
Commun. Math. Phys. 96, 15-57 (1984) 

Communications in 
Mathematical 

Physics 
© Springer-Verlag 1984 

Computation Theory of Cellular Automata 

Stephen Wolfram* 

The Institute for Advanced Study, Princeton, NJ 08540, USA 

Abstract. Self-organizing behaviour in cellular automata is discussed as a 
computational process. Formal language theory is used to extend dynamical 
systems theory descriptions of cellular automata. The sets of configurations 
generated after a finite number of time steps of cellular automaton evolution 
are shown to form regular languages. Many examples are given. The sizes of the 
minimal grammars for these languages provide measures of the complexities of 
the sets. This complexity is usually found to be non-decreasing with time. The 
limit sets generated by some classes of cellular automata correspond to regular 
languages. For other classes of cellular automata they appear to correspond to 
more complicated languages. Many properties of these sets are then formally 
non-computable. It is suggested that such undecidability is common in these 
and other dynamical systems. 

1. Introduction 

Systems that follow the second law of thermodynamics evolve with time to 
maximal entropy and complete disorder, destroying any order initially present. 
Cellular automata are examples of mathematical systems which may instead 
exhibit "self-organizing" behaviour 1. Even starting from complete disorder, their 
irreversible evolution can spontaneously generate ordered structure. One coarse 
indication of such self-organization is a decrease of entropy with time. This paper 
discusses an approach to a more complete mathematical characterization of self- 
organizing processes in cellular automata, and possible quantitative measures of 
the "complexity" generated by them. The evolution of cellular automata is viewed 
as a computation which processes information specified as the initial state. The 
structure of the output from such information processing is then described using 

* Work supported in part by the U.S. Office of Naval Research under contract number N 00014- 
80-C-0657 
1 An introduction to cellular automata in this context, together with many references is given in 
[1]. Further results are given in [2, 3], and are surveyed in [4, 5] 



16 s. Wolfram 

the mathematical theory of formal languages (e.g. I-6-8]). Detailed results and 
examples for simpler cases are presented, and some general conjectures are 
outlined. Computat ion and formal language theory may in general be expected to 
play a role in the theory of non-equilibrium and self-organizing systems analogous 
to the role of information theory in conventional statistical mechanics. 

A one dimensional cellular automaton consists of a line of sites, with each site 
taking on a finite set of possible values, updated in discrete time steps according to 
a deterministic rule involving a local neighbourhood of sites around it. The value 
of site i at time step t is denoted al t) and is a symbol chosen from the alphabet 

S={0,  1 , . . . , k - i } .  (1.1) 

The possible sequences of these symbols form the set Z ~ of cellular automaton 
configurations A (t). Most  of this paper concerns the evolution of infinite sequences 
2; = sZ; finite sequences X = S u flanked by quiescent sites (with say value 0) may 
also be considered. At each time step each site value is updated according to the 
values of a neighbourhood of 2r + 1 sites around it by a local rule 

~b:S2~+I~S (1.2) 

of the form 2 

a(t)_ a r,(~- 1) ,,(t- 1) ,(~- 1)1 (1.3) 

This local rule leads to a global mapping 

: 2 ; ~ £  (1.4) 

on complete cellular automaton configurations. Then in general 

Q(, + 1) = ~ ( ~ )  _c Q~t), (1.5) 

where 

t2~t) = ~ t ~  (1.6) 

is the set (ensemble) of configurations generated after t iterated applications of q) (t 
time steps), 

Formal languages consist of sets of words formed from strings of symbols in a 
finite alphabet S according to definite grammatical rules. Sets of cellular 
automaton configurations may thus be considered as formal languages, with each 
word in the language representing a cellular automaton configuration. Such 
infinite sets of configurations are then completely specified by finite sets of 
grammatical rules. (This descriptive use of formal grammars may be contrasted 
with the use of their transformation rules to define the dynamical evolution 
of developmental or L systems (e.g. [9]).) 

Figure 1.1 gives typical examples of the evolution of cellular automata from 
disordered initial states according to various rules ~b. Structure of varying 
complexity is seen to be formed. Four  basic classes of behaviour are found in 

2 The notation used here differs slightly from that of [2]. In particular, F in [2] is denoted 
here as ~b 



Cellular Automata  

u . . . .  • m m ~ t  

• y r  - , w , -  , i V , -  v n * - , Y  - - ' - v v  o o  ' q l v ' v  ~ , ~ m w ,  

17 

Fig. 1.1. Evolution of cellular automata with various typical local rules ~b. The initial state is 
disordered; successive fines show configurations obtained at successive time steps. Four 
qualitative classes ofbehaviour are seen. (The first five rules shown have k = 2 and r = 1, and rule 
numbers 18, 22, 76, 90 and 128, respectively [1]. The last rule has k =2, r=2, and totalistic code 
number 20 [2]) 

these and other cellular automata [2]. In order of increasing apparent complex- 
ity, qualitative characterizations of these classes are as follows: 

1. Tends to a spatially homogeneous state. 
2. Yields a sequence of simple stable or periodic structures. 
3. Exhibits chaotic aperiodic behaviour. 
4. Yields complicated localized structures, some propagating. 
Approaches based on dynamical systems theory (e.g. [10, 11]) suggest some 

quantitative characterizations of these classes: the first three are analogous to the 
limit points, limits cycles and chaotic ("strange") attractors found in continuous 
dynamical systems. The fourth class exhibits more complex behaviour, and, as 
discussed below, is conjectured [2] to be capable of universal computation (e.g. [6, 



18 S. Wolfram 

I!1 
Fig. 1.2. Evolution of cellular automata with various typical local rules from finite initial states. 
(The rules shown are the same as in Fig. 1) 

7, 8]). The formal language theory approach discussed in this paper provides more 
precise and complete characterizations of the classes and their complexity. 

The four classes of cellular automata generate distinctive patterns by evolution 
from finite initial configurations, as illustrated in Fig. 1.2: 

1. Pattern disappears with time. 
2. Pattern evolves to a fixed finite size. 
3. Pattern grows indefinitely at a fixed rate. 
4. Pattern grows and contracts with time. 
The classes are also distinguished by the effects of small changes in initial 

configurations: 
1. No change in final state. 
2. Changes only in a region of finite size. 
3. Changes over a region of ever-increasing size. 
4. Irregular changes. 
"Information" associated with the initial state thus propagates only a finite 

distance in classes 1 and 2, but may propagate an infinite distance in classes 3 and 4. 
In class 3, it typically propagates at a fixed positive speed. 

The grammar of a formal language gives rules for generating or recognizing the 
words in the language. An idealized computer (such as a Turing machine) may be 
constructed to implement these rules. Such a computer may be taken to consist of a 
"central processing unit" with a fixed finite number of internal states, together with 
a "memory" or "tape." Four  types of formal language are conventionally 
identified, roughly characterized by the size of the memory in computers that 
implement them (e.g. [7]): 



Cellular Automata 19 

0. Unrestricted languages3: indefinitely large memory. 
1. Context-sensitive languages: memory proportional to input word length. 
2. Context-free languages: memory arranged in a stack, with a fixed number of 

elements available at a given time. 
3. Regular languages: no memory. 
These four types of languages (essentially) form a hierarchy, with type 0 the 

most general. Only type 0 languages require full universal computers; the other 
three types of language are associated with progressively simpler types of 
computer (linear-bounded automata, pushdown automata, and finite automata, 
respectively). 

The grammatical rules for a formal language may be specified as "productions" 
which define transformations or rewriting rules for strings of symbols. In addition 
to the set S of "terminal" symbols sz which appear directly in the words of the 
language, one introduces a set U of intermediate "non-terminal" symbols ui. To 
generate words in the language, one begins with a particular non-terminal "start" 
symbol, then uses applicable productions in turn eventually to obtain strings 
containing only terminal symbols. The different types of languages involve 
productions of different kinds: 

0. Arbitrary productions. 
1. Productions ~1 ~c~2 for which 1~21 > Icql, where cq is an arbitrary string of 

terminal and non-terminal symbols, and Ic~il is its length. 
2. Productions of the form ui~ej  only (with a fixed bound on [c91 ). 
3. Productions of the form U~S~Uk or u~s~ only. 
Words in languages are recognized (or "parsed") by finding sequences of 

inverse productions that transform the words back to the start symbol. 
The grammars for regular (type 3) languages may be specified by the finite state 

transition graphs for finite automata that recognize them. Each arc in such a graph 
carries a symbol s~ from the alphabet S. The nodes in the graph are labelled by non- 
terminal symbols, and connected according to the production rules of the 
grammar. Words in the language correspond to paths through the state transition 
graph. The (set) entropy of the language, defined as the exponential rate of increase 
in the number of words with length (see Sect. 3), is then given by the logarithm of 
the largest eigenvalue of the adjacency matrix for the state transition graph. This 
eigenvalue is always an algebraic integer. 

