
SIAM J. APPLIED DYNAMICAL SYSTEMS

c

� 2018 SIAM. Published by SIAM under the terms

Vol. 17, No. 1, pp. 909–930 of the Creative Commons 4.0 license

Generalizing Koopman Theory to Allow for Inputs and Control⇤

Joshua L. Proctor

†

, Steven L. Brunton

‡

, and J. Nathan Kutz

§

Abstract. We develop a new generalization of Koopman operator theory that incorporates the e↵ects of inputs
and control. Koopman spectral analysis is a theoretical tool for the analysis of nonlinear dynamical
systems. Moreover, Koopman is intimately connected to dynamic mode decomposition (DMD), a
method that discovers coherent, spatio-temporal modes from data, connects local-linear analysis
to nonlinear operator theory, and importantly creates an equation-free architecture for the study
of complex systems. For actuated systems, standard Koopman analysis and DMD are incapable of
producing input-output models; moreover, the dynamics and the modes will be corrupted by external
forcing. Our new theoretical developments extend Koopman operator theory to allow for systems
with nonlinear input-output characteristics. We show how this generalization is rigorously connected
to a recent development called dynamic mode decomposition with control. We demonstrate this new
theory on nonlinear dynamical systems, including a standard susceptible-infectious-recovered model
with relevance to the analysis of infectious disease data with mass vaccination (actuation).

Key words. DMD, Koopman, input-output, DMDc, spatio-temporal

AMS subject classifications. 65P99, 37M99, 37M10, 37N10, 37N35, 37N25

DOI. 10.1137/16M1062296

1. Introduction. We introduce a new method called Koopman with inputs and control
(KIC) that generalizes Koopman spectral theory to allow for the analysis of complex, input-
output systems. Koopman operator theory, which is built on the seminal contribution of
Bernard Koopman in 1931 [25], is a powerful and increasingly prominent theory that al-
lows one to transform a nonlinear dynamical system into an infinite-dimensional, linear sys-
tem [25, 31, 42]. Linear operator theory [12], specifically eigenfunction expansion techniques,
can then be used to construct solutions of the original system. As such, Koopman theory is
perhaps an early theoretical predecessor of what is now called nonlinear manifold learning, i.e.,
discovering nonlinear manifolds on which data live. In Koopman theory, the data is collected
from a nonlinear dynamical system. Candidate manifolds are constructed from observables of
the original state-space variables. In our KIC innovation, we consider a nonlinear dynamical
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910 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

system with inputs and outputs, thus requiring a generalization of Koopman’s original defini-
tion. We demonstrate the method on a number of examples to highlight the e↵ectiveness and
success of the technique. Importantly, the Koopman methodology is data-driven, model-free,
and capable of discovering the underlying dynamics and control of a given system from data
alone. This makes it an attractive data-driven architecture in modern dynamical systems
theory.

Although proposed more than eight decades ago, few results followed the original formu-
lation by Koopman [25]. This was partly due to the fact that there did not exist an e�cient
method to compute the Koopman operator itself. Additionally, even if an algorithm had
been proposed, there were no computers available to compute them in practice during that
time period. Interest was revived once again in 2004 by Mezić and Banaszuk [33] and in
2005 by Mezić [31], who showed that Koopman theory could be used for the spectral anal-
ysis of nonlinear dynamical systems. Two critical and enabling breakthroughs came shortly
after. Schmid and Sessterhen in 2008 [46] and Schmid in 2010 [43] proposed the dynamic
mode decomposition (DMD) algorithm for decomposing complex, spatio-temporal data, and
in 2009, Rowley et al. [42] showed that the DMD was, in fact, a computation of the Koopman
operator for linear observables. Most recently, Tu et al. [48] generalized and improved the
DMD algorithm and definition to its current, state-of-the-art form. The combined work of
Mezić, Rowley, Schmid, and their coworkers thus laid the theoretical foundations that have
led to the tremendous subsequent success of the DMD/Koopman method. In a very short
period of time since, DMD theory has been applied with great success to a broad set of do-
main sciences including complex fluid flows [45, 43, 44, 13, 2, 48, 47], foreground/background
separation in video streams [14], epidemiology [37], and neuroscience [3]. The theory also
allows for critical enabling theoretical augmentations that can take advantage of compres-
sion and sparsity [22, 7, 16], multiresolution/multiscale phenomenon [27], denoising [9, 18],
data fusion [52], extended and kernel DMD [51, 50], and control [36]. Indeed, our objective
is to describe how Koopman operator theory can be generalized to include the analysis of
input-output systems. Further, we demonstrate how Koopman is fundamentally connected to
dynamic mode decomposition with control (DMDc), a recently developed extension of DMD
for input-output systems [36] which has already been successfully applied to simulation data
of a rapidly pitching airfoil [10].

The rapid adoption of Koopman theory across a number of scientific and engineering
fields [8, 32] is not surprising. Its fundamental success stems from the fact that it is an
equation-free method, relying on data alone to reconstruct a linear dynamical system charac-
terizing the underlying nonlinear system. Such linear systems may be characterized using basic
methods from ordinary di↵erential equations and spectral analysis, as shown by Mezić [31].
The method can be applied to high-dimensional measurement data collected from complex
systems where governing equations are not readily available. Computing a numerical approx-
imation of the Koopman operator can be orders of magnitude faster than solving for solutions
of partial di↵erential equations with complex domains. This Koopman mode decomposition
(KMD) utilizes the numerically e�cient DMD algorithm. However, KMD typically includes
a set of judiciously chosen observables, whereas DMD relies solely on linear observables. The
set of observables for KMD is often larger and includes nonlinear functions. KMD utilizes
these observables to find a coordinate system that allows for a linear operator to describe the
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KOOPMAN WITH INPUTS AND CONTROL 911

dynamics of these observables. In this manuscript, we show how KIC inherits the advantageous
characteristics of Koopman theory, while also extending the domain of applicability to input-
output systems.

