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Perceptron (Wikipedia)

In machine learning, the perceptron is an algorithm for supervised learning

of binary classifiers (functions that can decide whether an input,

represented by a vector of numbers, belongs to some specific class or

not).[” It is a type of linear classifier, i.e. a classification algorithm that

makes its predictions based on a linear predictor function combining a set

of weights with the feature vector.
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In machine learning and pattern recognition, a
feature is an individual measurable property
or characteristic of a phenomenon being
observed. Choosing informative,
discriminating and independent features is a
crucial step for effective algorithms in pattern
recognition, classification and regressi

o

Name was coined by Rosenblatt 1957



Perceptron, a good graphic
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Another good figure (Wikipedia)
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Perceptron, a bad figure

Neurons

[nput Output

/ law node
v
X3 “*@ ] * -y

Weighted sum

Weight Activation function




Cover of Minsky & Papert
“Perceptrons”
1969, 1987




Papert: Perceptrons can’t learn XOR
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The XOR-Affair (Wikipedia)

Some critics of the book state that the authors imply that, since a single artificial neuron is incapable of implementing
some functions such as the XOR logical function, larger networks also have similar limitations, and therefore should be
dropped. Later research on three-layered perceptrons showed how to implement such functions, therefore saving the
technique from obliteration.

There are many mistakes in this story. Although a single neuron can in fact compute only a small number of logical
predicates, it was widely known that networks of such elements can compute any possible boolean function. This was
known by Warren McCulloch and Walter Pitts, who even proposed how to create a Turing machine with their formal
neurons, is mentioned in Rosenblatt's book, and is even mentioned in the book Perceptrons.['!] Minsky also extensively
uses formal neurons to create simple theoretical computers in his book Computation: Finite and Infinite Machines.

What the book does prove is that in three-layered feed-forward perceptrons (with a so-called "hidden" or "intermediary"
layer), it is not possible to compute some predicates unless at least one of the neurons in the first layer of neurons (the
"intermediary" layer) is connected with a non-null weight to each and every input. This was contrary to a hope held by
some researchers in relying mostly on networks with a few layers of "local" neurons, each one connected only to a small
number of inputs. A feed-forward machine with "local" neurons is much easier to build and use than a larger, fully
connected neural network, so researchers at the time concentrated on these instead of on more complicated models.

Some other critics, most notably Jordan Pollack, note that what was a small proof concerning a global issue (parity) not

being detectable by local detectors was interpreted by the community as a rather successful attempt to bury the whole
idaa [12]



It’s never that simple (Stackoverflow)

There does not appear to be an historicial consensus on this.

The Wikipedia page on the Perceptrons book (which does not come down on either side)
gives an argument that the ability of MLPs to compute any Boolean function was widely
known at the time (at the very least to McCulloch and Pits).

However, this page gives an account by someone present at the MIT Al lab in 1974, claiming
that this was not common knowledge there, alluding to documentation in "Artificial Intelligence
Progress Report: Research at the Laboratory in Vision, Language, and other problems of
Intelligence" (p31-32) which is claimed to support this.

share improve this answer answered Aug 7 '16 at 9:42
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Controversy
(ai.stackexchange.com)

In their famous book entitled "Perceptrons: An Introduction to Computational Geometry",
Minsky and Papert show that a perceptron can't solve the XOR problem. This contributed to
the first Al winter, resulting in funding cuts for neural networks. However, now we know that a
multilayer perceptron can solve the XOR problem easily.

Backprop wasn't known at the time, but did they know about manually building multilayer
perceptrons? Did Minsky & Papert know that multilayer perceptrons could solve XOR at the
time they wrote the book, albeit not knowing how to train it?

neural-networks  history

share improve this question edited Aug 4 '16 at 8:13 asked Aug 4 '16 at 7:34
’ rcpinto
986 ©1 o7 ©19

This may lead to quite speculative discussions. Any idea to reshape your question (pun intended)? —
Eric Platon Aug 4 '16 at 8:03

Well, that's why | explicitly asked for evidence based on the book and common knowledge at the time.
But I'm open to suggestions. — rcpinto Aug 4 "16 at 8:04

How about the straight question of the title, without the second paragraph? — Eric Platon Aug 4 16 at
8:11

1 lthink it is less "conspiratory” now. — rcpinto Aug 4 16 at 8:15



Rumelhart, Hart, MacClelland 1986
(End of the Controversy)
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Not a Perceptron
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An example of a Feed-forward Neural Network with one hidden layer ( with 3 neurons )




Andrew Trask

A Neural Network in 13 lines of Python (Part 2 - Gradient ... - i am trask
https://iamtrask.github.io/2015/07/27/python-network-part2/ v

Jul 27,2015 - Summary: | learn best with toy code that | can play with. This tutorial teaches gradient
descent via a very simple toy example, a short python ...

A Neural Network in 11 lines of Python (Part 1) - i am trask
https://iamtrask.github.io/2015/07/12/basic-python-network/ v

Jul 12, 2015 - I'll tweet it out when it's complete at @iamtrask. Feel freeto.... 13.[1,1,1]]). 14.15. #
output dataset. 16.y = np.array([[0,0,1,1]]).T. 17. 18.

A Neural Network in 13 lines of Python (Part 2 - Gradient ... - i am trask
https://iamtrask.github.io/page2/ v

How to Code and Understand DeepMind's Neural Stack Machine. Learning to Transduce with
Unbounded Memory. Posted by iamtrask on February 25, 2016 ...

A neural network in 13 lines of python (Part 2 - An Intuitive ...
https://www.reddit.com/r/.../a_neural_network_in_13_lines_of_python_part_2_an/ v

Jul 28, 2015 - 4 posts - 4 authors

Andrew Ng and Adam Coates (4/15/2015) - Jirgen Schmidhuber (3/4/2015) ... A neural network in 13
lines of python (Part 2 - An Intuitive Tutorial of Stochastic Gradient Descent) (iamtrask.github.io).
submitted 3 years ago by ...




#180ct18 Andrew Trask's minimal XOR 11-line code (modified)
import numpy as np
X0 = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,11])
y® = np.array([[0,1,1,0]]).T
W1l= 2xnp.random.random((3,4))-1
w2= 2xnp.random.random((4,1))-1
print "initial W1"
print W1
print "initial w2"
print w2
for jj in xrange(600):
Y1 = 1/(1+np.exp(-(np.dot(X0,W1))))
y2 = 1/(1+np.exp(-(np.dot(Y1l,w2))))
dy2= (y0-y2)xy2x(1-y2)
w2 += Y1.T.dot(dy2)
dY1l= dy2.dot(w2.T)*xY1x(1-Y1)
W1l += X0.T.dot(dY1)
print "final W1="
print W1
print "final w2="
print w2
print "outcome Y1="
print Y1
print "outcome y2="
Erint y2