The set of all possible sequences of zeroes and ones forms a trivial regular 
language, corresponding to a finite automaton with the state transition graph of 
Fig. 1.3a. Exclusion of all sequences with pairs of adjacent ones (so that any 1 
must be followed by a 0) yields the regular language of Fig. 1.3b. The set of 
sequences in which, say, an even number of isolated ones appear between every 
0110 block, again forms a regular language, now specified by the graph of 
Fig. 1.3c. 

Regular expressions provide a convenient notation for regular languages. For 
example, ((0")(1"))* represents all possible sequences of zeroes and ones, corre- 
sponding to Fig. 1.3a. Here c~* denotes an arbitrary number of repetitions of the 

3 Also known as general, phrase-structure, and semi-Thue languages 



20 S. Wolfram 

(a) 

1 

o 

0 (b) 

i 

(c) 

Fig. 1.3a--e. State transition graphs for deterministic finite automata (DFA) corresponding to 
some regular languages: a the set of all possible sequences of zeroes and ones; b sequences in which 
11 never occurs; e sequences in which an even number of isolated l's appear between each 0110 
block. Words in the languages correspond to sequences of symbols on arcs in paths through the 
DFA state transition graphs. The three DFA shown have successively larger numbers of states S, 
and the sets of symbol sequences they represent may be considered to have successively larger 
"regular language complexities" 

string ~. With this notation, (0"(10)*)* represents Fig. 1.3b, and (0(0")1(0")1)* 
represents Fig. 1.3c. 

Many regular grammars may in general yield the same regular language. 
However, it is always possible to find the simplest grammar for a given regular 
language (Myhill-Nerode theorem (e.g. [7])), whose corresponding finite autom- 
aton has the minimal number of states (nodes). This minimal number of states 
provides a measure of the "complexity" S of the regular language. The regular 
languages of Fig. 1.3a-c are thus deemed to have progressively greater 
regular language complexities. 

Section 2 shows that the sets of configurations f2 w generated by any finite 
number of steps in the evolution of a cellular automaton form a regular language. 
For  some cellular automata, the complexities of the regular languages obtained 
tend to a fixed limit after a few time steps, yielding a large time limiting set of 
configurations corresponding to a regular language. In general, it appears that the 
limit sets for all cellular automata that exhibit only class 1 or 2 behaviour are given 
by regular languages. For most class 3 and 4 cellular automata, however, the 
regular language complexities S {t) of the sets fU ) increase rapidly with time, 
presumably leading to non-regular language limit sets. 

Set of symbol sequences analogous to sets of cellular automaton configura- 
tions are obtained from the "symbolic dynamics" of continuous dynamical 
systems, in which the values of real number parameters are divided into discrete 
bins, labelled by symbols (e.g. [10, 11]). The simplest symbol sequences obtained in 



Cel lu la r  A u t o m a t a  21 

o 

~ 0  0 

Fig. 1.4. The derivation tree for a word in the context-free language consisting of sequences of the 
form 0"10" 

this way are "full shifts," corresponding to trivial regular languages X containing 
all possible sequences of symbols. More complicated systems yield finite comple- 
ment languages, or "subshifts of finite type," in which a finite set of fixed blocks of 
symbols is excluded. "Sofic" systems, equivalent to general regular languages, have 
also been studied [12]. There is nevertheless evidence that, just as in cellular 
automata, regular languages are inadequate to describe the complete symbolic 
dynamics of even quite simple continuous dynamical systems. 

Context-free (type 2) languages are generalizations of regular languages. 
Words in context-free languages may be viewed as sequences of terminal nodes 
(leaves) in trees constructed according to context-free grammatical rules. Each 
non-terminal symbol in the context-free grammar is taken to correspond to a type 
of tree node. The production rules for the non-terminal symbol then specify its 
possible descendents in the tree. For each word in the language, there corresponds 
such a "derivation" tree, rooted at the start symbol. (In most context-free 
languages, there are "ambiguous" words, obtained from multiple distinct deriva- 
tion trees.) The syntax for most practical computer languages is supposed to be 
context-free. Each grammatical production rule corresponds to a subexpression 
with a particular structure (such as u O v); the subexpressions may be arbitrarily 
nested [as in ((aO(bOc))Od)Oe)], corresponding to arbitrary derivation trees. 

Regular languages correspond to context-free languages whose derivation 
trees consist only of a "trunk" sprouting a sequence of leaves, one at a time. An 
example of a context-free language not represented by any regular grammar is the 
sequence of strings of the form 0"10" for any n. (Here, as elsewhere, e" represents n- 
fold repetition of the string e.) A derivation tree for a word in this language is 
shown in Fig. 1.4. In general, the productions of any context-free language may in 
fact be arranged so that all derivation trees are binary (Chomsky normal form) 4. 

At each point in the generation of a word in a regular language, the next symbol 
depends only on the current finite automaton state, and not on any previous 
history. (Regular language words may thus be considered as Markov chains.) To 
generate words in a context-free language, however, one must maintain a "stack" 
(last-in first-out memory), which at each point represents the part of the derivation 
tree above the symbol (tree leaf)just generated. In this way, words in context-free 
languages may exhibit certain long-range correlations, as illustrated in Fig. 1.4. (In 

47 Compare many implementations of the LISP programming language. Also, compare with 
models of multiparticle production cascade processes (e.g. [13]) 



22 S. Wolfram 

practical computer languages, these long-range correlations are typically manifest 
in the pairing of parentheses separated by many subexpressions.) 

The production rules of a context-free grammar specify transformations for 
individual non-terminal symbols, independent of the "context" in which they 
appear. Context-sensitive grammars represent a generalization in which trans- 
formations for a particular symbol may depend on the strings of symbols that 
precede or follow it (its "context"). However, the transformation or production 
rule for any string ~1 is required to yield a longer (or equal length) string ~2- The set 
of all strings of the form 0"1"0" for any n forms a context-sensitive language, not 
represented by any context-free or simpler language. The words in a context- 
sensitive language may be viewed as formed from sequences of terminal nodes in a 
directed graph. The graph is a derivation tree rooted at the start symbol, but with 
connections representing context sensitivities added. The requirement ]~21 > I~11 
implies that there are progressively more nodes at each stage: the length of a word 
in context-sensitive language thus gives an upper bound on the number of nodes 
that occur at any stage in its derivation. A machine that recognizes words in a 
context-sensitive language by enumerating all applicable derivation graphs need 
therefore only have a memory as large as the words to be recognized. 

Unrestricted (type 0) languages are associated with universal computers. A 
system is considered capable of "universal computation" if, with some particular 
input, it can simulate the behaviour of any other computational system 5. A 
universal computer may thus be "programmed" to implement any finite algorithm. 
A universal Turing machine has an infinite memory, and a central processing unit 
with a particular "instruction set." (The "simplest" known universal Turing 
machine has seven internal states, and a memory arranged as a line of sites, each 
having four possible values, and with one site accessible to the central processing 
unit at each time step (e.g. [8]).)Several quite different systems capable of universal 
computation have also been found. Among these are string manipulation systems 
which directly apply the production rules of type 0 languages; machines with one, 
infinite precision, arithmetic register; logic circuits analogous to those of practical 
digital electronic computers; and mathematical systems such as 2-calculus 
(general recursive functions). Some cellular automata have also been proved 
capable of universal computation. For example, a one-dimensional cellular 
automaton with k = 18 and r--1 is equivalent to the simplest known universal 
Turing machine (e.g. [14]). (A two-dimensional cellular automata, the "Game of 
Life", with k = 2 and a nine site neighbourhood, has also been proved computa- 
tionally universal (e.g. [15]).) It is conjectured that all cellular automata in the 
fourth class indicated above are in fact capable of universal computation [2]. 

There are many problems which can be stated in finite terms, but which are 
"undecidable" in a finite time, even for a universal computer 6. An example is the 
"halting problem": to determine whether a particular computer will "halt" in a 
finite time, given particular input. The only way to predict the behaviour of some 

5 Although there are some mathematically-defined operations which they cannot perform (as 
discussed below), it seems likely that the usual class of "universal computers" can simulate the 
behaviour of any physically-realizable system 
6 This is a form of Godel's theorem, in which the processes of mathematical proof are 
formalized in the operation of a computer 



Cellular Automata 23 

system S is to execute some procedure in a universal computer; but if, for example, 
S is itself a universal computer, then the procedure must reduce to a direct 
simulation, and can run no more than a finite amount faster than the evolution of S 
itself. The infinite time behaviour of S cannot therefore be determined in general in 
a finite time. For a cellular automaton, an analogue of the halting problem is to 
determine whether a particular finite initial configuration will ultimately evolve to 
the null configuration. 

Any problem which depends on the results of infinite information processing 
may potentially be undecidable. However, when the information processing is 
sufficiently simple, there may be a finite "short-cut" procedure to determine the 
solution. For example, the information processing corresponding to the evolution 
of cellular automata with only class i or 2 behaviour appears to be sufficiently 
simple that their infinite time behaviour may be found by finite computation. 
Many problems concerning the infinite time behaviour of class 3 and 4 cellular 
automata may, however, be undecidable. For example, the entropies of the 
invariant sets for class 3 and 4 cellular automata may in general be non- 
computable numbers. This would be the case if the languages corresponding to 
these limit sets were of type 0 or 1. 