The control of high-dimensional, nonlinear systems is a challenging task that is of
paramount importance for applications such as flow control [5] and eradicating infectious
diseases [37]. The construction of e↵ective controllers typically relies on relatively few states,
a computationally feasible model to implement, and fast solvers to minimize latencies in-
troduced by computing estimates of the system [1]. Further, control laws often rely on
solving a single large Riccati equation (H2) or iteratively through sets of equations (H

1

).
For modern engineering systems with high-dimensional measurement data and possibly high-
dimensional input data, the requirements of the controllers are too restrictive. Thus, most
practical methods for handling these modern systems rely heavily on dimensionality-reduction
techniques. These model reduction techniques typically employ the singular value decompo-
sition to discover low-dimensional subspaces where the dynamics evolve [19]. On these low-
dimensional subspaces, controllers can be described, constructed, and implemented [35, 23,
19, 41, 40, 39, 53, 17]. This paradigm is exemplified in the classic method called balanced
truncation, which utilizes both the low-dimensional controllable and observable subspaces
to produce a balanced, reduced-order model for control [35]. Notably, balanced trunca-
tion has been extended and generalized to handle high-dimensional measurement data by
a method called balanced proper orthogonal decomposition (BPOD). The method, however,
requires a linear adjoint calculation [28, 49, 40, 20], which is not possible in typical data-driven
experiments.

The models produced by BPOD have been shown to be equivalent to the input-output
models produced by the eigensystem realization algorithm (ERA), a method developed to be
used on linear and low-dimensional systems [29]. ERA and the observer Kalman identification
method (OKID) are a part of a class of methods developed for system identification [23, 24, 11].
Similar to DMD and DMDc, system identification methods are inherently equation-free, act-
ing only on measurement and input data. In fact, DMD has been shown to be intimately
connected to ERA and OKID as well as other subspace identification methods such as the nu-
merical algorithms for subspace state space system identification (N4SID) [38, 48, 36]. In this
manuscript, we will establish the connection between KIC and DMDc for linear input-output
systems. KIC can be interpreted as a general framework for nonlinear system identification.

The outline of the paper is as follows. Section 2 describes the background on Koopman
operator theory and its connections to DMD. Section 3 describes the new development KIC
and the strong connections to DMDc. Section 4 presents a number of numerical examples
including nonlinear input-output systems.

2. Background: Koopman and dynamic mode decomposition. Koopman operator the-
ory and DMD are powerful and intimately connected methods for analyzing complex systems.
Data collected from numerical simulations, experiments, or historical records can be analyzed
by Koopman and DMD. These methodologies can identify important dynamic characteris-
tics relevant for prediction, bifurcation analysis, and parameter optimization. This section
provides the mathematical background for Koopman operator theory and DMD [31, 46, 45,
42, 48]. Further, the section includes a description of DMD with control, allowing the DMD
framework to be applied to systems with exogenous forcing.
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912 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

2.1. The Koopman operator for dynamical systems. The Koopman operator can trans-
form the analysis of a finite-dimensional, nonlinear dynamical system into the analysis of an
infinite-dimensional, linear system [25]. Standard spectral analysis of this linear Koopman
operator is a powerful methodology to investigate flows arising from nonlinear dynamical
systems [31, 42, 8, 32]. In this section, we describe Koopman operator theory.

Consider the discrete nonlinear dynamical system,

x

k+1 = f(x
k

),(2.1)

evolving on a smooth manifold M where x

k

2 M. The function f is a map from M to
itself, and k is an integer index. We could equivalently describe Koopman operator theory
for continuous-time systems, but here we focus on the discrete-time setting reflective of most
engineering applications. We define a set of scalar valued functions g : M ! R, which are
called observables. The set of observables defines an infinite-dimensional Hilbert space H. For
example, this space could consist of the Lebesque square-integrable functions. Previous inves-
tigations have focused on analyzing the appropriate spaces on which the Koopman operator
acts [34] and global stability properties [30]. In this article, we will use polynomial functions
as observables, which are square-integrable assuming they are defined on a compact set. The
Koopman operator K acts on this set of observables:

Kg(x
k

) , g(f(x
k

)).(2.2)

The Koopman operator is linear and infinite-dimensional. The nonlinear dynamical system is
often considered finite-dimensional but can be infinite-dimensional. The linear characteristics
of the Koopman operator allow us to perform an eigendecomposition of K:

K'
j

(x) = �

j

'

j

(x), j = 1, 2, . . . ,1.(2.3)

Consider a vector-valued observable g : M ! Rn

y . Using the infinite expansion shown in
(2.3), the observable g can be rewritten,

g(x) =

2

666664

g1(x)
g2(x)
g3(x)

...
g

n

y

(x)

3

777775
=

1X

j=1

'

j

(x)v
j

,(2.4)

as long as the n

y

components of g lie within the span of eigenfunctions '
j

. The vector-
valued coe�cients v

j

are called Koopman modes. Measure-preserving flows, as those originally
considered in [25], allow for a specific description of the Koopman modes based on projections
of the observables:

g(x) =
1X

j=1

'

j

(x)

2

666664

h'
j

, g1i
h'

j

, g2i
h'

j

, g3i
...

h'
j

, g

n

y

i

3

777775
=

1X

j=1

'

j

(x)v
j

,(2.5)
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KOOPMAN WITH INPUTS AND CONTROL 913

where the inner product is with respect to H. The Koopman operator K is defined for all
observables. We later denote a finite-dimensional approximation of the Koopman operator
(from data) as K. Rearranging terms from (2.2) and (2.3) provides a new representation of
the observable g in terms of Koopman modes and the corresponding Koopman eigenvalues �

j

:

Kg(x
k

) = g(f(x
k

)) =
1X

j=1

�

j

'

j

(x
k

)v
j

,(2.6)

where the Koopman eigenvalues �
j

describe the growth/decay and oscillatory frequency for
each Koopman mode, v

j

. For DMD, '
j

(x) is a constant and is typically absorbed into each
of the modes. The eigenfunctions '(x) are the inner product of the state x with the left
eigenvectors of the linear Koopman operator w

j

when the underlying system is linear and the
observables are the identify, i.e., g(x) = x [42].

A significant amount of recent work has focused on identifying a procedure for constructing
a set of observables g that will uncover an approximate Koopman operator K [50, 4]. For
example, one procedure augments the measured state with a set of nonlinear functions, e.g.,
x

2, x3, sin(x).

2.2. Koopman and DMD. In this background section, we show how Koopman operator
theory is connected to DMD. Given a set of internal states x

k

, where k = 1, 2, . . . ,m, the
measurements of the system states can be described by the following:

y

k

= g(x
k

), y

k+1 = z

k

= g(f(x
k

)).(2.7)

Each of the measurements can be collected to form two large data matrices:

Y =

2

4
| | |
y1 y2 . . . y

m

| | |

3

5
, Z =

2

4
| | |
z1 z2 . . . z

m

| | |

3

5
.(2.8)

These snapshot matrices can be used to define the DMD.

