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Mathematics Model Collection History 
The Department of Mathematics began collecting 
mathematical models in the late 1800s when such model-
making was popular, particularly in Germany.  More than 
380 of these historically and mathematically significant 
sculptures are currently on display in Altgeld Hall at the 
University of Illinois at Urbana-Champaign. 
 
In the 1800's, mathematicians exploring the nature of 
surfaces in space began to construct physical models of 
those surfaces, as an aid to teaching and research. Some 
companies, particularly in Germany, began to offer these 
models commercially. By the end of the century, many 
American mathematics departments began to develop 
model collections. 
 
The history of our collection can be traced back to Edgar 
Townsend, who was hired as an Assistant Professor of 
Mathematics in 1893. This was the year of the World 
Columbian Exposition in Chicago, at which the International 
Congress of Mathematicians was held. Felix Klein traveled 
to Chicago from Germany and helped showcase the 
German models then being produced. Six years later, 
Townsend went to the University of Göttingen, to study 
under David Hilbert. This was the center of German 
mathematics and today it has the world’s most complete 
model collection. Upon completing his dissertation, 
Townsend returned to Urbana. He served as head of the 
mathematics department from 1905–1928 during which time 
he ordered a complete set of German geometric models. In 
1911, Arnold Emch joined the faculty and built more models 
to expand the university's collection. 

Edgar J. Townsend with the beginnings of the model collection at the University of Illinois. 

 As mathematics became more abstract, interest in physical models died out, but the Department of Mathematics at the University of Illinois maintained its 
strong collection: this is the largest collection of such models on public display, second only to that in Göttingen. In the last decades of the 20th century, 
computer graphics revived an interest in mathematical visualization. Even more exciting is the process of 3D printing which promises to make it possible to 
reproduce physical models which were originally made with plaster of Paris.  
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Arnold Emch 
5 lines and 7 lines, 1925 (aluminum and brass) 
Details about the two aluminum and brass sculptures in the gallery were first presented in the University of Illinois Bulletin published April 27, 1925. The 
sculptures were planned and designed in the Mathematical Library of the University of Illinois under the direction of Arnold Emch, Associate Professor of 
Mathematics. From Professor Emch: “The two models are examples of simple special cases of surfaces by systems of plane algebraic curves determined by 
the intersections of their planes with certain fixed lines and curves, obtained by assuming three lines l, g, h and another fixed line s and the pencil of planes 
through s.  Every plane in the pencil cuts l, g, h in three points which determine a circle. The locus of these circles is, in general, a quartic surface.”   In this 
photo the models were on display at CalculArt: Exhibit of Mathematical Art at the Dennos Museum Center at Northwestern Michigan College.  
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Torricelli’s trumpet 
A surface of revolution is created by revolving a planar curve around 
an axis of rotation that lies in the same plane. The famous surface of 
revolution pictured here is known as Gabriel’s horn or Torricelli’s 
trumpet. In cylindrical coordinates (r, θ, z) the surface is defined by 
the equation r = 1/z and by the inequalities 1 ≤ z ≤ H. Letting H tend to 
infinity leads to a remarkable situation. The resulting surface has 
infinite surface area, yet it encloses a finite volume of π cubic units. 
This possibility is sometimes called the Painter’s Paradox, although it 
is not a paradox at all.  
 
Evangelista Torricelli, a student of Galileo, is perhaps best known for 
his contributions to physics, such as Torricelli’s Law in fluid dynamics 
and the Torricellian barometer. The name Gabriel’s horn refers to the 
archangel Gabriel. 
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Peano surface 
Guiseppe Peano gave the first rigorous 
treatment of the theory of maxima and minima of 
functions of several variables in 1884. His work 
includes a discussion of what are now known as 
Peano surfaces. The Peano surface pictured 
here is defined by an equation of the form 

 
z  =  ƒ (x, y)  = (y2 − ax) (y2 − bx) 

 
where a and b are distinct positive constants. It 
provided a counterexample to a carelessly 
stated criterion for a local minimum which was 
commonly believed in Peano’s time. 
 