It seems likely, in fact, that the consequences of infinite evolution in many 
dynamical systems may not described in finite mathematical terms, so that many 
questions concerning their limiting behaviour are formally undecidable. Many 
features of the behaviour of such systems may be determined effectively only by 
explicit simulation: no general predictions are possible. 

Even for results that can in principle be obtained by finite computation there is 
a wide variation in the magnitude of time (or memory resources) required. Several 
classes of finite computations may be distinguished (e.g. [7]). 

The first class (denoted P) consists of problems that can be solved by a 
deterministic procedure in a time given by some polynomial function of the size 
of their input. For example, finding the successor of a length n sequence in a 
cellular automaton takes (at most) a time linear in n, and is therefore a problem 
in the class P. Since most universal computers can simulate any other computer 
in a polynomial time, the times required on different computers usually differ at 
most by a polynomial transformation, and the set of problems in class P is 
defined almost independent of computer. 

Nondeterministic polynomial time problems (NP) form a second class. 
Solutions to such problems may not necessarily be obtained in a polynomial time 
by a systematic procedure, but the correctness of a candidate solution, once 
guessed, can be tested in a polynomial time. Clearly P _cNP, and there is 
considerable circumstantial evidence that P + NP. The problem of finding a pre- 
image for a length n sequence under cellular automaton evolution is in the class 
NP. 

The problem classes P and NP are characterized by the times required for 
computations. One may also consider the class of problems PSPACE that require 
memory space given by a polynomial function of the size of the input, but may take 
an arbitrary time. There is again circumstantial evidence that P C PSPACE. 

Just as there exist universal computers which, when given particular input, can 
simulate any other computer, so, analogously, there exist "NP-complete" (or 



24 S. Wolfram 

"PSPACE-complete') problems which, with particular input, correspond to any 
NP (or PSPACE) problem of a particular size (e.g. [6, 7]). Many NP and PSPACE 
complete problems are known. An example of an NP-complete problem is "satis- 
fiability": finding truth values for n variables which make a particular Boolean 
expression true. If P 4 = NP then there is essentially no faster method to solve this 
problem than to try the 2" possible sets of values. (It appears that any method must 
at least require a time larger than any polynomial in n.) As discussed in Sect. 6, it is 
likely that the problem of finding pre-images for sequences in certain cellular 
automata, or of determining whether particular sequences are ever generated, is 
NP-complete. This would imply that no simple description exists even for some 
finite time properties of cellular automata: results may be found essentially only by 
explicit simulation of all possibilities. 

2. Construction of Finite Time Sets 

This section describes the construction of the set of configurations f2 ~) generated 
after a finite number of time steps t of cellular automaton evolution, starting from the 
set f2 (°) = ~ of all possible configurations. It is shown that ~2 "/may be represented as a 
regular language (cf. [2, 16]), and an explicit construction of the minimal grammar 
for this languageis given. Section 3 describes some properties of such grammars, and 
Sect. 4 discusses their form for a variety of cellular automata. 

To describe the construction we begin with a simple example. The procedure 
followed may be generalized directly. 

Consider the construction of the set ~2(1) generated by one time step in the 
evolution of the k = 2, r = 1 cellular automaton with a local rule ~b given by ("rule 
number 76" [1]) 

111--+0, 110-+1, 101--+0, 100--+0, 011-+1, 010-~1, 001--+0, 000~0.  

(2.1) 

The value a} *} of a site at position i in a configuration A ~*} = ~A(°)e f2 °) depends on 
a neighbourhood of three sites ,~(o) ,,{o) ~(o) t~i- 1, ~.i , -i + 1 } in the preceding configuration 
A(°)= f~ (m. The adjacent site ,.,+,,m, depends on the overlapping neighbourhood 

-o )  alO) {al°), "(°)~+~,-~+zJ.'~(°) t The dependence of ,z+~ on associated with this two-site 
overlap in neighbourhoods may be represented by the graph 9 of Fig. 2.1 
(analogous to a de Bruijn graph [17]). The nodes in the graph represent the 
overlaps {a~ °), -i+"c°)lJ- ~ These nodes are joined by directed arcs corresponding to 
three-site neighbourhoods. The local cellular automaton rule ~b of Eq. (2.1) defines 
a transformation for each three-site neighbourhood, and thus associates a symbol 
with each arc of 9. Each possible path through 9 corresponds to a particular initial 
configuration A Ira. The successor A (~) of each initial configuration is given by the 
sequence of symbols associated with the arcs on the path. The sequences of 
symbols obtained by following all possible paths through 9 thus correspond to all 
possible configurations A m obtained after one time step in the evolution of the 
cellular automaton (2.1). The complete set f2 ~*) may thus be represented by the 
graph g. It is clear that not all possible sequences of 0's and l's can appear in the 
configurations of f2 m. For example, no path in 9 can include the sequence 111, and 
thus no configuration in ~(~) can contain a block of sites 111. 



Cellular Automata 25 

000--,.-0 

0100---*-0 
P 010---~'-1 ~ 111-----~0 

Fig. 2.1. The state transition graph 9 for a non-deterministic finite automaton ~ D F A )  that 
generates configurations obtained after one time step in the evolution of the k=2,  r =  1 celltflar 
automaton with rule number 76 [Eq. (2.1)]. Possible sequences of site values are represented by 
possible paths through the graph. The nodes in the graph are labelled by pairs of initial site values; 
the arcs then correspond to triples of initial site values. Each such triple is mapped under rule 
number 76 to a particular site value. The graph with arcs labelled by these site values corresponds 
to all possible configurations obtained after one time step. Note that the basic graph is the same for 
all k = 2, r = 1 cellular automata; only the images of the initial site value triples change from one 
rule to another 

The graph g of Fig. 2.1 may be considered as the state transition graph for a 
finite automaton which generates the formal language 0 (1). Each node of 9 
corresponds to a state of the finite automaton, and each arc to a transition in the 
finite automaton, or equivalently to a production rule in the grammar represented 
by the finite automaton. The set O (1> thus forms a regular language. Labelling the 
states in 9 as Uo, ua, u2, u3, the productions in the grammar for this language are: 

Uo--+Ouo, Uo-*Oul, U l - * l u 2 ,  Ul-+ lU 3 , u2---~0Uo, 

uz~Oul, u3~Ou3, u3-~lu2. (2.2) 

This finite set of rules provides a complete specification of the infinite set O (t). 
Each path through 9 corresponds uniquely to a particular initial configuration 

A (°). But several different paths may yield the same successor configuration Am. 
Each such path corresponds to a distinct inverse image of A (~) under ~. 
Enumeration of paths in 9 shows, for example, that there are 5 distinct inverse 
images for the sequence 00 under the cellular automaton mapping (2.1), 5 also for 
01 and 10, and i for 1i. 

The finite automaton g of Fig. 2.1 is not the only possible one that generates the 
language ~2 (1). An alternative finite automaton 0 is shown in Fig. 2.2, and may be 
considered "simpler" than 9 since it has fewer states, j is obtained from 9 by 
combining the 00 and 10 nodes, which are equivalent in that only paths carrying 
the same symbol sequences pass through these nodes. The complete set of symbol 
sequences generated by the possible paths through 0 is identical to that generated 
by possible paths through 9- 

The finite automata 9 and 0 are non-deterministic in the sense that multiple 
arcs carrying the same symbol emanate from some nodes, so that several distinct 
paths may generate the same word in the formal language. It is convenient for 
many purposes to find deterministic finite automata (DFA) equivalent to the non- 



26 S. Wolfram 

°c<2>° 
1 

Fig. 2.2. The state transition graph 0 for an alternative NDFA that generates the language O m 
obtained after one time step of evolution according to rule 76. This NDFA is obtained by 
combining two equivalent states in the NDFA g of Fig. 2.1 

0 

1 0 

) 
o 

Fig. 2.3. The state transition graph G for a deterministic finite automaton (DFA) obtained from 
the non-deterministic finite automaton of Fig. 2.1 by the subset construction [and represented by 
the productions of Eq. (2.3)], Here and in other DFA graphs, the start node *Ps is shown encircled. 
Words in the regular language f~(1) correspond to paths through G, starting at ~Ps 

deterministic finite automata (NDFA) g and j. Such DFA may always be found by 
the standard "subset construction" (e.g. [6, 7]). 

