3D Scrabble

David M. Stone

December 9, 2016

Abstract

The goal of this project is to simulate a three-dimensional Scrabble game with
Python and OpenGL. Two players compete on the same machine on a cubic adap-
tation of the classic board layout. Players require skills of vocabulary, strategy, and
anagramming, though there is an aspect of luck in drawing tiles. Scrabble is a board
game staple, and a three-dimensional variant provides new challenges and opportunities
for an avid player.

1 Acknowledgements

I, the author, would like to thank the following: Professor George Francis, for teaching and
guidance; Class Mentors Molly Fane, Sasha Lamtyugina, and Nathan Walters for advice
and consulting; and Cynthia Capota and Daniel Zou for their review and recommendations.
Their support is the reason this ambitious project achieved as much as it did. Furthermore,
I would like to recognize the following for their code, ideas, or other helpful contribution to
my project: Robert Kaufman, Stan Blank, Alex Bourd, Matthew Stiak, Jeff Knupp, Mike
C. Fletcher, www.opengl.org, wiki.python.org, pyopengl.sourceforge.net, nehe.gamedev.net,
forum.lwjgl.org, and stackoverflow.com.

2 Background

Scrabble is a two-dimensional board game in which players take turns to form words and
place them on the 15x15 board grid. The letters which form the word must be connected
linearly, and the letters must be chosen from the set of tiles already on the board and tiles
in the player’s rack. There are 100 tiles, each bearing a letter, the distribution of which
was calculated by creator Alfred Mosher Butts [1] through analysis of letter frequency in
prevalent publications (e.g. The New York Times). Each letter has a point value, and the



sum of the points of each letter used is the score for the turn. In crossword style, each word
(2-15 letters) formed must be permissible, as defined by a preset dictionary. A player’s turn
consists of: choosing a play, placing tiles, finding the score, and then refilling the rack up to
seven tiles. A player may, instead of making a play, trade in any number of tiles from the
rack back into the bag and draw new tiles. [2]

2.1 Special Rules

Of the hundred tiles, two are blank (devoid of letter or point); these may be used as any
letter, but once put on the board, represent that letter for the remainder of the game, and
count for no points. Bonus point spaces are dispersed across the board, and are valued
multiplicatively. Finally, if a player successfully uses all seven letters from the rack, that is
sometimes called a Bingo and is worth an additional 50 points. [2]

3 RTICA

The board is a three-dimensional rectangular lattice, and a set of letter keys (QWEASD) are
used to direct a Selector across the board. The seven letters of a player’s rack are displayed
across the bottom of the screen; when a player enters a number between 1 and 7, inclusive,
that tile (counted from the left) will be put into the location of the Selector. The view of
the board is initially orthographic, in order for the player to see the most of the board, with
the availability to spin it through the arrow keys in order to access different angles. The
special value locations are marked by low-alpha shaded cubes with red representing double
word score and blue representing double letter score. Once a player is done with the turn,
pressing Enter will submit the play and transfer to the next player. Furthermore: pressing
Escape will quit the game, p will display the overall points, v will toggle the volume of the
tiles, and h will display a help page with all of the keystroke information. Here is the help

page:

H: Help
V: Volume of tiles

P: Points

1-7: select tile

Enter: submit play
Esc: Quit
Colors: Red = Double Word Blue = Double Letter

Figure 1: This is the help page’s information against a black background.



4 Implementation

4.1 Development

For my Seminar, I had a visual 2x2x2 board, the ability to rotate the view, and a represen-
tation of a tile. However, the board was made simply of lines and the tile representation was
nothing more than a green-filled quadrilateral. I desired objects that could interact with
each other, to simplify the expansion of the board from 2x2x2 to 9x9x9, to help assign tile
locations, and to determine location selection by players. To this end, I wrote and debugged
a Box class, with methods to draw itself about its center and shade itself (to become a
Special Point space). Next, I focused on creating adequate tiles. It was recommended by
Professor Francis I make three-dimensional, extruded letters, so I researced FreeType and
FTGL libraries which promised to have the functionality I required. However, documenta-
tion was thin and examples were sparse, and what help existed was in C. After extensively
modifying the C examples over Fall Break but achieving no progress toward a Python script,
I gave up and resorted to my second option: textures. After working with two mentors,
Molly Fane and Sasha Lamtyugina, we found PILLOW and its child Image, which opens a
picture file and converts it to a texture. Furthermore, Sasha discovered that the code must
specify which vertex of the quadrilateral corresponds with which corner of the image. I made
a Selector, a white box whose position changes in response to keystrokes, which replaced
the mouse as the method to select which location on the board to place a tile. Once I had
included keystroke responses for a help page, score display, tile volume, and ending a turn,
I hard coded the boxes and Special Point spaces for the 9x9x9 board. Finally, expanding
the board made the size slightly too large for the screen, and the interlacing lines were
confusing. To address these problems, I made the lines grey instead of white, and I changed
the boxes (and tiles) to have side lengths of 1 instead of 2.