Definition 2.1 (dynamic mode decomposition (Tu et al. [48])). The DMD of the measure-
ment pair (Y,Z) is given by the eigendecomposition of A, where A , ZY

† and † is the
pseudoinverse.

The measurements of the state, x1, x2, . . . , xm

, do not have to be sequentially sampled.
The important relationship is between the current and future measurements, y

k

and z

k

,
respectively. The states x

i

do not have to be collected from a single trajectory of f . Of course,
in collecting data from an experiment or historical records, the data is typically collected along
a single trajectory in phase space.

DMD can be computed from the measurement pair (Y,Z) by finding eigenvectors and
eigenvalues that satisfy the standard eigenvalue problem:

Av

j

= �

j

v

j

.(2.9)
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914 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

Assuming the matrix A has a full set of eigenvectors, each measurement column y

k

can be
represented by the eigenvectors of A:

g(x
k

) =
nX

j=1

c

jk

v

j

.(2.10)

If we have linearly consistent data, the relationship Ay

k

= z

k

is satisfied allowing us to apply
the operator A to (2.10):

g(f(x
k

)) = z

k

= A

nX

j=1

c

jk

v

j

,(2.11a)

=
nX

j=1

Ac

jk

v

j

,(2.11b)

=
nX

j=1

�

j

c

jk

v

j

.(2.11c)

In the case of linearly consistent data matrices, the DMD modes and eigenvalues of (2.11)
correspond to the Koopman modes of (2.6). The data matricesY and Z are linearly consistent
if and only if the null space of Z is contained in the null space of Y. We refer the reader to
[48] for a more detailed description of linearly consistent data.

2.3. Dynamic mode decomposition with control. DMDc extends DMD to handle com-
plex systems with inputs and control [36]. The DMD eigenvalues and dynamic modes may
be corrupted without including information from exogenous forcing or controller inputs. The
time-varying inputs to the system can be collected to form another data matrix similar to
those found in (2.8):

Y

u

=

2

4
| | |
u1 u2 . . . u

m

| | |

3

5
.(2.12)

DMDc combines the input snapshot matrix Y

u

with the state snapshot matrices (Y,Z) to
disambiguate the state dynamics from the impact of the inputs. DMDc is defined as follows.

Definition 2.2 (dynamic mode decomposition with control (Proctor, Brunton, and Kutz [36])).

The DMDc of the measurement trio (Y,Z,Y

u

) is given by the eigendecomposition of the
operator A where ˜

G = [A B] and ˜

G , Z[ Y

Y

u

]† = Z⌦

†.

DMDc utilizes three measurement matrices (Y,Z,Y

u

) producing a nonsquare operator
˜

G that helps identify input-output characteristics. Typically, the measurement matrices are
constructed with full-state access and full-input access such that Y = [ x1 x2 ...x

m ], Y

u

=
[ u1 u2 ...u

m ], Z = [ x2 x3 ...x

m+1 ]. The DMD modes from the measurement trio can be found
by performing the singular value decomposition:

˜

Gv

j

= �

j

q

j

.(2.13)
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KOOPMAN WITH INPUTS AND CONTROL 915

Assuming the matrix ˜

G has a full set of singular vectors, each measurement column of ⌦ can
be represented by expanding with the eigenvectors v

j

:


y

k

u

k

�
=

nX

j=1

'

j

v

j

.(2.14)

If we have linearly consistent data, the relationship ˜

G[ yk

u

k

] = z

k

is satisfied allowing us to
apply the operator ˜

G to (2.10) giving

z

k

= ˜

G

nX

j=1

c

jk

v

j

,(2.15a)

=
nX

j=1

�

j

c

jk

q

j

.(2.15b)

The DMDc identification of operators A and B can be juxtaposed with a standard model-
based approach from linear system theory. The standard linear control model is given by the
following:

x

k+1 = Ax

k

+Bu

k

,(2.16a)

y

k

= Cx

k

+Du

k

.(2.16b)

Clearly, DMDc and standard linear models are fundamentally connected [36]. Similarly, sec-
tion 2.2 illustrates the link between DMD and Koopman operator theory. These connections
help frame the motivation around generalizing Koopman operator theory with inputs and
control. In this article, we develop KIC as a methodology for analyzing complex systems
with nonlinear input-output characteristics. Further, we will show that, similar to Koopman
theory, this methodology is completely data-driven and related to DMDc.

3. Generalizing Koopman to allow for inputs and control. In this section, Koopman
operator theory is generalized to include exogenous inputs and control. We then demonstrate
how the new theoretical framework connects to linear systems theory. Further, we describe
the connection of KIC to DMDc.

3.1. Koopman with inputs and control. Consider a nonlinear dynamical system that
allows for external inputs

x

k+1 = f(x
k

,u

k

),(3.1)

where x 2 M, u 2 N , and M and N are both smooth manifolds. As before, we dispense
with the manifolds and consider x 2 Rn

x and u 2 Rn

u . Further, we do not require u to be
constrained to a manifold. We define a set of scalar-valued observables that are functions of
the state and the input where g : M⇥N ! R. Each observable is an element of an infinite-
dimensional Hilbert space H. Figure 1 illustrates the relationship between the underlying
dynamics, inputs, and measurements and the Koopman operator. The Hilbert space can
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916 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

Figure 1. This figure illustrates the Koopman operator with inputs and control. The internal dynamics and
the inputs are measured with the observable y

k

= g(x
k

,u
k

). The bottom row indicates the goal of the Koopman
operator with inputs and control: to find an operator that propagates all observables g

j

(x
k

,u
k

) to the same
observable in the future g

j

(f(x
k

,u
k

),u
k+1).

be defined by the Lebesque square-integrable functions, other appropriate spaces [34], or
polynomial functions defined on a compact set. Note that H contains observables that depend
on the state, e.g., g(x,u) = x1, the inputs, i.e., g(x,u) = u1, and mixed terms, i.e., g(x,u) =
x1u1. These observables can be combined into a vector-valued observable g(x,u) to compute
a finite-approximation of the Koopman operator.

