PyView Version 1.0
Peter Brinkman and Brett Witt
IlliMath04 - August 2004

Abstract

PyView is an OpenGL application capable of displaying triangle meshes
using the Szgygy distributed graphics framework. It is written completely
in Python for flexibility and simplicity. As of this writting, it is capable of
displaying binary OFF files generated using the Evolver software package.
However, modules exist to allow PyView to display MD2 meshes as well
as ASCII OFF files. Currently animation is only supported in the MD2
and binary OFF formats.

PyView is essentially embedded within the PyCrust engine itself. Py-
Crust is a graphics framework developed to simplify the creation of Python
programs using the Szgygy Python bindings. However, it is important to
note that both PyCrust and PyView are depreciated in favor of another
framework currently in development called Flare.

1 Design

PyView was designed to be easily extensible through inheritence from the Model
object interface. The interface defines only two functions, a Load function
and an Export function. The Load function takes a file name and then parses
through that file extracting data for position, color, normals, and face indexing.
The export function returns a tuple containing a vertex list and a face list.
Both of these lists are two-dimensional arrays, with the first dimension being
the current frame, and the second dimension being the current vertex/face one
is attempting to retrieve for that given frame.

The vertex list and the face list can then be supplied to the PyCrust Mesh
class via a member function called GenMeshFromModel. This function takes
the data supplied from export, calculates missing data, such as per vertex or per
face normals, coloring, and a face list. This gives the user the ability to define
as little data as possible and still get an object to display on screen. They can
then later refine the object’s parameters in the Load function to more accurately
visualize a particular surface.

Navigation of an object in the world is mostly accomplished through a de-
fault navigator known as the Pape navigator. This allows a user to instantly
visualize a mesh after having written a loader for it from every angle. From
there the navigation interface is completely exposed to allow the user to de-
fine their own navigation system. This can be accomplished by modifying the
navigation functionality SzyDisplay located in the Render function.

Surfaces can also be generated directly in code. Simply ignore the filename
parameter of the Load function when inheriting an object from Model and
algorithmically generate your data there. Then have the Export function output
that data in the format specified above and in the documentation string for that
function, and it will seamlessly integrate with the PyCrust Mesh class.

For extremely fine control over all aspects of the visualization of a surface, it
is possible to completely circumvent PyView’s Mesh class, although this process



also circumvents the process through which PyView’s rendering speed is com-
parable to that of some C++ implimentations. This can be accomplished by
inheriting off the PyCrust RenderObject class and rendering your object man-
ually using OpenGL calls. However it should be noted that without significant
experience in OpenGL, rendering an object via this method could reduce your
frame rate below what is acceptable for animation.

2 Usage

PyView and PyCrust are depreciated! Please use Flare instead!

While PyView should not be used for any project since it is being replaced
with the much faster hybrid C++/Python/Ruby framework called Flare, this
documentation is provided for educational and historical purposes.

Start by checking to see if there is support for the file format you are at-
tempting to use. PyView supports binary OFF files, ASCII OFF files, and
MD2 models. A bit of work is required to get the ASCII OFF files and the
MD2 model files to work again, primarily because near the end of development
those model loaders weren’t modified to work with the current system. However
if that support is required and not present in Flare, looking at the binary OFF
model loader should be sufficient enough to make the required changes. Keep
in mind that the mesh loader also unconditionally mirrors the data accross the
xz axis so additional functions and parameters would need to be added in order
to turn that feature off for things like the MD2 model format.

The MD2 file loader only loads in the keyframes currently. PyView cannot
interpolate between keyframes because doing so would be unacceptably slow,
this is one of the reasons for the creation of Flare. As such if animation is
choppy when displaying the MD2 object, consider interoplating in the model
loader and supplying those additional frames in your face list. This will allow
the Mesh class to cache the data on the video card and should also provide for
a much smoother animation at the expense of a longer load time.

Currently PyView also expects that vertex data is unique for each frame.
While this is extremely odd in the field of real-time computer graphics, this
default functionality needed to be provided since the OFF file format does not
gureentee that the number of verticies stays consistant between two frames. If
the model you are loading only has one set of vertex data, then simply make
the other elements in the vertex list references of that single set of vertex data.
This operation is trivial in Python.

For an example of how to write a file loader for a Mesh object, please examine
BOffModel.py. This is by far the simplest file loader there is in the default
distribution of PyView.

3 The Future

PyView was a simple proof of concept written completely in Python, and is
fairly good at what its primary goal is, which is fast and easy visualization of
triangle meshes in Python. However it is very limited, partially because Python
is not descriptive enough to allow for an elegant object oriented framework.



Python is also not fast enough to justify the graphical back end being written
in it when the code has one to one correspondence with equivalent C code since
the OpenGL bindings do not take advantage of any of the language features of
Python.

Flare address all of these concerns without sacrificing any flexibility on the
part of the user. The complete rendering system is written in C++ and has
far more functionality than PyView, such as vertex/pixel shader support, the
ability to interpolate between key frames, vertex buffer object usage, and many
other features. Another key point is that most of this functionality is enabled
by default, almost instantly enhancing any program ported to use the Flare
framework without sacrificing any speed and more often than not, experiencing
a significant speed increase.

During the program initialization, render loop, and shutdown processes
callback files are provided for writing additional instructions to be executed
during those stages. They are tentatively named PyFlarelnit, PyFlareLoop,
PyFlareShutdown, RbFlarelnit, RbFlareLoop, and RbFlareShutdown for Python
and Ruby respectively. Since C++, Python, and Ruby all share the same ad-
dress space, it is possible to write in the language that best suites a particular
task. However currently for each stage you can only choose one language to
write in, since the order in which each externally created file is processed is
arbitrary.

Communication between the external languages and the C+4 framework
will take place using bindings that take advantage of the features of the partic-
ular language it’s being ported to. A straight port of the classes and member
functions of the C++ framework will be provided as well, however using those
straight bindings will be unnessecary because the bindings written for that lan-
guage will provide access to all the functionality of the underlying C++ API,
just in a way that plays on the strengths of the language the bindings are being
written for.

Automatic resource management allows users of Flare to use shaders, tex-
tures, and even instances of objects freely without worrying about duplication
of data. The copy on write policy the resource manager defines ensures that
resource management is completely hidden from the user.

Automatic synchronization ensures that clocks defined within your program
are synchronized across all render nodes to ensure that your program will func-
tion in a distributed environment the same as in a stand-alone environment.

An advanced logging system has been built into Flare in an attempt to
assist in the debugging of programs written using the Flare framework. This
should cut down on untracable errors and downtime and increase productivity,
especially when these errors occur in the Cube.

Additional functionality will be added to Flare over time to better address
wants and needs of the researchers and students using it. Also since the render-
ing interface of the Flare framework is heavily abstracted, the Flare framework
can be easily ported to any system using any 3D graphics API.