Figure 2: 9x9x9 Board, with red and blue Special Point spaces, and three completed plays.



4.2 Obstacles

Unexpected obstacles threw my timeline far off course. I misjudged the requirements for
a proof of concept, so while I planned to have my POC ready for the Seminar, it was not
actually complete until the final week of the course. Extrapolation from a 2x2x2 lattice to an
9x9x9 lattice proved to be the simple step. I expected to finish the graphics about halfway
through and then focus on a dictionary and improved user experience, but writing classes
and finding appropriate tiles became a time sink of my project. My issues with classes
stemmed from my lack of experience with Python, and I relied on documentation which,
while helpful conceptually, is less useful than working examples. I spent all of Thanksgiving
break attempting to achieve extruded letters, but to no avail. When Molly and Sasha
recommended textures instead, it took a full week for us to find examples and debug them
for my script. Upon reflection, I assumed I could achieve much more than I had the ability
to, and did not account for necessary debugging time.

Box(object):

__init_ (self, centx, centy, centz):
.X = centx
Y centy
o centz

getX(self):
return
getY(self):
return
getZ(self):
return

draw(self):m

SpecPt(self, r, g, b, a):m

class Tile(object): =

class Player(object):=

Figure 3: My working Box class, with a Tile and a Player class below based off the successful
Box.



HGEIH letter = makeTextures(self.name + '.jpg')

mage.open(name)

img_data = numpy.array(list(img.getdata()), numpy.int8) glEnable(GL_TEXTURE_2D)

Storei(GL_UNPACK_ALIGNMENT,1)
BindTexture(GL_TEXTURE_2D, textr)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
1TexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT) er vol,y+vol,z+vol)
s1TexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) X (1,1)
xParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) x-vol,y+vol,z-vol)
age2D(GL_TEXTURE_2D,@,GL_RGB,img.size[@],img.size[1],0,GL_RGB,GL_UNSIGNED_BYTE,img_data) glTexCoord2
glGenerateMipmap (GL_TEXTURE_2D) glVertex3f(x+vol,y+vol,z-vol)
glBindTexture(GL_TEXTURE_2D,0) glEnd()
return textr glDisable(GL_TEXTURE_2D)

Figure 4: Properly-working texture mapping. The makeTextures() function, left, and a
Tile’s mapping to one side, right.

4.3 Improvements

If I were to keep working on this project, I would first figure out a way to address the small
bugs that plague my final product. These are errors (tiles overwriting, selector not confined
to the board, End Turn does not always reset completely) that I think I could fix given
a small amount of extra time. Given a larger amount of extra time, I would write a hash
function dictionary. Not only is this a challenging task, but detecting in a three-dimensional
game which directions are allowed for words to spell in the proper order would be difficult.
I was not able to figure out how to sense if words are connected or linear, so that would
be the first challenge of the dictionary. After that, the function would have to check the
letter arrangement both forward and backward, then put it through the hash function to
see if the request matches with an acceptable word. After determining whether all words
(including any hooks and two-letter words made) are legal, the dictionary would have to
send illegal plays back to the rack. My project has the framework for the graphics of this,
so I would expect writing the dictionary to be a code-intense module for my project. Some
other abilities I would enjoy seeing would be blank tiles and tile exchanging. Finally, if this
were a commercial product, I would do analysis and testing to see if my 9x9x9 board size is
large enough, and if keeping the 100-letter tile distribution is appropriate.

References

[1] Wikipedia contributors. ”Scrabble.” Wikipedia, The Free Encyclopedia. Wikipedia,
The Free Encyclopedia, 28 Nov. 2016. Web. 28 Nov. 2016.

[2] Butts, Alfred Mosher. Scrabble. Pawtucket, RI: Hasbro, 2016. Board game instruc-
tions.