The function ƒ satisfies a stunning property. If 
we restrict ƒ to any line through the origin, then 
the restriction to that line has a strict minimum at 
the origin. On the other hand, the function itself 
does not have a minimum at the origin. To see 
why, first note that the zero set of ƒ consists of 
the union of two parabolas, touching only at the 
origin. The function ƒ has negative values in the 
thin region between these parabolas. Outside of 
both it has positive values. Hence in every 
neighborhood of the origin ƒ achieves both 
signs. A simple geometric argument (or an easy 
calculation) shows, however, that its restriction 
to every line through the origin has a strict 
minimum.  
 
This example is often discussed in Calculus III 
courses at the University of Illinois. The surface 
illustrates the situation beautifully.   
 
The model shown here was made by  
Arnold Emch. 
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Fourier synthesizer  
This is a mechanical Fourier synthesizer.  The pen 
position is controlled by 80 springs driven by 80 
gear-wheels that turn in relative rates of 1/80, 2/80, 
3/80...79/80 and 80/80 turns per turn of the crank. 
The rods can be moved on the rocker arms to 
represent the 20 amplitudes of the Fourier 
coefficients.  The 20 rods pull against the 20 
springs, which in turn pull against the master spring. 
The master spring moves the pen and provides the 
sum of the series. 

 
This machine was constructed by Gaertner and 
Company of Chicago during the late 19th century. 
The company also manufactured astronomical and 
astrophysical measuring instruments for Yerkes 
Observatory and interferometers for professors at 
the University of Chicago. After changing ownership 
several times, the Gaertner Scientific Corporation is 
now located in Skokie, Illinois, where they continue 
to design and manufacture precision scientific 
instruments. 
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Dandelin's Theorem 
In a footnote in his celebrated 19th century treatise on conic 
sections, George Salmon proves Germinal Dandelin's theorem, 
without crediting the Belgian mathematician in this way: From a 
point outside a sphere, any two segments tangent to the sphere 
have equal length. Now place two spheres inside a single cone so 
as to be simultaneously tangent to the same plane cutting the 
cone in an ellipse. Then from any point on the conic, the spheres 
will be tangent also to the cone along two horizontal circles which 
are a fixed distance apart as measured along a generating line of 
the cone. Pick one such segment on the cone and consider the 
point where it crosses the ellipse. The distance from this point to 
the place on the plane where one sphere, say the smaller one, 
touches the plane, equals the part of the generating segment to 
the smaller sphere. The other part of the segment is duplicated by 
the distance from the point on the ellipse to the point where the 
larger sphere is tangent to the plane. Thus, the sum of the two 
distances in the plane to where the sphere touches the plane is 
constant anywhere along the ellipse. Dandelin's sphere touches 
the plane at the foci of the ellipse. The analogous theorem holds 
for hyperbolas for a double cone. 
 
This charming wooden model can be manipulated (carefully) by 
rotating the middle part against the top and bottom held together 
by the wire generator. The slider moves up and down the wire as 
it moves around the ellipse; the total length of the string remains 
constant. The inset shows a computer graphic of a real-time 
interactive computer animation of this idea which is one of many 
programmed over the years by future and in-service students of 
our secondary math education program.  

MAY 2009 

 Department of mathematics  • 1409 W. Green, Urbana, IL 61801  •  Tel:  (217) 333-3350  •  email: office@math.uiuc.edu  •   www.math.uiuc.edu 

Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

 1 2 3 4 5 6 

7 8 9 10 11 12 13 

14 15 16 17 18 19 20 

21 22 23 24 25 26 27 

28 29 30  

 

  

 

  

Father’s Day 
Summer Solstice 

New Moon          First Quarter          Full Moon          Last Quarter  

S M T W T F S 
     1 2 
3 4 5 6 7 8 9 
10 11 12 13 14 15 16 
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31       

