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Abstract

Cryptography is the study of processing, storing, and transmitting data
into a particular encrypted form that only those for whom the message is in-
tended will be able to decode and read the message. While the first recorded
use of encryption dates back to Ancient Rome with the Caesar cipher, en-
cryption has developed far beyond simple alphabetic substitutions.

For my project, I studied cryptography and explored the visualization
of different encryption methods through graphics using VPython. First, I
learned about ancient cryptography, including the Caesar cipher method and
the poly-alphabetic cipher. At this point, I then created a visualization
of the Caesar cipher and the poly-alphabetic cipher by creating spinning
wheels to display the encryption shifts. Then, delving further into more
modern encryption methods, I studied public-key encryption in an attempt
to visualize this as well.

Through my project in visualizing encryption, I hope to make learning
and understanding the concepts behind various encryption methods less ab-
stract and easier to comprehend.



Chapter 1

Introduction to Encryption

1.1 Encryption

Encryption is the process of converting data to an unrecognizable, hidden
form in order to protect sensitive information. The goal of encryption is to
convert the data into a form that only those for whom the message is sent
can read the information.

1.2 Caesar Cipher

The Caesar cipher is a simple shift cipher used by Julius Caesar in 58 B.C.
to protect sensitive military information from interception by enemy forces.
This ancient method of encryption is a mono-alphabetic substitution, meaning
the shift replacement is constant throughout the encryption process. Mes-
sages are encrypted through sliding the letters in a given message a set shift
value down the alphabet. For example, if a shift value of 3 is chosen, the
string “ABCDEF” would become “DEFGHI” with ‘A’ shifting down 3 letters
to be substituted with ‘D’, ‘B’ with ‘E’, and so on.

In order to ensure that the message is encrypted and decrypted correctly,
a shift value must be agreed on in advance. For Julius Caesar, this shift
value was often 3. For example, if both the sending and receiving party,
calling them Party A and Party B respectively, have both agreed on a shift
value of 3, and the message “HELLO” is to be sent, Party A will send the
message shifting each letter in the String by 3. By applying this shift to
each character in “HELLO” gives the message “KHOOR”. When Party B



A\B\C\DEFGHIJKLMNOPQRSTUVWXYZ
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ABCDEFGHIJKLMNOPQRSTUVWXYZ

Figure 1.1: Shift value of 3

receives this message, they will simply have to apply a shift of —3 to attain
the original message. If an arbitrary Party C were to intercept the message
in the process of transmitting the message, it would read, “KHOOR?”, which
is incomprehensible unless the secret shift value was known by Party C.

Despite the simplicity of the Caesar cipher, this encryption method was
used by military leaders for hundreds of years after Caesar and was considered
to be a strong method of encryption; the Caesar cipher was not broken until
nearly 800 years later by Arab mathematician Al-Kindi'. He discovered the
method of frequency analysis, scanning a text or book and recording the
letter frequencies. The English language has a consistent pattern of letter
frequencies, with the letter 'E’ as the most frequently used letter (Figure
1.2).

Thus, to break the Caesar cipher, Party C can record the frequency of the
letters that appear in the intercepted message and compare the frequencies
of the letters in the encrypted message to that of the original frequencies.
For example, if the most commonly used letter in the encrypted text was 'J’,
a shift value of 5 is likely because 'E’ has the highest original frequency. The
shift value can be found by comparing the letter frequencies of the encrypted
message with that of the original set of frequencies, and thus, the encryption
is broken.