Consider for example the construction of a DFA G equivalent to the NDFA 9 
of Fig. 2.1. Let ~p be the set of all possible subsets of the set of nodes {ui} (the power 
set of {ui}). There are 24= 16 elements ~p, of v2; each potentially corresponds to a 
state in G. The construction of G begins from the "start node" ~Ps = {Uo, u~, u2, u3}. 
This node is joined by a 0 arc to the node {Uo, ul, u3} corresponding to the set of 
NDFA states reached by a 0 arc according to (2.2) from any of the u~ in ~Ps- An 
analogous procedure is applied for each arc at each node in G. The resulting graph 
is shown in Fig. 2.3, and may be represented by the productions 

Ws = {Uo, u~, u2, u3}-~0 {Uo, u~, us}, 
{Uo, ul, u3}-'0 {Uo, u~, us}, 

{u> u3}-,O {Uo, u,, u~}, 
{u2}--*0{Uo, Ux}, 

{Uo, Ul}-,O{uo, u~}, 

{Uo, ul, u2, u3}-+ 1 {u2, u3}, 

{Uo, ul, u3}--* 1 {u2, u3}, 

{u2, u3}-+ 1 {u2}, 
{Uz}--+ 1 {}, 

{Uo, ut}--+ 1 {uz, us}. 

(2.3) 

Notice that only 5 of the 16 possible h0i are reached by transitions from *Ps. The 
production in Eq. (2.3) yielding the null set { } (often denoted e) signifies the absence 
of an arc carrying the symbol 1 emanating from the {u2} node. 



Cellular Automata 27 

Fig. 2.4. The state transition graph G for the minimal DFA that generates the regular language 
~1) obtained after one time step of evolution according to cellular automaton rule 76. The graph is 
obtained by combining equivalent nodes in the DFA G of Fig. 2.3. It has the smallest possible 
number of nodes 

The DFA G of Fig. 2.3 provides an alternative complete description of the 
language f2 (1) represented by the NDFA g and ~ of Figs. 2.1 and 2.2. Possible 
sequences of symbols in words of f2 (1) correspond to possible paths through G, 
starting at ~0 s. Consider the procedure for recognizing whether a sequence e can 
occur in f2 I1). If e can occur, then it must correspond to a path through the 
NDFA g, starting at some node. The set of possible paths through g is represented 
by a single path through the DFA G. The start state ~Ps in G corresponds to the set 
of all possible states in g. As each symbol in the sequence ~ is scanned, the DFA G 
makes a transition to a state representing the set of states that g could reach at that 
point. The sequence e can thus occur in a word of f2 °) if and only if it corresponds 
to a path in G. The deterministic nature of G ensures that this path is unique. 

Complete cellular automaton configurations consist of infinite sequences of 
symbols, and correspond to infinite paths in the DFA graph G. The possible words 
in f2 t~) may thus be generated by following all possible paths through G. 

Just as for the NDFA g, some of the states in the DFA G are equivalent, and 
may be combined. Two states are equivalent if and only if transitions from them 
with all possible symbols (here 0 or 1) lead to equivalent states. An equivalent 
DFA G shown in Fig. 2.4 may thus be obtained by representing each equivalence 
class of states in G by a single state. It may be shown that this DFA is the minimal 
one that recognizes the language f2 m [18, 6, 7]. It is unique (up to state 
relabellings), and has fewer states than any equivalent DFA. Such a procedure 
yields the minimal form for any DFA; the analogous procedure for NDFA does 
not, however, necessarily yield a minimal form. 

In most cases, the minimal DFA that generates all (two-way) infinite words of a 
regular language is the same as the minimal DFA constructed above that 
recognizes all finite (or one-way infinite) sequences of symbols in words of the 
language. In some cases, such as that of Fig. 2.5 (the set f2 (~) for rule number 18), 
however, the latter DFA may contain additional "transient" subgraphs rooted at 
~s, feeding into the main graph. The set of infinite paths through these transient 
subgraphs is typically a subset of the set of infinite paths in the main graph. 

The minimal DFA G of Fig. 2.4 provides a simple description of the regular 
language f2 m. Regular expressions, mentioned in Sect. 1, provide a convenient 
notation for this and other regular languages. In terms of regular expressions, 

o~1) = ((o*) 1 (o v lO)), (2.1o) 



28 S. W o l f r a m  

0 

Fig. 2.5. The state transition graph (~ for the minimal DFA corresponding to the regular language 
(2 cl) obtained after one time step in the evolution of cellular automaton rule 18. This graph 
contains a "transient" subgraph rooted at the start state, feeding into the main graph. All symbol 
sequences occurring at any point in a word f~(1) may be recognized as corresponding to paths 
through G beginning at the start state. Complete words in ~2 (*) may nevertheless be generated as 
possible infinite paths in G, with the transient subgraph removed 

where infinite repetition to form each infinite word is understood. Here e* 
represents an arbitrary number (possibly zero) of repetitions of the string ~, and 
~1 v ~2 stands for cq or ~z- 

The example discussed so far generalizes immediately to show that the set Qm 
of configurations generated by t time steps of evolution according to any cellular 
automaton rule forms a regular language. Constructions analogous to those 
described above give grammars for these languages. The number of states in the 
initial NDFA 9 is in general k 2ft. (Two examples are shown in Fig. 2.6; graphs for 
successively larger values of rt may be obtained by a recursive construction [17].) 
The size of the DFA G obtained from g by the subset construction may be as large 
as 2 k2r~- 1, but is usually much smaller. (Note that the "reject" state {} is not 
counted in the size of the grammar.) 

As an example, consider the language ~(2) generated by two time steps in the 
evolution of the cellular automaton (2.1). The original NDFA 9 which corresponds 
to this language has 16 states, and the DFA G obtained from it by the subset 
construction has nine states. Nevertheless, the resulting minimal DFA G has just 
three states, and is in fact identical to that found for ~(~) as shown in Fig. 2.4. Since 
G gives a complete (finite) specification of the languages ~2 m, this implies that 

~(~(1) = ~'~(2) = ~ ' ~ ( 1 )  (2.11) 

in this case. ~2 (1) is thus the limit set for the evolution of the cellular automaton of 
Eq. (2.1). 

3. Properties of Finite Time Sets 

This section discusses some properties of the regular language sets fU ) generated 
by a finite number of steps of cellular automaton evolution, and constructed by the 
procedure of Sect. 2. 



Cellular Automata 29 

Fig. 2.6. Non-deterministic finite automaton graphs (de Bruijn graphs) analogous to Fig. 2.1 for 
the cases k = 2, r = 2, and k = 3, r = 1 

We consider as a sample set the 32 "legal" cellular a u t o m a t o n  rules with k = 2 
and r = 1. A rule ~b is considered legal if it is symmetric,  and maps  the null 
configurat ion (with all site values 0) to itself. Each of the 256 possible k = 2, r = 1 
cellular au toma ton  rules is conveniently labelled by a "rule number ,"  defined as the 
decimal equivalent  of the sequence of binary digits ~b[1, 1, 1], ~b[-1, 1, 0], ..., 
~b[0, 0, 0] (analogous to Eq. (2.1)) [-1]. 



30 S. Wolfram 

Table 1. Numbers of nodes 3 (0 (and arcs) in minimal deterministic finite automata (DFA) 
representing regular languages corresponding to sets of configurations £U ) generated after t time 
steps in the evolution of legal k = 2, r = 1 cellular automata. Each configuration corresponds to a 
path through the D F A  state transition graph. The construction of Sect. 2 yields the D F A  with the 
minimal number of nodes (states) ~(t) that generates a given regular language 0 {t). This D F A  may 
be considered to give the shortest specification of f2 m viewed as a regular language. Its size E (') 
measures the "complexity" of ~('). The initial ( t=0) set of configt~ations include all possible 
sequences of zeroes and ones, and correspond to a trivialregtflar language. CeUtdar automata with 
only class 1 or 2 behaviour yield regular languages whose complexities become constant, or 
increase as polynomials in t. Cellular automata capable of class 3 or 4 behaviour usually lead to 
rapidly-increasing complexities. Bounds on these complexities are given when their exact 
calculation exceeded available computational resources. Some of the results in this table were 
obtained using the methods of [52] and [53] 

Rule if(o) ~(~) ,..~(2) ,.~(3) ~(4) 

0 1 (2) 1 (1) 1 (1) 1 (1) 1 (1) 
4 1 (2) 2 (3) 2 (3) 2 (3) 2 (3) 

18 1 (2) 5 (9) 47 (91) 143 (270) >~ 20000 
22 1 (2) 15 (29) 280 (551) 4506 (8963) ~ 20000 
32 t (2) 2 (3) 5 (7) 7 (9) 9 (11) 
36 1 (2) 3 (5) 3 (4) 3 (4) 3 (4) 
50 1 (2) 3 (5) 8 (14) 10 (17) 12 (20) 
54 1 (2) 9 (16) 17 (32) 94 (179) 675 (1316) 
72 1 (2) 5 (9) 5 (8) 5 (8) 5 (8) 
76 1 (2) 3 (5) 3 (5) 3 (5) 3 (5) 
90 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 
94 1 (2) 15 (29) 230 (455) 3904 (7760) > 20000 