JULY 2009 

T F S M T W S 
  1 2 3 4  
6 7 8 9 10 11 5 
13 14 15 16 17 18 12 
20 21 22 23 24 25 19 
27 28 29 30 31  26

       



 
 

mathematics university of illinois www.math.uiuc.edu 

Helicat 
The helicoid and the catenoid are among 
the oldest minimal surfaces, found by 
Jean Baptiste Meusnier in 1776. A 
minimal surface has the curvature 
properties of soap films, locally shaped 
like a saddle, and shrunk to the smallest 
area allowed by the global constraints, 
such as a fixed boundary, or certain 
behavior at infinity. The helicoid is 
generated by a straight line perpendicular 
to an axis, and turning at a constant rate 
as it moves along the axis. A catenoid is 
generated by rotating the curve made by 
a hanging chain, about an axis of 
rotation. These two harmonic conjugate 
surfaces are isometric, in the sense that 
a small patch that fits one snugly will also 
fit the other. Such a patch is represented 
for the plaster models by pieces of thin 
brass, hammered to have the negative 
curvature of the two surfaces.  
 
What these physical models cannot  
show is how the helicoid is related to the 
catenoid by a one parameter family of 
isometric surfaces. The bottom image 
shows Do Carmo's parametrization of 
this deformation which fits directly into 
Mathematica. You can program this 
formula into other common graphing 
utilities. The first three entries are the 
xyz-coordinates and the last three the 
ranges of the uvt-parameters. As it 
progresses the helicoid contracts to 
finally wrap around the catenoid infinitely 
often. 
 

Brass patch

CatenoidHelicoid
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Orthanc  
This month's surface has been inventively dubbed 
“Orthanc” by Abby Watt, for lack of any idea what Arnold 
Emch meant by its label: “Cauchy surface z' = z3 – 1".  
Abby is the University of Illinois art student whose project it 
was to capture selected plaster models [October-Boy, 
November-Kuen, August-Cauchy] with a Next Engine 3D 
Scanner in preparation for duplicating the models with a 
ZCorporation ZPrinter 406. The smaller of the twins shown 
is the original plaster model “designed and constructed in 
the mathematical department of the University of Illinois", as 
Professor Emch puts it in a University of Illinois Bulletin of 
November 11, 1920. Its larger sibling is a nearly perfect 
reproduction, down to the (barely) readable label. 
 
A Cauchy surface, according to Emch, is an imaginative 
graphing of a complex analytical function, here f(z) = z3 - 1, 
by mapping |f(z)|2 to the third dimension above the z-plane. 
In Cartesian xyz-coordinates Orthanc has equation 
     
                     z = - (x2 + y2)3 + 2x3 - 6xy2 - 1 
 
worthy of a final examination problem in Calculus III. The 
significance of visualizing complex function graphs in this 
manner is now lost in the midst of the nineteenth century. 
Today we can navigate 4D on our laptops to explore 
complex function graphs directly. 
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Hyperbolic Paraboloid 
Professor Emeritus Robert Fossum recently restored this 
string model which gives a doubly ruled surface, in this 
case a hyperbolic paraboloid. The model consists of two 
"wings" each of which can move about the fixed axis 
formed by the tops of the two base feet. The threads in the 
model had deteriorated over time and many had broken. 
The base and frame are made of copper or bronze which 
had become blackened. After cleaning the metal, Fossum 
used cotton perle thread to restring the model.  The holes 
are quite small, so a very thin needle had to be used. The 
weights are common fishing line sinkers (just as was used 
in the original model), but small squeezable sinkers were 
used to hold the larger sinkers in place.  It took Fossum 
several hours to re-string this model.   
 