1.3 Poly-alphabetic Cipher

The poly-alphabetic cipher, also known as the Vigenére cipher?, uses multiple
letter shifts, rather than only one like the Caesar cipher. Instead of choosing

thttps://www.khanacademy.org/computing /computer-science/cryptography /crypt /v/caesar-
cipher
Zhttp://user.it.uu.se/ elenaf/Teaching/Krypto2003/vigenere.html
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Figure 1.2: Graph of the letter frequencies of the English language

a shift value, a shift word is chosen. Each letter of the word corresponds to a
number in the alphabet with ‘A’ starting at 0 to ‘Z’ at 25. For example, if the
shift word is “CAT”, this would correspond to 2, 0, 19 in the alphabet. These
numbers become the shift values for the message so if the message “HELLO”
was to be sent, ‘H” would be shifted 2, ‘E’ shifted 0, ‘L’ shifted 19, ‘L.’ shifted
2, and so on. The end result of using the poly-alphabetic cipher on the word
“HELLO” with a shift word of “CAT” is “JEENO”. Essentially, the poly-
alphabetic cipher is multiple Caesar ciphers, whose shift value is determined
by the corresponding letter in the key word. The poly-alphabetic cipher can
also be depicted using a chart, like the one pictured (Figure 1.3). To use the
chart, one must first find the letter of the message to be encrypted, then the
corresponding letter of the shift value, and see where they match up on the
table.



The key to breaking a poly-alphabetic cipher lies in the differential in par-
tial frequencies in the letter frequency distribution®. In the case of the poly-
alphabetic cipher, there is a code word, whose shifts are repeated through-
out the message. This gives the leak of information that allows the poly-
alphabetic cipher to be broken. The first key step to breaking a poly-
alphabetic cipher is to determine the length of the key word. One must
check the letter frequencies of the message at various intervals. The first
frequency distribution graphed would be the entire message to see if the
shift is simply a Caesar cipher. Otherwise, every second letter needs to be
graphed by letter frequency and compared to the original graph, and so on
until the frequency distribution of the interval approximately matches that
of the original distribution. For example, if the shift word has a length of 3,
when the frequency distribution of every third letter is checked, the length
of word will be revealed because this will approximately match the original
letter frequency graph. Once the length of the code word is found, all that
remains is to break the simple mono-alphabetic ciphers individually. With
a shift value of 3, 3 separate Caesar ciphers must be broken by the method
described above.

The poly-alphabetic cipher is more secure than a mono-alphabetic cipher
because the frequency distribution of the letters with the poly-alphabetic
cipher is flatter. The goal of encryption is to get a frequency distribution
graph that is uniform, meaning each encrypted letter has an equal chance of
being any letter originally. With the poly-alphabetic cipher, the distribution
is flatter because there are multiple shifts being used and thus, the original
frequencies do not remain constant after encryption, unlike the Caesar cipher.

Because the key clue in breaking the poly-alphabetic cipher is the repe-
tition of the shifts because of the repeating key word, a method of strength-
ening the poly-alphabetic cipher is to increase the length of the key word.
By making the key word longer, there is less repetition, which decreases the
differentials in the frequency distribution. In addition, a longer key would
result in more intervals that are required to be checked to determine the
length of the word, and thus, it is more time-consuming and tedious. All in
all, using a longer shift word allows for a more secure poly-alphabetic cipher.

ps://www.khanacademy.org/computing /computer-science/cryptography/crypt/v/polyalphabetic-
3htt kh d ti t i t h t lyalphabeti
cipher



1.4 One-Time Pad, Randomness, and Perfect
Secrecy

The one-time pad encryption is one that is purely based on randomness?*. It
is a long list of random shifts as long as the message that is being coded. For
example, to encode the message “HELLO”, five different random shifts would
be selected. By choosing the shift completely randomly, there is a uniform
frequency distribution and no frequencies differentials. The shifts do not
have repetitive patterns because they are random, unlike the poly-alphabetic
cipher which has a key word whose shift values are repeated throughout the
message.

Thus, with the one-time pad, each encoded letter has an equal proba-
bility of being any letter in the alphabet originally, creating perfect secrecy.
In order to decrypt the message, the receiving party must know the shifts
applied so they can be reversed.

The problem with the one-time pad lies in that is it extremely impractical
and difficult to exchange a completely randomized key before transmitting a
message. The one-time pad is the goal for encryption because of its expansive
number of combinations for encrypt a message. The Caesar cipher, to act
as a comparison, has only 25 possible encryptions/shifts, which if necessary
can be broken by brute force (meaning trying out each possible shift indi-
vidually until message is decrypted). The one-time pad, however, has n*
combinations, with n representing the length of the message.