104 1 (2) 15 (29) 265 (525) 2340 (4647) 1394 (2675) 
108 1 (2) 9 (1.6) 11 (19) 11 (19) 1I (19) 
122 1 (2) 15 (29) 179 (347) 5088 (9933) ~>4000 
126 1 (2) 3 (5) 13 (23) 107 (198) 2867 (5476) 
128 1 (2) 4 (6) 6 (8) 8 (10) 10 (12) 
132 1 (2) 5 (9) 7 (12) 9 (15) 11 (18) 
146 1 (2) 15 (29) 92 (177) 1587 (3126) ~ 20000 
150 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 
160 1 (2) 9 (15) 16 (24) 25 (35) 36 (48) 
164 1 (2) 15 (29) 116 (227) 667 (13t0) 1214 (2363) 
178 1 (2) 11 (20) 15 (26) 19 (32) 23 (38) 
182 1 (2) 15 (29) 92 (177) 1587 (3126) >~ 20000 
200 t (2) 3 (5) 3 (5) 3 (5) 3 (5) 
204 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 
2t8 1 (2) 15 (29) t16 (227) 667 (1310) 1214 (2363) 
222 1 (2) 5 (9) 7 (12) 9 (15) 11 (18) 
232 1 (2) 11 (20) 15 (26) 19 (32) 23 (38) 
236 1 (2) 3 (5) 3 (5) 3 (5) 3 (5) 
250 1 (2) 9 (15) 16 (24) 25 (35) 36 (48) 
254 1 (2) 4 (6) 6 (8) 8 (10) 10 (12) 



Cellular Automata 31 

Table 2. Characteristic polynomials Z~)(2)for the adjacency matrices of state transition graphs for minimal 
D F A  representing regular languages generated after one time step in the evolution of legal k = 2, r = 1 cellular 
automata. The nonzero roots of these polynomials determine the number of  distinct symbol sequences that 
can appear in configurations generated by the cellular automaton evolution. The maximal root 2 ~ ,  
determines the limiting entropy of the sequences 

Rule .~m(2) 2m. x 

0 
4 

18 
22 
32 
36 
50 
54 
72 
76 
90 
94 

104 
108 
122 
126 
128 
132 
146 
150 
160 
164 
178 
182 
20O 
204 
218 
222 
232 
236 
25O 
254 

1 - 2 1 . 0 0 0  

- 1 - 2 + 2  z 1.618 
(1 -2 - -22) (  - 1 +2--222+23)  1.755 

2(1-2)(2--222 + 623-- 324-  525 + 1026-- 52v-328 + 629--2210 +22 i i - -32 i2  +2  i3 ) 1.917 
- 1 - 2 + 2 2  1.618 

1 -- 2 + 222 - 23 1.755 
1 +2+22- -23  1.839 

23(1 + 22) (1 -- 2 + 223 -- 2*) 1.867 
(1 + 2 -- 22) (-- t + 2 -- 221 + 23 ) 1.755 

1 + 2 + 2 2 - 2 3  1.839 
2 - 2 2.000 

- 2 ( 2 - 2 2  + 222-23 + 224-  52s + 1326-1627 + 1028- 321°-  21i + 52 iz -42 i3  + ,1) 4 ) 1.883 
2 ( 1 - 2 ) ( 2 -  227- + 623-  324-  525 + 1026- 527-  32s + 629-22 i °  + 2 2 i l -  32i2 + 2 i3 ) 1.917 

23(1 +22)(1 --2+223 --2'*) 1.867 
--2(2--22+222--23 + 22`*-- 52s + 1326- 1627 + 1028- -32 i ° -2 i i  + 5212--42t3 +2  l̀ * ) 1.883 

1 - 2 + 222-  23 1.755 
(--1 - - 2 + 2 2 ) ( 1 - 2 + 2 1 )  1.618 

1 -- 22 + 22`*-- 25 1.785 
2 3 4 5 6 7 8 9 10 ii 12 13 14 - -2 ( - -2+42- -62  +42 + 2  --72 +122 --132 +92 --42 + 2  --22 +5). --42 + 2  ) 1.887 

2 - 2 2.000 
(1 - -  2 2 - -  2 3 ) (1 - 22 + 2 a ) ( - 1 + 2 - 22  z + 23) 1.755 

- 2(2 - 2 z - 224 + 525 - 926 + 142 v - 928 + 229-  621 o + 5211 + 321z _ 4213 + 214) 1.915 
2(1 - 21 + 25) (1 - 22 + 22`* -- 25) 1.785 

- 2 ( - - 2 + 4 2 - - 6 2 2 + 4 2 3 + 2 4 - - 7 2 5 + 1 2 2 6 - - 1 3 2 7 + 9 2 8 - 4 2 9 + 2 x ° - 2 2 x l + 5 2 i 2 - - 4 2 1 3 + 2  i4) 1.887 
1 - 2 + 222-  23 1.755 

2 -- 2 2.000 
- 2 ( 2 - 2 a - - 2 2 4 +  52s--926 + 1427--928 +229--62i°  + 52ii + 32i2-4213 + 214 ) 1.915 

1 -- 22 + 2 2 4 -  25 1.785 
2(1 - 22 - 25) (_  1 + 22 - 224 + 25) 1.785 

1 - 2 + 2 2 1  --23 1.755 
(1 - 2. 2 -- 2 a) (1 - 22 + 23) ( - t + 2 -  222 + 2 3) t .755 

( -  1 - 2 + 2 2 ) ( 1 - 2 + 2 2 )  1.618 

T a b l e s  1, 2 a n d  3 give s o m e  p r o p e r t i e s  o f  the  sets f2") g e n e r a t e d  by  a few t i m e  

steps in the  e v o l u t i o n  o f  the  32 legal  k = 2 ,  r =  1 ce l lu la r  a u t o m a t a  7. T h e s e  

p r o p e r t i e s  a re  d e d u c e d  f r o m  the  m i n i m a l  D F A  w h i c h  desc r ibe  the  f2"), o b t a i n e d  

a c c o r d i n g  to  t he  c o n s t r u c t i o n  o f  Sect.  2. 

T h e  m i n i m a l  D F A  c o r r e s p o n d i n g  to  the  t r iv ia l  l a n g u a g e  f2 ~°) = £ i l l u s t r a t ed  in 

F ig .  1.t(a) has  j u s t  o n e  s tate .  T h e  m i n i m a l  D F A  c o r r e s p o n d i n g  to  the  m i n i m a l  

r e g u l a r  g r a m m a r s  for  m o r e  c o m p l i c a t e d  l a n g u a g e s  h a v e  p r o g r e s s i v e l y  m o r e  s ta tes .  

7 Requests for copies of  the C language computer program used to obtain these and other 
results in this paper should be directed to the author 



32 S. Wolfram 

Table 3, The length L (° ov the shortest distinct 
blocks of  site values newly-excluded after 
exactly t time steps in the evolution of  legal 
k = 2, r = 1 cellular automata. The notation * 
indicates that the set of  cellular automaton 
configurations O ~t) forms a finite complement 
language (finite number of distinct excluded 
blocks). The notation - signifies no new ex- 
cluded blocks 

Rule /jl) L<2/ L<3) /~4) 

0 1 ~ - -  - -  - -  

4 2* - - 
18 3 11 12 13 
22 8 7 11 9 
32 2* 4* 6* 8* 
36 3* 2* - - 
50 3* 5* 9* 11" 
54 5 9 9 7 
72 3 3* - - 
76 3* - - 
90 . . . .  
94 5 7 11 11 

104 8 8 8 7 
108 5 4* - - 
122 5 7 8 10 
126 3* 12 13 14 
128 3* 5* 7* 9* 
132 4* 5* 6* 7* 
146 6 6 8 8 
150 . . . .  
160 5* 7* 9* 11" 
164 9 9 8 9 
178 5* 6* 7* 8* 
182 6 6 8 8 
200 3* . . . .  
204 . . . .  
218 9 9 8 9 
222 4* 5* 6* 7* 
232 5* 6* 7* 8* 
236 3* - - - 
250 5* 7* 9* 11" 
254 3* 5* 7* 9* 

T h e  t o t a l  n u m b e r  o f  s ta tes  N(t) in the  m i n i m a l  D F A  t h a t  g e n e r a t e s  a set  (2 (t) 

p r o v i d e s  a m e a s u r e  o f  t he  " c o m p l e x i t y "  o f  t he  set  f2 ~°, c o n s i d e r e d  as a r e g u l a r  

l a n g u a g e .  ~(0 g ives  t he  size o f  t he  sho r t e s t  spec i f i ca t ion  o f  the  set £2 (~) in t e r m s  o f  

r eg u l a r  l a n g u a g e s :  th is  sho r t e s t  spec i f i ca t ion  b e c o m e s  l o n g e r  as  the  c o m p l e x i t y  o f  

the  set increases .  

T a b l e  1 gives  the  " r e g u l a r  l a n g u a g e  c o m p l e x i t i e s "  ~(~) for  the  sets f2 (') g e n e r a t e d  

at  the  first  few t ime  steps in the  e v o l u t i o n  o f  the  legal  k = 2, r = 1 ce l lu la r  a u t o m a t a .  



Cellular Automata 33 

In all the cases given, ~(t) is seen to be non-decreasing with time. Cellular automata 
with only class 1 or 2 appear to give ~t) which tend to constants after one or two 
time steps, or increase linearly or quadratically with time. Class 3 and 4 cellular 
automata usually give E (t) which increase rapidly with time. In general, 

1 < ~(t~ __< 2k2r~_ 1. (3.1) 

The upper bound is found to be attained in several cases for t = 1 ; for larger t, E Ct) 
appears to grow at most exponentially with t. 