A ruled surface is obtained by connecting "corresponding 
points" on two curves by a line.  Suppose that two curves 
C(s), D(s) in space parameterized by s are given (and not 
coplanar).  For each s, let L(s) be the line determined by 
the two points (C(s), D(s)).  Then the surface obtained is 
called a ruled surface.  One simple parameterization is 
given by 
 
           R(s,t) = C(s) + (D(s) - C(s))t 
 
In the case of the hyperbolic paraboloid, the two curves 
are both straight lines which are the opposite sides of the 
corresponding rectangle when the wings are in the plane.  
Two rulings are made by connecting each pair of opposite 
sides. 
 
As the angle is reduced from 180° to 0° by rotating the 
wings toward each other, one gets a family of hyperbolic 
paraboloids, with the limiting cases of a plane and a 
double-covered parabola. 
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What you see here is not exactly a photograph of the century old model in the Altgeld collection. Rather, it is an 
evidently imperfect computer reconstruction of a scan. A perfect scan could be used to program a 3D-printer, 
and thus to reproduce an exact replica of the original. The reconstruction is a surface and so we can use an 
immersive virtual environment, like the CAVE, to fly about the inside of this very solid plaster object! 

Boy Surface 
Werner Boy produced two 
immersions of the projective 
plane in 3-space in connection 
with his doctoral dissertation 
directed by David Hilbert, circa 
1901. Topologically, the real 
projective plane is realized by 
sewing the boundary of a  
Möbius band to the boundary of a 
disc. Like the Klein bottle, 
obtained by sewing two Möbius 
bands together along their 
boundary, the projective plane is 
non-orientable. Thus it cannot be 
placed into 3-space without self-
intersections (if it were, we could 
fill its inside with paint, and so 
show that it is 2-sided, like a 
sphere). 
 
Singular realizations in 3-space of 
both surfaces were well known by 
the end of the 19th century.  
Hilbert thought that unlike for 
Klein's surface, such an 
immersion of the projective plane 
was impossible. Boy's 2 solutions 
are deformable into each other 
and have been a popular subject 
for models, illustrations, analytic 
parameterizations and computer 
animations.  
 

NOVEMBER 2009 

S M T W T F S 
1 2 3 4 5 6 7 
8 9 10 11 12 13 14 
15 16 17 18 19 20 21 
22 23 24 25 26 27 28 
29 30      
       

SEPTEMBER 2009 

S M T W T F S 
 1 2 3 4 5  
7 8 9 10 11 12 6 
14 15 16 17 18 19 13 
21 22 23 24 25 2620
28 29 30    27

       

Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

  1 2 3 

4 5 6 7 8 9 10 

11 12 13 14 15 16 17 

18 19 20 21 22 23 24 

25 26 27 28 29 30 31 

 Department of mathematics  • 1409 W. Green, Urbana, IL 61801  •  Tel:  (217) 333-3350  •  email: office@math.uiuc.edu  •   www.math.uiuc.edu 

New Moon          First Quarter          Full Moon          Last Quarter  

 

  

 

  

Columbus Day 

Halloween



 
 

mathematics university of illinois www.math.uiuc.edu 

Scanned image 

Photo of model 

Kuen's surface 
The most beautiful model in the Altgeld collection 
is by all accounts Kuen's surface. It is located 
right next to the main office in our model cases. It 
is a surface of constant negative Gaussian 
curvature with razor sharp edges and complicated 
self-intersections. It is related to the humbler 
pseudo-sphere [see March 2009] by a Bianchi 
transform. The deep mysteries of a corner of 
conformal geometry captured by this model 
continue to interest contemporary mathematicians 
as well as computer graphicists who find its 
delicate structure a challenge to render. 
 
As you can see, one of the images is a 
photograph of the model, one is a digital 
reproduction using a scanner, and the color image 
renders Alfred Gray's formulas using Ulises 
Cervantes-Pimentel's adaptive mesh smoothing 
algorithms embedded in Mathematica 6.0.  To 
create a 3D print reproducing a plaster model 
requires an exact description of each horizontal 
layer of the surface. That is how contemporary 
3D-printers work: they follow the same layer-cake 
strategy as the 19th century modelers did in 
plaster. The modelers graphed the formulas 
describing the surface and cut out cross-sections 
and profiles as cardboard splines. Approximate 
layers of plaster were stacked on top of each 
other and then smoothed by hand, using the 
splines as guides. 
 