Perfect secrecy is the result of randomness, and as discussed, the problem
with this lies in that long keys have to be shared in advance. This leads to
the development of creating pseudo-randomness. One such example is the
middle squares method. First, a random number is selected, which is called
the seed. The seed is then squared, and the final output is the middle of the
product. Then this output is squared, and the middle of this product is the
next output, and so on.

The difference between true randomness and pseudo-randomness is that
once the initial seed is established, there are many sequences that then cannot
occur because the next “random” number depends on the previous “random”
number, which depends on the seed. Only the seed is randomly selected,
and the seed determines the rest of sequence in pseudo-randomness so once

4https://www.khanacademy.org/computing /computer-science /cryptography /crypt /v /one-
time-pad



the seed is selected, the total possibilities, called the key space, is instantly
smaller. Thus, to successfully utilize pseudo-randomness in encryption, the
seed must be chosen such that it is not practical or time-efficient for a com-
puter to search through all the seeds to find the one used in the encryption.

1.5 The Enigma Machine

The Enigma Machine is an encryption machine used by Germany in the sec-
ond World War®. The goal of the Enigma Machine was to automate the
one-time pad so that surprise attacks on the enemy could be planned and
executed quickly and secretly. The ideal machine would accept the input,
apply a random shift, and then output it. Because all machines perform
specific, previously defined operations, the process from the initial state to
the output is predictable; thus, perfect secrecy and pure randomness are not
possible. Instead, the Germans had to produce multiple identical machines
which would use long lists of shifts that would take too long to break. For
this to work, the two machines would have to agree on an initial starting
point, which is called the key setting, from which the machine would per-
form identical operations to get identical outputs. Thus, for the Enigma
Machine, if the key setting was released, the encryption would be entirely
compromised because the key setting determines the way the machine would
process through the list of shifts. The Enigma Machine was a rotor encryp-
tion machine, that initially started with three rotors whose order could be
rearranged. To increase the key space, the total number of key settings possi-
ble, a fourth rotor wheel was added to the machine. Because the key setting
determines the remaining sequence for the machine to process through, the
Enigma Machine’s security was based on the size of the key space and the
randomness of the initial state of the machine. If the key space was small,
the enemy could process through each key setting and determine the shift
more easily, and if the key setting had a pattern, the enemy could determine
the pattern and predict the key setting. While the Enigma Machine was an
attempt in mechanizing the one-time pad, it was not perfect. In fact, the
design itself was one of the reasons the Enigma Machine’s encryption was
cracked. The machine was created so that a letter would never be encrypted
to itself; however, to attain a uniform frequency distribution, each letter

®https://www.khanacademy.org/computing/computer-science/cryptography /crypt /v/case-
study-ww2-encryption-machines



must be equally likely to be encrypted to any letter. Thus, by creating the
Enigma to never code a letter to itself, the uniform frequency distribution
was broken. In addition, the machine required the operators of the machines
to randomly choose the initial position of the machine, but humans are un-
able to imitate true randomness. Humans tend to favor certain outcomes
over others and deem some outcomes less likely than others but in random
events, every outcome is equally likely. As a result, the uniform frequency
distribution was disrupted even further. As a result, the Allies were able to
create the Bombe, a machine that could check each rotor position and find
the possible key settings, breaking the encryption of the Enigma Machine.
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Figure 1.3: Poly-alphabetic cipher table



Chapter 2

Public Key Encryption

2.1 Introduction

Public-key encryption, also known as asymmetric encryption is a modern-
day method of encrypting data effectively because it does not require the
two parties to have shared a key in advance as required by both the Caesar
cipher and the poly-alphabetic cipher. It is asymmetric because the key used
to encrypt the information is not the same as the key used to decrypt the
message once it is received. In this type of encryption, there are private keys,
which are kept secret between the transmitting party and the receiving party
respectively, and a public key, which is not hidden to anyone.

