful for testing purposes. See example code below
for the blobbyman demo:

1.1 Code Example: Using the Python command with the
Blobbyman (blobby.py)

After starting the Blobbyman program, the Blobbyman appears in a window,
but the mouse and keyboard cannot manipulate him like they normally can.
The code segments below are a few examples of commands that could be run
to manipulate Blobbyman from the Python prompt.

To Move Blobbyman’s Head:

>>> dgTransform(TID[’neck’],T[’neck’]*ar_rotationMatrix(’x’,3.14/4)

To get wand data:
>>> ifo.getObjectMatrix ()

Note: "ifo” is an interface object that gets data from input devices

2 Using the time Module (to Slow Animation)

Using the ”time” module it is possible to slow animation, or pause the program.
The example give by Dr. Brinkman used the bouncing ball demo (bounce.py).
Two ways of slowing animation were given, and are briefly explained below.

Option 1: Slowing animation does not affect the magnitude of changes in the
scene at each step of the animation (Regardless of the time in sleep(), objects
in the scene move the same number of steps and the same distance).

from time import sleep

for i in range (100):
 sc.update()
 sleep(0.05)

Option 2: Couple the sleep time and animation step size, so that the ani-
mation speed is linked to the distance that objects in a scene move at each new
frame of animation.

tt = 0.05 # Variable to hold time step
for i in range(100)
sc.update(arVector3(0,-9.81,0)/.305, tt) #arVector(...) included
#because of order of
#parameters, see below
sleep(tt)

3 How the order of parameters affects calling
functions

If you specify the names of the parameter that you are sending in to a function,
order does not matter. However, if you send in one parameter without a name,
Python will replace the first parameter’s default value.

4 Using Threads to create an interactive mode
for the Master/Slave framework

4.1 Problem

The problem with the Master/Slave framework is that to get anything to work
you must use the GLUT mainloop (or whichever graphics main loop you like).

While inside this loop you get to see everything you should, and to control
your program as you programmed it to be controlled. However, this is an all or
nothing situation. Once the main loop is entered, all control using the interactive
Python prompt is lost.

4.2 Solution

The solution to this proble is to run a Python interpreter in a seperate thread.
This will allow for Python interactive command line control and allow the main
loop to excecute and run the program.

4.3 Code

from threading import Thread

def interact():
while 1:
s=raw-input (’### °)
try:
exec s in globals()
except Exception, e:
print e
Thread(target=interact).start()

5 Interactive Python Tips

5.1 Loading *.py files into Python Interactive Mode

There is a difference between the following two lines:

import foo

from foo import *

The first line loads the module foo into Python, but it doesn’t load the names
of variables and functions from foo into the global namespace. The second line
loads foo and all of its methods into the global namespace.

To illustrate the difference between these lines, assume there there is a func-
tion bar() in foo. The syntax used to call bar() depends on which of the two
methods above was used to load the module foo.

Using the first method we would type:

>>> foo.bar()
Using the second method we would type:

>>> bar()

5.2 The dir() commmand

The function dir() returns a listing of all the functions and variables currently
availible for use. dir() can accept as a parameter the name of a module so that
you can see all of the functions and variables within a module that has been
loaded into Python (but not into the global namespace).

Example:

Python 2.2.3 (#1, Oct 15 2003, 23:33:35)
n 2.2.3 (#1, Oct 15 2003, 23:33:35)
[GCC 3.3.1 20030930 (Red Hat Linux 3.3.1-6)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> dir()
[’__builtins__’, ’__doc__’, ’__name__"’]
>>> dir(math)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
NameError: name ’math’ is not defined
>>> import math

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’, ’math’]

>>> dir(math)

[’__doc__’, ’__file__’, ’__name__’, ’acos’, ’asin’, ’atan’, ’atan2’, ’ceil’, ’cos’, ’cosh’,
>>> from math import *

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’, ’acos’, ’asin’, ’atan’, ’atan2’, ’ceil’, ’cos’, ’cos
>>>

5.3 The help() and type() commands

Two other built in commands in Python are help() and type(). These two can
be used together to help you learn what built in functions are availble for objects
you might have in your program.

help() takes as a parameter a type and then returns information about that
type.

type() takes a variable and returns its type.

These can be used together so that all you would need to do to learn about
one of your variables is help(type(variable name)).

Example:

>>> help(str)

...help on strings
>>> foo="hello world"
>>> type(foo)

<type ’str’>

>>> help(type(fo0))
...help on strings

>>>

5.4 The __name__ variable

Python has a built in variable __name__. This variable is assigned a value based
on how a program is run. If a program is run from the command line:

[..]1$ python foo.py

Then __name__ equals __main__. However, if the program foo is loaded into
Python in interactive mode, then _name__ will equal something else:

>>> import blobby

>>> blobby.__name_
’blobby’
>>>

This is useful because inside a program you can check if __name__ equals
_main__, and if it does then you know it was called from the OS prompt.