The KIC K : H ! H acts on the Hilbert space of observables

Kg(x
k

,u

k

) , g(f(x
k

,u

k

),u
k+1).(3.2)

The KIC definition can be modified depending on the type of input. Consider the following
input types:

1. Closed-loop control : The input is generated from a state-dependent controller, u
k

=
h(x

k

). The KIC operator can be defined for a closed-loop controller by the following:
Kg(x

k

,u

k

) , g(f(x
k

,u

k

),h(f(x
k

,u

k

))). In this case, the KIC operator can be rewrit-
ten using (3.1) in terms of only the state: Kg(x

k

,h(x
k

)) = g(x
k+1,h(xk+1)). Thus,

the KIC operator for a given closed-loop control law reduces to the Koopman operator
for the associated autonomous system.

2. Open-loop inputs :
(a) The input is generated from a constant forcing term. The KIC operator can be

defined for a constant input c by the following: Kg(x
k

, c) , g(f(x
k

, c), c). For
each input c, the KIC operator can be reduced to the Koopman operator for
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KOOPMAN WITH INPUTS AND CONTROL 917

the associated autonomous system, inheriting the spectral properties and char-
acteristics. However, the KIC operator now represents a family of autonomous
Koopman operators defined at constant values of input.

(b) The input is generated from an exogenous forcing term, such as a time-varying
input or random disturbance. In this case, the KIC operator can be defined
by the following: Kg(x

k

,u

k

) , g(f(x
k

,u

k

),u
k+1). Note that this definition

suggests that the KIC operator can propagate both the state dynamics and
unknown inputs. This case has also been investigated with the shift operator
of a known input profile [26].

(c) An open-loop input can also come in the form of a process with its own in-
ternal dynamics, u

k+1 = f

u

(u
k

). The KIC operator can be defined by the
following: Kg(x

k

,u

k

) , g(f(x
k

,u

k

), f
u

(u
k

)). As in the case of closed-loop con-
trol, the KIC operator can be reduced to the autonomous Koopman operator
by treating the inputs as states. The KIC operator can be used to investigate
independent dynamic processes acting on each other, such as those found in
dynamic networks and multiscale systems.

In this novel definition of the Koopman operator, the primary goal is to identify a K that
represents both the evolution of the nonlinear dynamics and the impact of an arbitrary control
signal on the system. Figure 2 illustrates this general motivation for KIC. In practice, the
recovery of a finite-approximation of K for any arbitrary input signal will require a rich set of
measurements, control signal profiles, and initial conditions.

It’s important to note that the analysis of K can reduce to Koopman operator theory for
an associated autonomous dynamical system, illustrated in the case for closed-loop control
1 and open-loop control 2(a) and 2(c). For systems with closed-loop control, vector-valued
observables, Kg(x

k

,u

k

) = g(x
k+1,h(xk+1)), can be reduced to (2.4). For example, in the

case where observables are linear functions of the state and input, u can be adjoined to the
state x constructing an augmented state variable [xT

u

T ]T = [xT

h(x)T ]T = x̂. Koopman
operator theory can be applied where observables are functions of this new augmented state;
thus KIC inherits the spectral properties and characteristics from Koopman operator theory
for autonomous systems. However, carefully partitioning the observables that depend on the
state from those that depend on the inputs can help disambiguate the state dynamics from
the e↵ects of inputs. Further, the clear algorithmic connection to DMD o↵ers a procedure
to treat data collected from multiple state trajectories, initial conditions, and control signals;
see section 3.3 for how to construct the KIC data matrices. This observation will be utilized
in connecting KIC to DMDc in section 3.3.

The augmentation procedure can be used for open-loop control where the inputs have their
own internal dynamics. The Koopman operator will be able to discover both the input and
state dynamics. As a motivating example, the Koopman operator could be applied to systems
with multiscale dynamics allowing for the identification of microscale behavior driving macro-
scale outputs, such as those found in climate or epidemiological systems. DMD, described
in section 2.2, has been previously extended to handle data from multiscale processes [27].
Similarly, a common method for analyzing nonautonomous dynamical systems is to treat time
as a state, creating another augmented state. Then, the vector field f is augmented with a
simple ODE, ṫ = 1 [15].
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Control of Nonlinear Systems

Controller

Ko
op

m
an

 w
ith

 in
pu

ts
 

an
d 

co
nt

ro
l Kg(xk,uk) = g(f(xk,uk),uk+1)

g(x2,u2)g(x1,u1)

U
nk

no
w

n 
In

te
rn

al
 D

yn
am

ic
s

Laser Cavity

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

United States Flu Dynamics

time

Pl
ac

e

u2u1u0

x2x1x0

Figure 2. An illustration motivating the development of Koopman operator theory with inputs and control.
The first row shows a complex system evolving in time with unknown, underlying dynamics. Both systems,
an optical cavity and epidemiological system, can have exogenous forcing. The second row shows the goal of
Koopman operator theory: to discover an operator that can propagate forward in time a set of measurements
for prediction and control without an explicit model.

In contrast, open-loop control without dynamics, such as those found in standard system
identification procedures, does not require a KIC operator that can predict the future inputs.
The KIC operator can be defined such that future inputs are known a priori. This has
also been proposed in [26], where a shift operator is utilized to step the input forward in
time. The KIC operator can also be defined such that Kg(x

k

,u

k

) , g(f(x
k

,u

k

),0) imposing
a realistic constraint on future input prediction. Practically, this assumption amounts to
utilizing observables of the current state and inputs to propagate forward only the observables
that depend solely on the state. This perspective helps fundamentally link KIC to DMDc and
system identification methods.

Generally, the linear characteristics of the KIC allow us to perform an eigendecomposition
of K given in the standard form:

K'
j

(x,u) = �

j

'

j

(x,u) , j = 1, 2, . . .1.(3.3)
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KOOPMAN WITH INPUTS AND CONTROL 919

The operator is spanned by eigenfunctions that are defined by the inputs and state. Using the
infinite expansion shown in (3.3), the vector-valued observable g can be rewritten in terms of
the right eigenfunctions '

j

,

g(x,u) =

2

6664

g1(x,u)
g2(x,u)

...
g

n

y

(x,u)

3

7775
=

1X

j=1

'

j

(x,u)v
j

,(3.4)

where n

y

is the number of observables. The Koopman with inputs and control operator can
be applied to these observables,

Kg(x
k

,u

k

) = g(f(x
k

,u

k

),u
k+1) =

1X

j=1

�

j

'

j

(x
k

,u

k

)v
j

.(3.5)

Note that the expansion is in terms of Koopman eigenfunctions with vector-valued coe�cients
that we call Koopman modes v

j

. Koopman operator theory now allows for observables that
are functions that depend on both the state and inputs.