2.2 One-way functions and prime numbers

Public-key encryption is based on one-way functions, which are functions
that are easy to compute but are difficult to break down inversely. One such
one-way function is prime numbers, and the basis for RSA encryption lies in
multiplying prime numbers. All numbers are created from smaller primes,
and all numbers can be broken down to their prime numbers, known as the
prime factorization of a number. The fundamental theorem of arithmetic
states that “every positive integer (except for the number 1) can be repre-
sented in exactly one way apartment from rearrangement as a product of one
or more primes.” ! In other terms, each number has a unique prime factor-

Thttp:/ /mathworld.wolfram.com /Fundamental TheoremofArithmetic.html



ization. For example, if someone is given two prime numbers, say 5 and 13,
and is told to multiply them, it is easy to get the product of 60. However, if
the person is given the product 60 and is told to determine those two prime
numbers, it is far more difficult, exemplifying a one-way function.

2.3 Modular arithmetic

Modular arithmetic, also called clock arithmetic, deals with remainders. For
example, 67 mod 9 is the remainder of 67 -~ 9, which is 4. A key element
of modular arithmetic is evident in looking at exponents. For example, in
looking at 72 mod13, the answer is 10, and one would expect the answer to
increase if the exponent were increased, but with modular arithmetic, this is
not the case.? 72 mod13 results in 5, while 74 mod13 results in 9; the lack
of order in seen in these results facilitates public key encryption.

2.4 Diffie-Hellman Key Exchange

The Diffie-Hellman Key Exchange allows the two parties to share messages
without having had shared a key in advance using modular arithmetic. Call-
ing the transmitting party, Party A, and the receiving party, Party B, the
two parties agree publicly on prime number we will call P and a base number
N. Then, Party A will choose a private number A, and Party B will choose
a private number B, which are secret to both the public and the other party.
Then Party A will perform the following operation:

J = N4 mod P

and Party B will perform the same operation with its private key, resulting
in number K = N® mod P. Then J is sent to Party B and K to Party
A openly. Once J and K are swapped, Party A will perform the following
operation:

S = K mod P
Zhttps:/ /www.math.cornell.edu/ mec/2003-2004 /cryptography /diffiehellman /diffiehellman.html
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where

K = NP mod P

SO
S = (N?)* mod P = NP4 mod P

to get a number S while Party B performs the following operation to get the
number 7" :
T = J" mod P

where

J = N4 mod P

SO
T = (NY)® mod P = N4 mod P

It can be seen here that the results of these operations performed by Parties A
and B, S and T, are equal, and thus, Parties A and B now have a common,
private key that can be used to communicate information without having
shared one in advance.

2.5 Why This Works

When using large numbers for P, ), and N, public key encryption is ex-
tremely difficult and time-consuming to break because of the sheer number
of possibilities for P. In order for a Party C to intercept and decrypt the
message, Party C would have to list the powers of N mod P because as seen
previously, there is little pattern or order in computing modular arithmetic
with powers.

11



Chapter 3

Visualizing Encryption Project

3.1 Proof-of-Concept and RTICA with Cae-
sar Cipher

For a proof-of-concept of my project, I created a visualization of the Caesar
cipher using two rotating wheels with letters. The inner wheels spins, aligning
the outer wheel’s letters with new letters on the inner wheel, displaying the
shift. My RTICA allows the user to press a key to start the animation of
a phase shift of three, which is a standard shift value for the Caesar cipher.
The user is then able to use the shifted wheels to easily encrypt a message
since the original letters are aligned with the ones shifted three letters over.
To decrypt a message with a shift of three, the user must simply match up
the encrypted letter on inner wheel letter to the letter on the outer wheel
to decrypt it. If a key is pressed again, the inner wheel shifts back to its
original position. This RTICA will allow the user to not only easily encrypt
and decrypt messages with a shift value of three, but also allows the user to
visualize the cipher.