All possible sequences of symbols occur in the trivial language 22. In more 
complicated regular languages, only some number N(X)  of the k x possible 
sequences of X symbols may occur. Each sequence which occurs corresponds to a 
distinct path in the minimal DFA graph for the language. (Note that all distinct 
paths in a DFA correspond to different symbol sequences; this need not be the case 
in a NDFA graph.) The number of such paths is conveniently computed using a 
matrix representation for the DFA. 

Consider as an example the set f2 ¢1) obtained by one time step in the evolution 
of the cellular automaton (2.1). The minimal DFA graph G for this set is given in 
Fig. 2.4, and may be represented by the adjacency matrix ( IZ) 

M = 0 . (3.2) 

0 

The elements of M x give the numbers N(X)  of possible length X paths in G. For 
lengths from 1 to 10 these numbers are 2, 4, 7, 13, 24, 44, 81, 149, 274, and 504. In 
general, at least for large X, 

N (X) ~ T r [M x] = ~22x ~ 2maxX, (3.3) 

where the 2i are the eigenvalues of M, and );max is the largest of them. These 
eigenvalues are determined from the characteristic polynomial Z(2) for the minimal 
DFA adjacency matrix, given in the case of Eq. (3.2) by 8 

Z(2) = 1 + 2 + 2 2 - 2 3 . (3.4) 

The largest (real) root of this characteristic polynomial (known as the "index" of 
the graph [19]) is given by the cubic algebraic integer 

2max = [I + ~: + 4/~C] --~ 1.83929, 

~C = [(38 + 1 ~ / 2 3 1 / 3  
(3.5) 

The set of infinite configurations f2 ~t) generated by cellular automaton 
evolution may be considered to form a Cantor set. The dimension of this Cantor 
set is given by 

. 1 
S = xhm ~- logkN(X) ,  (3.6) 

8 l/z(2) is related to the generating function for the sequence N(X) (e.g. [19, Sect. 1.8]) 



34 S. Wolfram 

and is equal to the topological entropy of the shift mapping restricted to this set 
(e.g. [20]). For any regular language, this entropy is given according to Eqs. (3.2) by 
[213 

s=lOgk2ma x (3.7) 

For the case of Eq. (3.2), the entropy is thus 

s --- log 21.83929 -~ 0. 87915. (3.8) 

Table 2 gives the characteristic polynomials Ztl)(2) for the regular languages 
I2 tx) obtained after one time step in the evolution of the 32 legal k = 2, r = 1 cellular 
automata, together with their largest real roots 2ma x. All the nonzero roots of the 
Z(2) appear in the expression (3.3) for N ( X ) ,  and are therefore the same for all 
possible DFA corresponding to a particular regular language. (They may thus be 
considered "topological invariants.') Additional powers of 2 may appear in the 
characteristic polynomials obtained from non-minimal DFA. 

The characteristic polynomials Z(2) such as those in Table 2 obtained from 
regular languages are always monic (the term with the highest power of 2 that 
appears in them always has unit coefficient). The largest roots 2m,x of the Z(2) for 
regular languages are thus always algebraic integers (e.g. [22]) 9 , so that the 
entropies for regular languages are always the logarithms of algebraic integers. The 
minimal polynomial with 2ma~ as a root has a degree not greater than the size ~t) of 
the minimal DFA for a regular language fU). This bound is usually not reached, 
since the characteristic polynomial Z(2) is usually reducible, as seen in Table 2. 
Notice that in many cases, g(2) has several factors with equal degrees. (The 
factorizations of the ~((2) are related to the colouring properties of the correspond- 
ing graphs [19]. Note that graphs corresponding to minimal DFA always have 
trivial automorphism groups.) Factors (other than 2") with smaller degrees appear 
to be associated with transient subgraphs in the minimal DFA graph. 

The entropy (3.6) characterizes the number of distinct symbol sequences 
generated by cellular automaton evolution, without regard to the probabilities 
with which they occur. One may also define a measure entropy (e.g. [20]) 

k x 

s u = -  lim Z pilogkPi (3.9) 
X ~  i = 1  

in terms of the probabilities Pi for length X sequences. Starting from an initial 
ensemble in which all symbol sequences of a given length occur with equal 
probabilities, the probability for a sequence i after t time steps is given by 

Pi = ~i/kx + 2rt, (3.10) 

where ¢i is the number of (length X +2rt) t-step preimages of the sequence i under 
the cellular automaton mapping ~. This number is equal to the number of distinct 
paths through the NDFA graph analogous to g in Fig. 2.1 that yield the sequence i. 
It may also be computed from reduced NDFA graphs analogous to j of Fig. 2.2 by 

9 The )-m~, are always Perron numbers [233. Any Perron number may be obtained from some 
regular language, and in fact also from some finite complement language [23] 



Cellular Automata 35 

including a weight for each path, equal to the product of weights giving the number 
of unreduced nodes combined into each node on the path. 

The set of configurations generated by cellular automaton evolution always 
contracts or remains unchanged with time, as implied by Eq. (1.5). The entropies 
associated with the sets f2 (~) are therefore non-increasing with time. Class 1 cellular 
automata are characterized by (spatial) entropies that tend to zero with time [2]. 
Class 2, 3 and 4 cellular automata generate sets of configurations with nonzero 
limiting spatial entropy. (Class 2 cellular automata nevertheless yield patterns 
essentially periodic in time, with zero temporal entropy.) 

Some cellular automata have the special property that 

4 z = z ,  

SO that all possible configurations can occur at any time in their evolution, and the 
entropies of the f2 (t) are always equal to one. Such surjective cellular automaton 
rules may be recognized by the presence of all k possible outgoing arcs at each 
node in a DFA representing the grammar of the set f2 (1) obtained after one time 
step in their evolution. The finite maximum size 2 k2" for such a DFA, constructed 
as in Sect. 2, ensures that this procedure (cf. [24-27, 2]) for determining the 
smjecfiveness of any cellular automaton rule is a finite one a°. 

Since there are k outgoing arcs at each node in the original NDFA analogous 
to Fig. 2.1 for any cellular automaton rule, the rule is surjective if in all cases these 
arcs carry distinct symbols (so that the NDFA is in fact a DFA). This occurs 
whenever the local cellular automaton mapping ~b is injective with respect to its 
first or last argument (as for additive rules [29, 16] such as 90, 150 or 204 in Tables 
1-3). However, at least when k > 2 or r > 1, there exist surjective cellular automata 
for which this does not occur [25, 30]. Since all surjective cellular automata must 
yield the same trivial minimal DFA, it is possible that a reversal of the 
minimization and subset algorithms discussed in Sect. 2 could be used to generate 
all NDFA analogous to Fig. 2.1 that correspond to surjective rules. 

Surjeetive cellular automata yield trivial regular languages, in which all 
possible blocks of symbols may appear. Some cellular automata generate the 
slightly more complicated "finite complement" regular languages, in which a finite 
set of distinct blocks are excluded. (Such languages are equivalent to "subshifts of 
finite type" (e.g. [10, t 1]).) An example of a finite complement language, illustrated 
in Fig. 1.1b, consists of all sequences from which the block of sites 11 is absent. To 
construct the grammar for a finite complement language in Which blocks of length 
b are excluded, first form a graph analogous to Fig. 2.1, but with sequences of 
length b -  1 at each node. Each arc then corresponds to a length b sequence, and 
may be labelled by the last symbol in the sequence. With this labelling, one arc 
carrying each of the k possible symbols emanates from each of the k b -  ~ nodes, so 
that the graph represents a DFA. Removing arcs corresponding to the excluded 
length b blocks then yields the graph for a DFA that recognizes the finite 

10 The algorithm essentially involves testing whether a NDFA with k a' states is equivalent to a 
NDFA that generates the trivial language S. This problem is known to be PSPACE-complete 
[28], and therefore presumably cannot be solved in a time polynomial in k ~ 



36 S, Wolfram 

1 

°<2> 
0 

b 

Fig. 3.1a and b. Non-deterministic finite automata (NDFA)corresponding to finite complement 
regular languages consisting of sequences of zeroes and ones in which a the block 11 is excluded, 
and b the block 111 is excluded. The graphs are constructed from analogues of Fig. 2.1 by 
dropping arcs corresponding to excluded blocks 

complement language with these blocks absent. Examples of the resulting graphs 
for two simple cases are shown in Fig. 3.1. 

The minimal DFA for a finite complement language with a maximal distinct 
excluded block of length b has at most k b -  a states, and at least b states. An excluded 
block is considered "distinct" if it contains no excluded sub-blocks. (Hence, for 
example, in the language of Figs. 1. la  and 3.1 a, the excluded block 11 is considered 
distinct, but 110, 111 and so on, are not.) 