3.2. KIC for linear systems. In this subsection, we demonstrate how KIC can be applied
to linear systems. Consider the linear dynamical system with inputs

x

k+1 = Ax

k

+Bu

k

.(3.6)

We consider full-state access and full-input access by choosing observables that are the identity,
i.e., g(x,u) = [xT

u

T ]T . The linear dynamical system can be rewritten in terms of y:


x

k+1

u

k+1

�
=


G11 G12

G21 G22

� 
x

k

u

k

�
,(3.7a)

y

k+1 = G y

k

.(3.7b)

The eigenvalues of G are also the eigenvalues of K and the left and right eigenvectors of G are
related to the eigenfunctions of K. The description of this linear system for an input-output
system is clearly not standard. Typically, the future state would not include the future input.
Later in this section, we discuss how the Koopman operator with inputs and control can be
modified to reflect a more standard view of input-output systems, connecting previous work
on DMDc [36]. The decomposition of G, with eigenvalues �

j

and eigenvectors v
j

, is

Gv

j

= �

j

v

j

, j = 1, 2, . . . , n.(3.8)

The observables can be represented by an expansion in terms of the v:

y =
nX

j=1

'

j

(x,u)v
j

=
nX

j=1

hz,w
j

iv
j

,(3.9)

where the inner product is defined with respect to H. Also, w
j

are the left eigenvectors of the
operator G. Further, the eigenfunctions '

j

are projections of the state on the eigenvectors
w. For linear systems, the Koopman operator is equivalent to the linear map G. Further, the
Koopman modes (both the left and right) coincide with the eigenvectors of G.
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920 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

3.3. KIC and connections to DMDc. KIC for linear systems with control does not iden-
tify input-output systems in a standard form; see section 3.2. However, the KIC framework
is highly flexible. KIC is related to a recently developed method called DMDc, described in
section 2.3, which does produce standard input-output models. This connection parallels the
link between Koopman operator theory and DMD, described in section 2.2 [42].

Similar to section 2.3, we define a set of internal states x
k

and internal inputs u
k

, where
k = 1, 2, . . . ,m. The observables g(x

k

,u

k

) can be partitioned into those dependent on the
state y

x

, control y
u

, and both y

xu

:

y

k

=

2

4
y

x,k

y

xu,k

y

u,k

3

5 = g(x
k

,u

k

), z

k

=

2

4
z

x,k

z

xu,k

z

u,k

3

5 = g(f(x
k

,u

k

),u
k+1).(3.10)

As with DMDc, the set of states x
k

and inputs u
k

does not need to be collected from a single
trajectory of the dynamical system [48]. Each of the measurements can be collected to form
two large data matrices:

Y =

2

4
Y

x

Y

xu

Y

u

3

5 =

2

6666666666664

| | |
y

x,1 y

x,2 . . . y

x,m

| | |
| | |

y

xu,1 y

xu,2 . . . y

xu,m

| | |
| | |

y

u,1 y

u,2 . . . y

u,m

| | |

3

7777777777775

, Z =

2

4
Z

x

Z

xu

Z

u

3

5 =

2

6666666666664

| | |
z

x,1 z

x,2 . . . z

x,m

| | |
| | |

z

xu,1 z

xu,2 . . . z

xu,m

| | |
| | |

z

u,1 z

u,2 . . . z

u,m

| | |

3

7777777777775

.

(3.11)

The connection to DMDc can be established by choosing linear observables for the state and
control, such that Y

x

= [ x1 x2 ...x

m ], Y

u

= [ u1 u2 ...u

m ], Z

x

= [ x2 x3 ...x

m+1 ], and Y

xu

=
Z

xu

= Z

u

= 0. With these linear observables, the KIC operator reduces to DMDc.
A judicious choice of observables g(x

k

,u

k

) can transform the state and input measure-
ments into a coordinate system that allows for a linear operator to represent the nonlinear
input-output dynamics. DMDc, however, utilizes linear observables with full state and input
access. DMDc and KIC are similar, though, in that the KIC operator can be numerically
approximated through the same e�cient numerical algorithm as DMD. Further, the flexi-
ble KIC framework allows for the construction of a nonlinear input-output operator when
Z

xu

= Z

u

= 0.

3.4. Adapting KIC to allow for di↵erent domain and output spaces. In this subsection,
we discuss the flexibility of the KIC architecture to allow for di↵erent domain and output
spaces. Specifically, we illustrate how the Koopman operator can be viewed as projecting from
the complete Hilbert space H to a subspace of H. This facilitates a stronger connection to
DMDc, as well as recent developments such as the sparse identification of nonlinear dynamics
(SINDy) [6].
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KOOPMAN WITH INPUTS AND CONTROL 921

3.4.1. The inputs are not dynamically evolving. The Koopman operator in (3.2), with-
out dynamically evolving inputs, can be defined by the following: Kg(x

k

,u

k

) , g(f(x
k

,u

k

), 0).
In this case, the operator is no longer attempting to fit a future input prediction. Instead,
this modified Koopman operator propagates the future observables dependent solely on the
state. The approximation of the operator becomes

2

4
y

x,k+1

y

xu,k+1

y

u,k+1

3

5 =

2

4
G11 G12 G13

0 0 0
0 0 0

3

5

2

4
y

x,k

y

xu,k

y

u,k

3

5
,(3.12)

which can be reduced to

⇥
y

x,k+1

⇤
=

⇥
G11 G12 G13

⇤
2

4
y

x,k

y

xu,k

y

u,k

3

5
.(3.13)

KIC connects the nonstandard form found in section 3.2 with system identification meth-
ods [36]. Further, the approximate, finite-dimensional Koopman operator K can be con-
structed from the reduced set of data matrices:

Z

x

= K

2

4
Y

x

Y

xu

Y

u

3

5
.(3.14)

This construction of the KIC operator requires a closer inspection of the eigenfunction ex-
pansion in (3.3). There is no longer a requirement for having equivalent eigenfunctions '

j

for
both the domain and output spaces of the operator K. Here, the eigenfunctions '

j

could be
mapped to a restricted subspace of H that only concerns the prediction of the future state.