3.2 Poly-alphabetic Visualization

For the poly-alphabetic cipher, I wanted to convey the idea that the poly-
alphabetic cipher is simply multiple Caesar ciphers. Adding on to the Caesar
cipher idea, this RTICA features multiple spinning wheels with various shifts
with a default key word. The user presses a key to start the RTICA. Once

12



a key is pressed, the four wheels spin to reveal the corresponding shift let-
ters according to the shift values of the default word, “MATH”, which are
displayed in the RTICA. This will allow the user to encrypt any message
using the default key word since the shifted letters are shown aligning in
correspondence with the letter in the original message. More importantly, it
breaks down the poly-alphabetic cipher into the individual Caesar ciphers,
simplifying the multiple shifts into a more comprehensible form.

3.3 Public-key Encryption Visualization

I found a clever way of visualizing one-way functions of public-key encryption
when researching on the internet!, which I then attempted to recreate and
code in VPython. Mixing colors is an example of a one-way function that
is easier to visualize than modular arithmetic. Mixing two given colors to
produce a new color is easier than doing the inverse, easier than being given
a color and being told to find its exact color components. Using this con-
cept, I created a visualization of the concepts behind public key encryption,
and displayed how a private key can be created without sharing a key or a
shift secretly beforehand. The steps shown in my visualization of public key
encryption are as follows:

1. Party A and Party B decide on public key (yellow)

2. Party A and Party B each choose their own secret private keys (red
and blue respectively)

3. Party A mixes their private red with the public yellow to get orange

4. Party B mixes their private blue with the public yellow to get green

5. Party A and Party B now have orange (red+yellow) and green (blue+yellow)

respectively

6. The two parties now publicly switch the orange and green, keeping the
red and blue still private

7. Now, Party B has the orange (red+yellow), and Party A has the green
(blue+yellow)

Thttps://www.khanacademy.org/computing/computer-science/cryptography /modern-
crypt/v/diffie-hellman-key-exchange-part-1
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8. Party A mixes their private red with the green (red+green = red+blue+yellow)

9. Party B mixes their private blue with the orange (blue4orange =
blue+red+yellow)

10. The resulting colors from the two previous steps are the same, allowing
parties A and B to use this color as their private key for communication

Thus, in the end, Parties A and B have the same end secret color, without
having shared their private colors to each other. While the yellow, orange,
and green in this example are private, it is extremely difficult to determine
which exact colors and their shades composed the orange and green, allowing
for the public-key encryption to be extremely secure.

14



Chapter 4

Future of Project and Further
Developments

The purpose of my project is for the user to better understand how encryption
works through a visual depiction of the different methods. When I was
learning the Caesar cipher in my computer science class, I found it difficult
to comprehend simply because I could not visualize it effectively. Often
times, encryption is not understood because of how abstract it is in concept,
and through visualizing simplified versions, it becomes easier to comprehend.
Through my project, I look to making encryption easier to break down for
the user.

The long-term purpose of my project in terms of the study into the public
key encryption part of my project is to deepen my understanding of encryp-
tion, and using this knowledge, try and create a visualization or graphic to
depict public-key and RSA encryption. Overall, I would like my project to
help the user understand both ancient and RSA encryption, through text
and visualizations. Currently, my project displays the concept of arriving
at the private key, but does not encompass the entire process of encrypting
the information, so the next step would be to find a way to visualize the
encryption of the information.

In terms of further developments of my project, it would be interesting
to see these animations written in JavaScript to allow them to become more
user friendly and interactive. For the Caesar cipher RTICA, a development
and improvement would be to allow the user to select a shift value them-
selves, rather than have a default of 3. For the poly-alphabetic cipher, an
improvement would be along those same lines—to allow the user to be able

15



to choose their own shift word, rather than being able to see the animation
of the shifts of the default word used in the current RTICA. It would also
be interesting to see an interactive table (Figure 1.3) that would allow the
user to select two letters and see the paths leading to the encrypted letter.
These improvements would be facilitated by transitioning to JavaScript, and
recreating the current RTICAs in JavaScript.

In terms of the purpose of allowing the user to understand and see the
concepts of various encryption methods, I believe this project was successful;
however, there are many improvements and expansions that can be made in
making the current RTICA’s more user friendly and interactive in JavaScript
as well as different visualizations.
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