Any path through the minimal DFA graph for a regular language of length 
greater than E (t) must contain a cycle, which retraverses some arcs. If no symbol 
sequence of length less than E (t) is excluded, then no sequence of any length can 
therefore be excluded, and the corresponding language must be trivial. If some 
symbol sequences of length tess than S ~+) are excluded, but no distinct sequences 
with lengths between E It) and 2~ (~) are excluded, then no longer distinct sequences 
can be excluded, and the corresponding language must be a finite complement one. 
If further distinct excluded blocks with lengths between ~t) and 2E (t) are found, 
then an infinite series of longer distinct excluded blocks must exist, and the 
language cannot be a finite complement one. 

The language of Fig. 2.4, generated by the evolution of the k = 2, r = 1 cellular 
automaton with rule number 76, is a finite complement one, in which 111 is the 
only distinct excluded block. The language of Fig. 2.5, obtained after one time step 
in the evolution of rule number 18, is not a finite complement one. The block 111 is 
the shortest excluded in this case. But the distinct length 7 block 1101011 is also 
excluded, as are the two distinct length 8 blocks 11001011 and 11010011, three 
distinct length 9 blocks (11010100011, 110001011, 110010011), four distinct length 
10 blocks, and so on. 

The length/3 t~ of the shortest excluded block in a language Q~t~ generated by 
cellular automaton evolution (denoted Xc in [2]) is in general given by the shortest 



C e l l u l a r  A u t o m a t a  37 

distance from the start node in the corresponding DFA graph to an "incomplete" 
node, with less than k outgoing arcs. If the cellular automaton rule is not surjective, 
then 

0 < L (t) < ~ o .  (3.12) 

Whenever cellular automaton evolution is irreversible, the set of configura- 
tions O ct) generated contracts with time, and progressively more distinct blocks 
are excluded. One may define U ) to be the length of the shortest newly-excluded 
block at time step t in the evolution of a cellular automaton. The values of U ) 
obtained in the first few time steps of evolution according to the 32 legal k = 2, r = 1 
cellular automaton rules are given in Table 3. In most cases, U ) is seen to increase 
with time, indicating that progressively finer subsets of S are excluded, and 
qualitatively reflecting the increase of ~(t). In general, however, L (t) need not 
increase monotonically with time. A length I block is excluded after t time steps if 
there is no initial length 1 + 2rt block that evolves into it. A length I block is newly 
excluded at time step t if and only if no length l + 2r blocks allowed at time step t -  1 
evolve to it, but at least one length 1 + 2r block newly excluded at time step t -  1 
would evolve to it. The length U ) of the shortest newly excluded block at time t is 
thus bounded by 

L(t) >= L(t- 1) _ 2r. (3.13) 

Table 3 includes several cases for which the lower bound is realized. 
The sets of infinite symbol sequences £2 ~t) generated by cellular automaton 

evolution are characterized in part by the numbers and lengths of allowed and 
excluded finite blocks which appear in them. A further characterization may be 
given in terms of the number I1(p) of infinite sequences with (spatial) period p that 
appear. This number is related to the number of distinct cycles in the minimal DFA 
graph for f2 ~t). Cycles are considered distinct if the sequences of symbols that 
appear in them are distinct. The enumeration of cycles thus requires knowledge of 
the arc labelling as well as connectivity of the DFA graph. 

Just as the number of finite blocks N ( X )  for all X may be summarized in the 
characteristic polynomial X(2), so also the number of periodic configurations//(p) 
may be summarized in the zeta function (e.g. [10, 11]) 

~(2)=exp . (3.14) 

For all regular languages ~(2) is a rational function of 2 [311. For  the special case of 
finite complement languages, 

~(,~) = l/Z(;:) • (3.15) 

A finite procedure may be given 1-32] to compute ~(2) for any regular language. 

4. Evolution of Finite Time Sets 

Tables 1-3 gave several properties of the sets of configurations generated by a finite 
number of steps in the evolution of legal k = 2, r = 1 cellular automata. This section 



38 s. Wolfram 

discusses these results, identifies several types of behaviour, and considers 
analogies with classes of cellular automaton behaviour defined by dynamical 
systems theory means [2]. 

In the simplest cases, the set f2") generated by a cellular automaton evolves to a 
fixed form after a small number of time steps T (the case of surjective cellular 
automata, with f2 (*) =)2 for all t, is considered separately). The minimal DFA 

Q(t) corresponding to for all t > T are then identical, and the values of ~(o and )(0(2) 
are thus constant. (Notice that if") = ~(t + 1) does not necessarily imply f2 (t) =/2" + 1), 
as seen for rule 36 in Table 1.) In addition, for t > T, no more distinct blocks of sites 
are excluded. Such behaviour occurs in the trivial case of rule 0, under which all 
initial configurations are mapped to the null configuration after one time step. It 
also occurs for many other rules: one example is rule 76, discussed in Sects. 2 and 3. 
All the examples of this behaviour in Tables 1-3 have T= 1 (e.g. rule 76) or T= 2 
(e.g. rule 108). In the trivial case of rule 0, only a single configuration (the null 
configuration) can appear when t > T. More complicated single configurations are 
sometimes generated, represented by minimal DFA consisting of a single cycle. In 
most cases (such as rule 76), however, f2 (T) contains an infinite number of 
configurations. However, it appears that even in these cases, all configurations 
occur on finite cycles: each configuration is invariant under the cellular automaton 
mapping, or some finite iteration of it. (A result given in Sect. 5 then shows that the 
f2 ~T) must form finite complement languages in these cases.) This implies that 
changes in the initial state for such cellular automata propagate a distance of at 
most rT sites. A small initial change can thus ultimately affect a region no larger 
than 2rT sites. Such cellular automata must therefore exhibit class 1 or 2 behaviour 
[2]. 

For a second set of cellular automata, the form of the minimal DFA does not 
become fixed after a few time steps, but exhibits a simple growth with time, 
maintaining a fixed overall structure. The/Y) for such cellular automata typically 
increases linearly with time, and ~(t) increases as some polynomial function of t 

• (linear or quadratic for legal k = 2, r = 1 rules). Rule 128 gives an example of this 
behaviour. Under this rule 111~ 1, but all other neighbourhoods map to 0. Any 
initial sequence of ones thus decreases steadily in length by one site on each side at 
each time step. After t time steps, any pair of ones must be separated by at least 
2t + 1 zeroes; all blocks of the form 10Jl for 1 < j  < 2t are thus excluded. The first 
few languages fU ) in the sequence generated by successive time steps in the 
evolution of rule 128 are shown in Fig. 4.1. The minimal DFA are seen to maintain 
the same overall structure, but include a linearly increasing number of nodes at 
each time step. The characteristic polynomials corresponding to these DFA are 
given by 

z{o(;~) = (1 - ,~' + 2 '+  ~) ( -  1 - 2 + 2 + *), (4. i )  

yielding a set entropy which tends to zero at large times, roughly as 1/t. Rule 160 
provides another example in which the minimal DFA maintains the same overall 
structure, but increases in size with time. In this case, sequences of the form 
1 [(0 v 1)0]J(0 v 1) 1 for all j < t, are excluded after t time steps, and the size E (° of the 
corresponding minimal DFA grows quadratically with time. 



Cellular Automata 39 

t=~ 

0 

t=2 

0 

t=3  
° 

0 

Fig. 4.1. Minimal deterministic finite automata  DFA)cor responding  to the regular languages f2 m 
generated in the tirst few time steps of evolution according to cellular automaton rule 128. The 
DFA maintain the same structure, but increase in size with time. They correspond to finite 
complement languages, with all blocks of the form 10Jl excluded for 1 <j< 2t 

Many cellular automata generate sets f2 ~) whose corresponding minimal DFA 
become much more complicated at each successive time step, and appear to exhibit 
no simple overall structure. 

Figure 4.2 shows the minimal DFA obtained after one and two time steps in the 
evolution of rule 126. No simple progression in the form of these minimal DFA is 
seen. fa ~1) is a finite complement language, with only the block 010 excluded, 
yielding a characteristic polynomial 

ZO)(2) = 1 - -2+222- -23  , (4.2) 

giving 2max- 1.7549. After two time steps, an infinite sequence of distinct blocks is 
excluded, starting with the length 12 block 011101101110. The corresponding 



40 S. Wol f r am 

t = l  

1 o o 

t=2  

I o o 

o 

Fig. 4.2. Minimal deterministic finite automata corresponding to the regular languages generated 
in the first two time steps of evolution according to the class 3 cellular automaton rule 126. A 
considerable increase in complexity with time is evident, characteristic of cellular automata which 
can exhibit class 3 behaviour 

characteristic polynomial is 

Z(2)(2) = - 1 + 2 -  22 + 223 - 424 + 25 + 326 - 527 

+ 328_ 3)~9 + 521o-  62 al +4212_213 ' (4.3) 

with 2max~l.7321. The minimal DFA for ~'~(3) has 107 states, and the shortest 
newly-excluded block is 1011100011101 (length 13). ~(o increases rapidly with 
time. After four time steps, the shortest newly-excluded blocks are 
10111000011101, 10111000001110 and its reversal (length 14), and ~(4) = 2876. 