Today, descriptions of the layers can be arrived at 
by explicit formulas, or less tediously, by scanning 
the plaster original. The scans, however, are 
rough like the historical plaster models; they must 
be smoothed. The scan shown here was done by 
Abby Watt on a $2500 scanner. There is still 
much experimentation ahead before data 
adequate for a 3D print of Kuen's surface is 
available.  

OCTOBER 2009 

S M T W T F S 
    1 2 3 
4 5 6 7 8 9 10 
11 12 13 14 15 16 17 
18 19 20 21 22 23 24
25 26 27 28 29 30 31 
       

DECEMBER 2009 

S M T W T F S 
  1 2 3 4 5 
6 7 8 9 10 11 12 
13 14 15 16 17 18 19 
20 21 22 23 24 25 26 
27 28 29 30 31   
       

Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

1 2 3 4 5 6 7 

8 9 10 11 12 13 14 

15 16 17 18 19 20 21 

22 23 24 25 26 27 28 

29 30  

 Department of mathematics  • 1409 W. Green, Urbana, IL 61801  •  Tel:  (217) 333-3350  •  email: office@math.uiuc.edu  •   www.math.uiuc.edu 

New Moon          First Quarter          Full Moon          Last Quarter  

 

  

 

Veterans Day

Thanksgiving Day

Daylight Saving  
Time ends 



 
 

mathematics university of illinois www.math.uiuc.edu 

Future of the math model collection 
We hope you have enjoyed the 2009 calendar and that our 
enthusiasm for the models has proved infectious. We are 
fortunate that the models, bought from abroad or made at 
Illinois, were carefully preserved in their glass cases for 
nearly a century. However, preservation is not enough 
because they deteriorate over time, as you can see from 
the two string models shown here.  
 
So preservation must include restoration. This is no trivial 
task. The Smithsonian Institute in Washington D.C. has a 
vast collection of mathematical models, but almost all of 
them are archived in the basement. Two string models that 
were restrung some years ago and put on display in the 
museum cost $45,000 to restore. Obviously, we hope to 
accomplish this task in a more economical manner. The 
goal over the coming year is to figure out just how to 
accomplish the restringing. Thereafter, we expect to reach 
a point where undergraduate math students can do this as 
they learn the history and mathematics residing in these 
unique objects. 
 
The plaster models deteriorate more slowly. Many can be 
restored to their original luster by gently rubbing them with 
cheese cloth. Unfortunately, less benign restoration 
attempts in the distant past damaged some of them beyond 
the scope of this simple remedy. These we hope to recreate 
using 3D printing techniques. Once we have figured out 
how to generate the numerical data for the printer, a full 
size replica can be made for a few hundred dollars worth of 
material. At the same time, however, we can print inch-high 
copies in bulk which can be used for promotional purposes. 
 
Some time in the future we may be able to produce another 
calendar showing the fruits of our restoration efforts. 
 

Listed here are the many people who helped make this calendar possible: 
 
Designer and Editor: Tori Corkery 
  

Picture credits: 
• Kalev Leetaru: March, July 
• George Francis: February, April, June, December 
• Tori Corkery: September, November 
• Abby Watt, University of Illinois student: October, November 
• John Sullivan, Professor at the Technical University of Berlin: May 

  

Assisting the editor with writing, proofing, and many factual details were:  John D'Angelo,  
Robert Fossum, George Francis, Bruce Reznick, Milos Curcic, Jiri Lebl, Wendy Harris, Jared Bronski, 
and Sara Nelson, all from the Department of Mathematics at the University of Illinois; and  
Hank Kaczmarski of Integrated Systems Lab of the Beckman Institute, University of Illinois. 
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