3.4.2. Domain and output spaces for the Koopman operator. We investigate how the
output space of the Koopman operator can be restricted to a subspace of H. In section 3.1,
we illustrated how the Koopman operator is defined on H for all observables g(x,u). This
space H can be partitioned into subspaces. We illustrate how these subspaces can be utilized
to describe the output space of the Koopman operator. We could expand the domain and
output spaces of K by the following:

K'
j

(x,u) = �

j

 

j

(x,u), j = 1, 2, . . .1,(3.15)

where  
j

are eigenfunctions that span a subspace of H. The span of ' includes the span
of  , as well as the span of the remaining nonlinear observables on x and u. The vector of
observables g(x,u) can still be defined as in (3.4). The Koopman operator applied to g(x,u)
becomes

Kg(x,u) =
nX

j=1

K'
j

(x,u)

2

66666666664

q1

q2
...

q

n

x

0
...
0

3

77777777775

⇡
1X

j=1

�

j

 

j

(x)q
j

,(3.16)
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922 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

where n

x

is a smaller set of observables than n

y

and q

j

are left Koopman modes. This allows
for di↵erent domain and output spaces for the Koopman operator expansion. The distinction
provides the practitioner the ability to investigate how the Koopman operator projects from
a large domain space of observables that includes linear, nonlinear, and mixed terms to a
restricted output space dependent only on the state. This framework allows for a larger
number of observables than DMDc, providing a principled method for expanding the domain
space of observables. The domain space can include a large functional library expanding the
measurement set as in the work by Williams, Kevrekidis, and Rowley [50].

In this framework, the domain space of the Koopman operator can be expanded in linear
measurements of the state and input, nonlinear measurements of the state and inputs, and
mixed state-input terms. The output space, though, can be restricted to a set that spans, for
example, the linear state measurements.

3.4.3. Domain/output spaces of the Koopman operator for linear systems. In this
subsection, we discuss how the Koopman operator maps to observables that are of the form
g(x,u) = g(x). For observables that are the identity on the state and input measurements,
the domain space can be represented by a similar expansion of section 3.1, in terms of the
right Koopman modes v

j

:


x

u

�
= y =

nX

j=1

'

j

(y)v
j

=
nX

j=1

hy,v
j

iv
j

.(3.17)

The KIC operator K can be applied to y,

Ky =
nX

j=1

hKy,q

j

i q
j

,(3.18a)

=
nX

j=1

hy,K⇤

q

j

iq
j

,(3.18b)

=
nX

j=1

hy,�⇤
j

v

j

i q
j

,(3.18c)

=
nX

j=1

�

j

hy,v
j

i q
j

,(3.18d)

where now the output space is expanded by q

j

.

4. Applications. This section explores the theoretical development of KIC on various lin-
ear and nonlinear examples. For examples 1–3, we assume the perspective of the applied
scientist where a finite set of measurements exist. The first example explores the implemen-
tation of KIC for inputs that are random disturbances, from a controller, or from an external
process with dynamics. The second example explores a nonlinear dynamical system with a
quadratic nonlinearity well-studied in the Koopman and DMD literature. The final exam-
ple looks at a canonical susceptible-infected-recovered (SIR) model arising out of the study
of infectious diseases. This example illustrates the challenge facing the community applying
Koopman and DMD for realistic nonlinear problems.
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KOOPMAN WITH INPUTS AND CONTROL 923

4.1. Example 1—Linear system with inputs. Consider the following linear dynamical
system:


x1

x2

�

k+1

=


µx1

�x2 + �u

�

k

.(4.1)

A similar example can be found in [36]. If |�| and/or |µ| is > 1, the system is unstable. The
goal is to recover the underlying dynamics and input matrix when there are various types of
inputs including random disturbances, a state-feedback controller, or a multiscale system. We
assume full access to the state and inputs giving the following relationship between the states,
inputs, and measurements:

2

4
y1

y2

y3

3

5 =

2

4
x1

x2

u

3

5
,


y1

y2

�

k+1

=


µ 0
0 �

� 
y1

y2

�

k

+


0
�

�
y3,k.(4.2)

The dynamical system can be rewritten in the KIC form:
2

4
y1

y2

y3

3

5

k+1

=

2

4
µ 0 0
0 � �

a b c

3

5

2

4
y1

y2

y3

3

5

k

,(4.3)

where a, b, and c depend on the types of inputs. We first investigate when the inputs are
random disturbances. Note that we do not expect to recover the coe�cients (a, b, c) from the
random disturbances. Further, the formulation of this problem could have utilized u

k+1 = 0

or the shift operator from [26]. Instead, we have chosen u

k+1 to illustrate the impact of
di↵erent assumptions on the finite-approximation of the KIC operator.

We collect measurements of the state and inputs to investigate the reconstruction of a
finite-dimensional Koopman operator. The following is the first five snapshots of a single
realization:

Y =

2

4
5 0.5 0.05 0.005 0.0005
2 2.999 4.497 6.749 10.132

�0.001 �0.001 0.002 0.009 0.004

3

5
,(4.4a)

Z =

2

4
0.5 0.05 0.005 0.0005 0.00005

2.999 4.497 6.749 10.132 15.203
�0.001 0.002 0.009 0.004 0.006

3

5
.(4.4b)

The parameters used for this example are µ = 0.1, � = 1.5, and � = 1, giving an unstable
system. The random disturbances for the input are generated with zero mean and gaussian
distributed with a variance of 0.01. Six snapshots of data are used for the computation. Using
these data matrices, a restricted Koopman operator can be constructed. The solution using
these data matrices is

G =


G11 G12

G21 G22

�
⇡

2

4


0.1 0
0 1.5

� 
0
1

�

⇥�.0005 0.001
⇤

[�0.127]

3

5
.(4.5)
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924 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

The underlying system (4.2) is reconstructed with the random disturbances for inputs. Note
that G11 and G12 are accurately identified from the data. The restricted Koopman operator
also attempts to fit G21 and G22 as a propagator on the random inputs, which will not be
accurate by construction.

