Solving the Rubik's Cube

Pax Kulbis

Introduction

- Combination puzzle invented to model 3D geometry in 1974 by Erno Rubik
- Originally created as a 3 by 3 (a cube with each face split into 9 smaller faces), but has many different variations and spinoffs (2 by 2,7 by 7 , Rubik's 360, Gear Cube, Super Square One)
- Is a favored tool for mathematicians due to its simple nature, but deep complexity

Possible Positions

- Although there are 54 cubbies (9x6),
there are really only 26 pieces
- 8 Corner pieces

IF THERE WAS ONE CUBE SCRAMBLED FOR EVERY PERMUTATION

- Can be placed in 8 different positions $(8!=40,320)$
- Can be oriented 3 different ways ($3^{\wedge} 7=2,187$)
- 12 edges pieces
- Can be placed in 12 positions, but restricted as it must be in : permutation (12!/2 = 239,500,800)
- Can be oriented 2 different ways ($2^{\wedge} 11=2048$)
- 6 center pieces
- Don't move, only rotate
- (if the center pieces have to be aligned correctly, another ($4^{\wedge} 6 / 2=2048$)

- If we consider possibilities when we can take apart cube, it's even more
$8!\times 3^{7} \times(12!/ 2) \times 2^{11}=43,252,003,274,489,856,000$

Singmaster Notation

- Standard Rubik's Cube algorithm notation
- Letter corresponds to a 90 degrees clockwise rotation while looking at the indicated face
- Faces: Front (F), Back(B), Left(L), Right(R), Up(U), Down(D)
- An apostrophe (Ex. F') implies a counter clockwise turn
- All rotations are quarter turns, half turns are just 2 quarter turns (Ex. 2F)

Layer Solving - "Beginner’s Method"

- Uses 7 steps, some human common sense, and a handful of simple algorithms to solve the cube by layers
- Takes more moves, but is easier to remember/understand
- Step 1: White Cross
- Step 2: White Face and 1st layer
- Step 3: Second Layer
- Step 4: Yellow Cross
- Step 5: Yellow Edges
- Step 6: Yellow Corners in their place
- Step 7: Orient Corners

Step 1: White Cross

Step 2: White Face and 1st layer

Thistlethwaite's Algorithm

- Thistlethwaite is a mathematician and professor at the University of London. He has a love for problem solving
- His algorithm works on the whole cube at once, instead of working layer by layer.
- Very efficient (can solve any scrambled cube in 52 moves or less) but requires a computer to operate (as it must account for every situation)
- Split the cube into 5 groups
- $G_{0}=<L, R, F, B, U, D>$
- All possible positions

- $\quad G_{1}=<L, R, F, B, U 2, D 2>$
- Positions that can be reached (from the solved state) with quarter turns of the L, R, F, and B, but double turns of U and D.
- $G_{2}=<L, R, F 2, B 2, U 2, D 2>$
- Positions that can be reached with quarter turns of L and R, but double turns of F, B, U, D.
- $G_{3}=<L 2, R 2, F 2, B 2, U 2, D 2>$
- Positions that can be reached with double turns of each side
- $G_{4}=\{1\}$
- The solved cube

My Project

- Using a 2D array to represent the cube in Javascript (first array represents faces, second represents location in that face)
- Then draw it onto the canvas using 3JS
- Will use Layer Solving
- Might not be the best approach: easy for humans to recognize correct move, but hard for computer because there are so many possible positions
- Animations
- Future moves will be put into in a queue
- Program will animate one at a time (through linear interpolation)
- May use Object Oriented approach (pieces represented as objects, several properties) \& try to import Thistlethwaite's Algorithm chart

