
Visualization of Audio in Two and Three

Dimensions

Zachary Hoegberg

October 21, 2016

1 Abstract

My project will consist of two parts: a program to interpret audio signals,
i.e. music, in a visual way, and an interactive program to create audio from
a visual file. Audio files are essentially an array that returns amplitude as
a function of time. Therefore, my project will make use of the forward and
inverse Fourier transforms in order to turn the time-dependent functions into
an array of amplitude and phase shift for every frequency.

2 Theory

2.1 Fourier Transform

Humans hear sound by converting pressure waves in the surrounding air into
electrical signals. Microphones work essentially the same way, and speakers work
by taking that electrical signal and moving air to create pressure waves. For
this reason, we can think of an audio file as a function of time which returns the
pressure of the sound wave. However, since a sound wave is a periodic function
with a varying amplitude, we can decompose it into a sum of sine waves, each
with a particular amplitude and phase shift. This can be accomplished by using
the Fourier transform:

f̂(ξ) =

∫ +∞

−∞
f(x)e−2πixξdx

where ξ is frequency in Hz and x is time in seconds.
Given a function f̂(ξ), we can also turn it back into a function of time by

using the inverse Fourier transform:

f(x) =

∫ +∞

−∞
f̂(ξ)e2πiξxdξ

This allows us to take a user-created function or graph of frequencies and turn
it into a function that can be used to generate an audio file.

1



2.2 Fast Fourier Transform

Since the Fourier transform works on a continuous function and our input is
a set of discrete points, we need a slightly different algorithm to compute the
answer:

Xk =

N−1∑
n=0

xne
−2πikn/N , k ∈ 0 ≤ Z ≤ N − 1

where N is the length of the input array containing the values of xn. This
returns a complex number for each frequency from k = 0 up to 50Hz, which
can be turned into a trigonometric function using Euler’s formula. Using this,
we can compute a new set of forward and inverse discrete Fourier transform:

Xk =
N−1∑
n=0

xn(cos(−2πk
n

N
) + i sin(−2πk

n

N
))

xn =
1

N

N−1∑
k=0

Xk(cos(2πk
n

N
) + i sin(2πk

n

N
))

These equations are the basis of an effecient algorithm for quickly computing
the Fourier transform of a data set called the Fast Fourier Transform.

3 Project

3.1 Part 1: Visualization

The first part of the program involves taking the Fourier transform of a user-
supplied audio file and displaying several graphs related to it. First, a simple
graph of the pressure over time will be displayed. Next, a display of the Fourier
transform of the entire file will be displayed. Finally, an animated graph will
be displayed that will show the Fourier transform of a small period of the file
as the file is being played.

3.2 Part 2: Creating a Sound File

This part will allow a user to ”draw” a picture consisting of multiple points
representing different frequencies and amplitudes. By creating an array of the
points and performing an inverse Fourier transform, this array can be turned
into an array that can be saved and played back as a sound file.

4 Checkpoints and Timeline

4.1 Part 1

1. Many modules exist to perform Fourier anlysis already. I have to take
the results of the transform and filter out the strong frequencies from the
noise. I expect to have this working by the end of October.

2



2. Creating a function that can take the Fourier transform of a smaller array
in real time will be the next step. I should be able to use the same
algorithm; most of the work here will be determining the best size of the
array and optimizing the code so it can run in real time. I expect to have
this done before Thanksgiving break.

3. Creating the visualizations will be the last step. I essentially want to create
three graphs, each showing a different array and one of them changing with
time. I will have this completed by the end of Thanksgiving break.

4.2 Part 2

1. The first step in this program will be creating an algorithm to take an ar-
ray, run the inverse Fourier transform, and create a sound file. This could
still be used even if the graphing part of this program is not completed. I
would like to have this done by the end of the first week of December.

2. The second step of this program will be creating a user interface to enable
graphing the desired points and turning them into an array. I hope to
have this completed before finals week.

3