If the input is generated from a controller with state-feedback, then the data in the last row
becomes correlated with the second row. For example, we define a state-dependent controller
u = �Kx2, where K = 1. In order to disambiguate the control from the observable y2, a
small disturbance is added to the input y3 in the data matrix Y. This provides the following
approximate restricted Koopman operator:

G =


G11 G12

G21 G22

�
⇡

2

4


0.1 0
0 1.5

� 
0
1

�

⇥
0 �1.5

⇤
[�1]

3

5
,(4.6)

where the dynamics on the controller now mimic the actual dynamics of x2. In this example,
the restricted Koopman operator recovers the unstable underlying dynamics and discovers that
the inputs are being generated by a controller that is dependent on x2. This example motivates
our generalization of Koopman theory. The Koopman operator, without consideration of the
external inputs or control, would only be able to recover stable dynamics, thus fundamentally
mischaracterizing the underlying system.

Consider the final input type: the input has dynamics. The dynamics are not state
dependent, for example u̇ = �ru with r = 0.01 and u(0) = 1. We collect the data and find a
restricted Koopman operator:

G =


G11 G12

G21 G22

�
⇡

2

4


0.1 0
0 1.5

� 
0
1

�

⇥
0 0

⇤
[0.99]

3

5
.(4.7)

The KIC architecture not only discovers the underlying dynamics of x and the impact of
u, but also finds the dynamics on u. This perspective could be beneficial when considering
multiscale modeling in climate science or epidemiology.

The restricted KIC operator can be recovered from the data despite the unstable eigenvalue
and various types of inputs. Note that both operators A and B are recovered from the
underlying dynamical system (4.2). The left Koopman modes are

q =


1 0
0 1

�
,(4.8)

where these Koopman modes can be used to construct the eigenfunctions  
j

, described in
section 3.4.2. A similar procedure can be utilized to find the right Koopman modes v

j

and
eigenfunctions '

j

.

4.2. Example 2—Nonlinear system with inputs. We demonstrate how KIC can be used
to solve a nonlinear example with inputs. We utilize the modified KIC definition where
u

k+1 = 0. Consider the following nonlinear dynamical system from [48] and [4], modified to
include an input u:


ẋ1

ẋ2

�
=


µx1

�(x2 � x

2
1) + �u

�
,(4.9)
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KOOPMAN WITH INPUTS AND CONTROL 925

where � = 0.5, µ = 2, and � = 2. We use this example to investigate the e↵ect of inputs and
control on the nonlinear system. The observables are carefully chosen, as in [4], to investigate
this dynamical system:

2

664

y1

y2

y3

y4

3

775 =

2

664

x1

x2

x

2
1

u

3

775 ,

2

4
ẏ1

ẏ2

ẏ3

3

5 =

2

4
µ 0 0
0 � ��
0 0 2µ

3

5

2

4
y1

y2

y3

3

5+

2

4
0
�

0

3

5
y4,(4.10)

where the nonlinear function y3 = x

2
1 has a convenient derivative which allows ẏ3 to be

represented by the other observables; see [4] for more information about closure and Koopman
invariant subspaces. We can transform the problem to include the inputs:

2

4
ẏ1

ẏ2

ẏ3

3

5 =

2

4
µ 0 0 0
0 � �� �

0 0 2µ 0

3

5

2

664

y1

y2

y3

y4

3

775 .(4.11)

Now, we collect measurement data in terms of the observables. In this numerical example,

we used 15 iterations with an initial condition of
⇥
x1 x2

⇤
T

=
⇥
5 2

⇤
T

. The restricted
Koopman operator on these observables can be reconstructed:

G =
⇥
G11 G12

⇤ ⇡
2

4
2 0 0 0
0 0.5 �0.5 2
0 0 4 0

3

5
.(4.12)

The left Koopman modes can be constructed similarly to [4] and as described in (2.13). These
Koopman modes q

j

can then be used to construct eigenfunctions  
j

(x) = hx,q
j

i. These
eigenfunctions span the subspace of observables in the output space. The right Koopman
modes and eigenfunctions can also be computed as described by (2.13). The right eigenfunc-
tions span the domain space. Despite the nonlinear dynamical system, the KIC perspective
constructs a linear dynamical system on the measurements that can be used for prediction
and control.

4.3. Example 3—A biologically inspired nonlinear example. We investigate KIC on the
classic SIR model. This example contains a nonlinearity which is fundamentally di↵erent from
Example 2. The nonlinearity does not have the same closure property. Consider one version
of the SIR models with inputs (represented by the vaccination of susceptible individuals):

2

4
Ṡ

İ

Ṙ

3

5 =

2

4
��SI + ⌫(S + I +R)� µS �Vacc

�SI � �I � µI

�I � µR+Vacc

3

5
,(4.13)

where � = 10 is an infectious parameter, ⌫ = 1 is a birthrate parameter depending on the
total population of the community S+ I +R = 1, µ = 1 is the death rate, � = 1 is a recovery
rate from infection, and Vacc is a rate of vaccination. The left panel of Figure 3 shows the
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Figure 3. Left panel: SIR dynamics with a 1% seeding of infection at time zero. Right panel: The same SIR
dynamics left of the dark dashed line. To the right of the line, the dotted line indicates the KIC prediction with
only the linear observables (S, I, R) as the output. The dashed line indicates the prediction if the measurements
(S, I, R, SI) are used for the output.

SIR system dynamics with seeding a 1% infection at time zero and adding a small random
amount of vaccination at each time step. The nonlinearity in this example, (SI), is a mixed
state quadratic nonlinearity. We transform this continuous nonlinear dynamical system into
a discrete linear dynamical system with a simple forward-Euler scheme, augment the domain
space to include the nonlinearity SI, and include inputs. The following are the observables
for the domain and output variables:

Domain:
⇥
y1 y2 y3 y4 y5

⇤
T

=
⇥
S I R SI Vacc

⇤
T

,(4.14a)

Output:
⇥
y1 y2 y3

⇤
T

=
⇥
S I R

⇤
T

.(4.14b)

Using these domain and output observables, the system can be rewritten:

2

4
y1

y2

y3

3

5

k+1

=

2

4
1/(�t)� µ+ ⌫ ⌫ ⌫ �� �1

0 1/(�t)� µ� � 0 � 0
0 � 1/(�t)� µ 0 1

3

5

2

66664

y1

y2

y3

y4

y5

3

77775

k

,

(4.15a)

