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1 Introduction

This paper is a description of PyBounce, a project that has been completed as
part of a summer research project for undergraduates in math and computer
science. PyBounce is a physical model of bouncing balls, coded in the Python
programming language1.

This document explains the physical aspects of the model, along with issues
that are likely to arise in any implementation. The first section explains the
physical issues only, so that no computer programming experience is required.
Familiarity with basic vector operations is assumed. A basic familiarity with
high school level physics might also be helpful, although no specific knowledge of
physics is assumed. Although Python code fragments are included in later sec-
tions for explanatory purposes, little knowledge of Python is actually required.
The reader who has taken an introductory computer programming course should
be adequately prepared for these sections.

2 The Physics of PyBounce

Finding the velocities of two balls after a fully elastic collision, given initial
positions, initial velocities, and masses, is the central physical problem. The
solution is written out below as a reference for anyone who would like to use it.

2.1 Background

A fully elastic collision between two balls here refers to a collision that preserves
momentum and kinetic energy.

Stated mathematically, suppose we have two spherical balls B1 and B2 of
masses m1 and m2 and of velocity vectors v1 and v2, respectively. The velocities
after the collision are v

′
1 and v

′
2. With this notation, the fully elastic collision

described above may be described mathematically by the following equations.

∗This paper has been written as part of illiMath2004 at the Department of Mathematics

of the University of Illinois, Urbana. The author may be reached at gstanton@uiuc.edu.
1A Python tutorial can be found at www.python.org.
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m1v1 + m2v2 = m1v
′
1 + m2v

′
2 (1)

1

2
m1v1 · v1 +

1

2
m2v2 · v2 =

1

2
m1v

′
1 · v

′
1 +

1

2
m2v

′
2 · v

′
2 (2)

The radial components of B1 and B2 are v1 and v2. This term is used here to
refer to the component of velocity that is affected by the collision (see Figure 1).
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Figure 1: Velocity Components

More precisely, v1 and v2 are described as follows. To begin with, let p1 and
p2 be the positions of B1 and B2 (that is, the positions of their corresponding
centers). Let p12 = p2 − p1, so that p12 is the vector pointing from p1 to p2.
To simplify matters, let u = p12

|p12|
. Now, given vi, where i=1 or i=2, we let

vi = vi ·u. In other words, v1 and v2 are the scalar projections of the velocities
of B1 and B2 onto the vector pointing from B1 to B2.

By resolving the velocities into components in this way, we are able to reduce
the general situation depicted in figures 2 and 3 below to that of a head on
collision. This is done as follows.

Let v
⊥
1 = v1 −v1u and v

⊥
2 = v2 −v2u. These vector components of velocity

are perpendicular to u and are unaffected by the collision. Their contribution
to momentum and kinetic energy is therefore the same before and after the
collision2. By using equations 3 through 6 below, we may therefore reduce
equations 1 and 2 to equations involving only radial components. Put differently,
the reduced equations will model a head on collision.

v1 = v1u + v
⊥
1 (3)

v2 = v2u + v
⊥
2 (4)

v
′
1 = v′1u + v

⊥
1 (5)

v
′
2 = v′2u + v

⊥
2 (6)

2We ignore friction and angular momentum.
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To obtain these reduced equations, we first substitute the expressions for v1,
v2, v

′
1, and v

′
2 above into equation 1, which gives the first equation below. We

then perform a little simplifying algebra.

m1(v1u + v
⊥
1 ) + m2(v2u + v

⊥
2 ) = m1(v

′
1u + v

⊥
1 ) + m2(v

′
2u + v

⊥
2 )

After expanding both sides of the equation and subtracting from both sides
each term including a perpendicular component, we obtain the equations below.

m1v1u + m2v2u = m1v
′
1u + m2v

′
2u

(m1v1 + m2v2)u = (m1v
′
1 + m2v

′
2)u

(m1v1 + m2v2)u − (m1v
′
1 + m2v

′
2)u = 0

((m1v1 + m2v2) − (m1v
′
1 + m2v

′
2))u = 0

Since u 6= 0, we obtain the desired equation.

m1v1 + m2v2 = m1v
′
1 + m2v

′
2

The reduced equation for conservation of kinetic energy can be obtained
similarly, so that we have the following system of equations.

m1v1 + m2v2 = m1v
′

1 + m2v
′

2 (7)

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1v

′
2

1 +
1

2
m2v

′
2

2 (8)

We will solve these equations for v′
1 and v′2 in the next section. Once we

have these values, we will be able to compute v
′
1 and v

′
2 according to equations

5 and 6, which is the ultimate aim of this paper.

PSfrag replacements v1

v1

v2

v2

B1

B2

Figure 2: Before Collision
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Figure 3: After Collision

2.2 Solving the Equations

The masses, positions, and initial velocities are known, so we know m1 and m2

immediately, and we can calculate v1 and v2 according to the last section. We
thus have two equations in two unknowns. It would be nice to have two linear
equations in two unknowns, so the first thing to do is rewrite equations 1 and 2
in the forms below.

m1(v1 + v′1)(v1 − v
′

1) = m2(v2 + v
′

2)(v
′

2 − v2)

m1(v1 − v
′

1) = m2(v
′

2 − v2)

We know that v1 6= v
′

1. Otherwise, we would have v1 = v
′

1 and v2 = v
′

2, as
the masses are assumed to be nonzero, which would mean the two masses pass
through each other. Therefore, by dividing, we obtain the following from the
equations above.

v1 + v
′

1 = v2 + v
′

2

Rewriting this equation in a slightly different form and combining with equa-
tion 7 gives the two linear equations below.

v
′

1 − v
′

2 = −v1 + v2 (9)

m1v1 + m2v2 = m1v
′

1 + m2v
′

2

All that is left is to solve these equations. Matrices are used here, but if the
reader is unfamiliar with matrix operations, any other method will of course do
just fine.

(

1 −1
m1 m2

) (

v
′

1

v
′

2

)

=

(

−1 1
m1 m2

) (

v1

v2

)
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(

1 −1
m1 m2

)−1

=
1

m1 + m2

(

m2 1
−m1 1

)

(

v
′

1

v
′

2

)

=
1

m1 + m2

(

m2 1
−m1 1

) (

−1 1
m1 m2

) (

v1

v2

)

(

v
′

1

v
′

2

)

=
1

m1 + m2

(

m1 − m2 2m2

2m1 m2 − m1

)(

v1

v2

)

(

v
′

1

v
′

2

)

=
1

m1 + m2

(

(m1 − m2)v1 + 2m2v2

2m1v1 + (m2 − m1)v2

)

After multiplying through by 1

m1+m2

, we obtain the solution below.

v
′

1 =
m1 − m2

m1 + m2

v1 +
2m2

m1 + m2

v2 (10)

v
′

2 =
2m1

m1 + m2

v1 +
m2 − m1

m1 + m2

v2 (11)

Equivalently, if we let m̄ and sm be the average and the semi-difference of
the masses,

m̄ =
m1 + m2

2

sm =
m1 − m2

2

then the solution below is equivalent.

v
′

1 =
sm

m̄
v1 +

m2

m̄
v2

v
′

2 =
m1

m̄
v1 +

−sm

m̄
v2

Lastly, we return to equations 5 and 6.

v
′
1 = (

sm

m̄
v1 +

m2

m̄
v2)u + v

⊥
1 (12)

v
′
2 = (

m1

m̄
v1 +

−sm

m̄
v2)u + v

⊥
2 (13)

Given the masses, initial positions, and initial velocities of two spherical
balls undergoing a fully elastic collision, we have now solved for the outgoing
velocities.
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