Z = KY,(4.15b)

where K is the KIC operator, Z is the data in the output observables, and Y is the data in
the input observables. Choosing a tailored set of domain and output observables introduces a
practical di�culty in the implementation of a completely model-free methodology. For exam-
ple, the inclusion of the nonlinear term (SI) with (S, I, R) to the domain observables allows
for a well-characterized Koopman operator from the training data. Further, this Koopman
operator can be used for prediction and comparison to an out-of-sample dataset. The right
panel of Figure 3 illustrates the training data, in solid lines, versus the out-of-sample predic-
tion, in dashed lines. The out-of-sample prediction matches the actual system seen in the left
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KOOPMAN WITH INPUTS AND CONTROL 927

panel of Figure 3. In order to construct the future prediction, the nonlinear observable (SI)
k

is constructed from S

k

and I

k

for each application of the Koopman operator.
If (SI) is also included in the output observables, then the approximate Koopman operator

will have one more row in (4.15a). The goodness-of-fit for this new row will be poor due to the
lack of higher order terms required to characterize d

dt

(SI), given that the derivative does not

lend itself to a closed form. The derivative property d

dt

(SI) = ṠI+Sİ introduces the need for
even more nonlinearities to characterize the output observables, thus increasing the required
number of augmented observables. However, the goodness-of-fit for the rows describing the
evolution of S, I, and R will still be quite good for the in-sample training data. The practical
limitation arises in the out-of-sample prediction. Since the evolution of (SI) is not well-
described without adding more observables, the use of (SI)

k

to predict S

k+1 will quickly
cause the prediction to diverge from the real solution. This can be seen by the dotted line in
the right panel of Figure 3.

Choosing the correct observables is of paramount importance. A similar sentiment is
expressed in [50], but without considering separate domain and output spaces. The inclusion
of new observables for either the domain or the output side requires examination of goodness-
of-fit metrics on the training data as well as out-of-sample prediction tests. Further, recent
work has shown a statistical framework for determining which nonlinearities to include by
sparsely choosing from a large library of possible dynamical terms [6].

5. Discussion. A wealth of modern applications are nonlinear and high-dimensional in-
cluding distribution systems, internet tra�c, and vaccination of human populations in the
developing world. The need to develop quantitative and automatic methods to characterize
and control these systems is of paramount importance to solving these large-scale problems. In
order to construct e↵ective controllers, the complex system has to be well-understood. In the
case that we do not have well-established, physics-based governing equations, equation-free
methods can help characterize these systems and o↵er insight into their control.

Koopman operator theory and DMD o↵er a data-driven method to characterizing complex
systems [31, 42]. These methods are strongly grounded in the analysis of nonlinear systems
and have been successfully applied in a number of fields such as fluid dynamics [31, 46, 45, 2],
epidemiology [37], video processing [14], and neuroscience [3]. Further, this architecture has
allowed for the incorporation of recent innovations from compressive sensing providing insight
into optimally measuring a system [21, 48, 7]. Generalizing Koopman for input-output systems
allows for a broader set of systems to be considered. KIC is well-connected to DMDc, which
is already having an impact analyzing input-output characteristics for systems with linear
observables [36, 10].

Theoretical innovations such as KIC will play an ever-increasing role in the control of
complex systems. Specifically, the characterization of the domain and output spaces of the
KIC operator can provide insight into the design of nonlinear estimators and controllers solely
from data. We also expect these ideas to open up new theoretical research directions, such
as investigating the implications of KIC for measure-preserving flows and the design of novel
control profiles for rapid and e�cient nonlinear system identification. A practical challenge,
though, facing the widespread deployment of Koopman operator theory is choosing a set of
nonlinear observables that allow for the construction of a finite-dimensional, linear operator
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928 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

that actually represents the nonlinear evolution of the system. Despite this current limitation,
we believe KIC and DMDc are well poised to be integrated into a diverse set of engineering
and science applications. KIC is positioned to have a significant impact in the analysis and
control of large-scale, complex, input-output systems.
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[8] M. Budǐsić, R. Mohr, and I. Mezić, Applied koopmanism, Chaos, 22 (2012), 047510.
[9] S. T. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley, Characterizing and Correcting

for the E↵ect of Sensor Noise in the Dynamic Mode Decomposition, preprint, arXiv:1507.02264, 2015.
[10] S. T. Dawson, N. K. Schiavone, C. W. Rowley, and D. R. Williams, A data-driven modeling

framework for predicting forces and pressures on a rapidly pitching airfoil, in Proceedings of the 45th
AIAA Fluid Dynamics Conference, 2015, pp. 1–14.

[11] M. Forgione, X. Bombois, and P. M. J. Van den Hof, Data-driven model improvement for model-
based control, Automatica, 52 (2015), pp. 118–124.

[12] B. Friedman, Principles and Techniques of Applied Mathematics, Wiley, New York, 1961.
[13] M. Grilli, P. J. Schmid, S. Hickel, and N. A. Adams, Analysis of unsteady behaviour in shockwave

turbulent boundary layer interaction, J. Fluid Mech., 700 (2012), pp. 16–28.
[14] J. Grosek and J. N. Kutz, Dynamic Mode Decomposition for Real-Time Background/Foreground Sep-

aration in Video, preprint, arXiv:1404.7592, 2013.
[15] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of

Vector Fields, 6th ed., Springer, New York, 2002.
[16] F. Gueniat, L. Mathelin, and L. Pastur, A dynamic mode decomposition approach for large and

arbitrarily sampled systems, Phys. Fluids, 27 (2015), 025113.
[17] I. J. Guzmán, D. Sipp, and P. J. Schmid, A dynamic observer to capture and control perturbation

energy in noise amplifiers, J. Fluid Mech., 758 (2014), pp. 728–753.
[18] M. S. Hemati and C. W. Rowley, De-biasing the Dynamic Mode Decomposition for Applied Koopman

Spectral Analysis, preprint, arXiv:1502.03854, 2015.
[19] P. J. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence, Coherent Structures,

Dynamical Systems and Symmetry, 2nd ed., Cambridge Monogr. Mech., Cambridge University Press,
Cambridge, UK, 2012.

[20] M. Ilak and C. W. Rowley, Modeling of transitional channel flow using balanced proper orthogonal
decomposition, Phys. Fluids, 20 (2008), 034103.
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