Figures 2.5 and 4.3 give the minimal DFA obtained after one and two time steps 
in the evolution of rule 18. A considerable increase in complication with time is 
again evident. After one time step, the shortest of an infinite number of distinct ex- 
cluded blocks is 1101011 (length 7); after two time steps, the shortest newly-ex- 
cluded block is 10011011001 (length 11); after three time steps, it is 1 t0010010011 
(length 12), and after four time steps it is 1001000010011 (length I3). In this case, as 



Cellular Automata 41 

O ~  ~ J . - - " ~  k 0 

0 '  

1 

1 

Fig. 4.3. Minimal deterministic finite automaton (DFA) corresponding to the regular language 
generated after two time steps of evolution according to the class 3 cellular automaton rule 18. The 
minimal D FA for t = 1 is shown in Fig. 2.5. Rapidly-increasing complexity is again evident. The DFA 
illustrated here has 47 states 

for rule 126, /Y) is found to increase monotonically over the range of times 
investigated. Progressively larger neighbourhoods of the start state are therefore 
left unchanged in the corresponding minimal DFA. However, as discussed in 
Sect 3, /Y) need not increase with time, but must in general only satisfy the 
inequality (3.13). Rule 22 provides an example in which U ) decreases with time. 
The minimal DFA for f2 (1) in this case is shown in Fig. 4.4; the shortest excluded 



42 S. Wolfram 

1 

Fig. 4.4. Minimal deterministic finite automaton (DFA) corresponding to the regular language 
f~) obtained after one time step in the evolution of the class 3 cellular automaton rule 22. The 
DFA has all 15 possible states. The shortest excluded block in (2 (~) has length 8, and corresponds 
to the shortest path from the encircled start state to the one "incomplete" node in the DFA graph 

t=l 

0 

0 1 

0 1 

Fig. 45. Minimal deterministic finite automata corresponding to the regular languages O m 
generated in the first two time steps of evolution under rule 72. f2 (*) is an infinite complement 
regular language, with the infinite sequence of distinct blocks 111, 1101011,11001011,... excluded. 
g212) is a finite complement language, with only the blocks 010 and 111 excluded 



Cellular Automata 43 

blocks are 10101001 and 10010101 (length 8). After two time steps, the blocks 
1110101 and 1010111 (length 7) are also excluded. The shortest newly-excluded 
blocks after three time steps are 01000010101, 01000110101, 10000010101 and 
their reversals (length 11). After four time steps, the shortest newly-excluded blocks 
are 010110011 and 110011010 (length 9), realizing the equality in (3.13). 

Rule 126 provides an example in which the set generated after one time step is a 
finite complement language, but the sets generated at subsequent times are not. 
Rule 72 exhibits the opposite behaviour 11, as shown in Fig. 4.5. After one time step, 
it yields a set in which the infinite sequence of distinct blocks 111, 1101011, 
11001011 .... are excluded (as in f2 °> for rule 18). After two times steps, however, 
the block 010 is also excluded. The exclusion of this single block implies exclusion 
of the infinite set of blocks excluded from f2 ~1~. The resulting set thus corresponds 
to a finite complement language. In general, it can be shown that if a cellular 
automaton evolves to a finite complement language limit set, then it must do so in 
a finite number of time steps [34]. 

The sets f2 (+> generated by most cellular automata never appear to become 
simpler with time. One exception is rule 72, in which the number of arcs in the 
minimal DFA for f2 (2~ is less than in that for f2 °~. In most cases, the regular 
language complexity ~m appears to be non-decreasing with time. In fact, whenever 
the set of configurations generated continues to contract with time, a different 
regular language must be obtained at each time step. Since there are a limited 
number of regular languages with complexities below any given value (certainly 
less than 2k~2), the complexity must on average increase at least slowly with time in 
this case. 

Table 1 suggests that a definite set of cellular automata (including rules 18, 22 
and 126) yield regular language complexities E m that grow on average more 
rapidly than any polynomial in time (perhaps exponentially with time). Many of 
the cellular automata in this set generically exhibit class 3, chaotic, behaviour, 
suggesting that rapidly-increasing E ('> are a signal for class 3 behaviour in cellular 
automata. 

In a few cases, such as rule 94, E m increases rapidly with time, but almost all 
initial configurations are found to give ultimately periodic behaviour. Neverthe- 
less, special initial conditions (in this case, those in which successive pairs of sites 
have equal values) can yield chaotic behaviour. Since the set Qm includes all 
configurations that ever occur, it includes those that give chaotic behaviour, even 
though they occur with vanishingly small probability. Presumably these configura- 
tions would not affect a probabilistic grammar for the set f2 (° that included only 
nonzero probability configurations. But the E (° for the grammars discussed here 
appear to increase rapidly with time whenever any set of configurations in the 
cellular automaton yield class 3 behaviour. 

Some exceptional cases are surjective class 3 cellular automata, such as the 
additive rules 90 and 150, in which every possible configuration can be generated 
at any time. The complexity of these and other cellular automata could perhaps be 
measured by constructing a grammar for the set of possible space-time patterns 
generated in their evolution. Such a grammar could presumably be characterized 

11 A more complicated example of this behaviour was given in [33] 



44 S. Wolfram 

in terms of computers with memories arranged in a two-dimensional lattice (cf. 
[35]) lz. 

The local rules ~b for the 32 legal k = 2, r = 1 cellular automata of Tables 1-3 are 
all distinct. Yet in many cases sets of configurations with the same structure or 
properties are found to be generated. In some cases, there may exist bijective 
mappings which transform configurations evolving according to one cellular 
automaton rule into configurations evolving according to another rule. Several 
properties of the sets fU ) are invariant under such mappings. One example is the set 
of non-zero roots of the characteristic polynomials )f)(2). While after one time step 
several of the cellular automata in Tables 1-3 yield the same sets of configurations 
f2 m, there are few examples of complete equivalence between pairs of cellular 
automaton rules. One simple example is rules 146 and 182, which are related by 
interchange of the roles of 0 and 1. 

5. Some Invariant Sets 

Section 2 showed that the set of configurations generated after a finite number of 
steps in the evolution of any cellular automaton forms a regular language. 
Sections 3 and 4 discussed some properties of such sets. This section and the next 
one consider the limiting sets of configurations generated after many time steps of 
cellular automaton evolution. 

For  all configurations A that appear in the limit set for a cellular automaton, 
there must exist some configuration A" such that A = ~tA" for any t. Any set of 
configurations invariant under the cellular automaton rule therefore appear in its 
limit set. This section considers some simple examples of invariant sets; Sect. 6 
gives some comments on the complete structure of limit sets for cellular automata. 

Periodic Sets  

A simple class of invariant sets consist of configurations periodic with time under 
cellular automaton evolution. Such sets are found to form finite complement 
languages. 

Consider the set of configurations that are stable (have temporal period 1) 
under a cellular automaton rule with k = 2 and r = 1. The set of such configurations 
is exactly those which contain only neighbourhoods {a~ 1, a~, a~+l} for which 

[ a l -  1, ai, ai + 1] = at.  (5.1) 

Only the finite set of distinct three-site blocks that violate (5.1) are forbidden, so 
that the complete set forms a finite-complement language, with a maximum 
distinct excluded block of length 3. A N D F A  that generates the set of stable 
configurations is represented by a graph analogous to Fig. 3.1 in which only those 

12 This paper concentrates on one-dimensional cellular automata. Such cellular automata 
potentially correspond most directly with conventional formal languages. Two and higher 
dimensional cellular automata show some differences. For example the set of configurations 
obtained after a finite number of time steps in their evolution need not form a regular language and 
may in fact be nonrecursive [36, 51] 



Cellular Automata  45 

p = l  0 

1-~,-- 0 

1 

0 

1 

1 0 

p = l  

p=2 

p=3 

p=4 

~ 0 

1 1 

0 1 

1 0 

0 1 

0 0 

0 1 

0 0 

1 0 

0 1 

0 0 

0 0 

arcs satisfying (5.1) are retained. The minimal grammar for this set is obtained by 
constructing the minimal equivalent DFA, as described in Sect. 2. 

The procedure generalizes immediately to arbitrary cellular automaton rules, 
and to sets of configurations with any finite period (cf. [37]). The distinct excluded 
blocks in the finite complement languages corresponding to sets of configurations 
with period p have maximum length 2pr + 1. 

Figure 5.1 shows the minimal grammars for sets of configurations with various 
periods under the k = 2, r = 1 cellular automata with rule numbers 90, 18 and 22. 
The grammars are represented by graphs containing several disconnected pieces, 
each corresponding to a disjoint set of configurations. 

Figure 5.1a suggests that only a finite number of configurations, all spatially 
periodic, are found with each temporal period in the surjective cellular automaton 
rule 90. For this and other surjective cellular automata whose local mappings ~b are 
injective in their first and last arguments, the number of distinct configurations 



46 S. Wolfram 

0 

1 

p=2 

p=3 

0 1 

p=4 0 1 o 1 

o I 

c o o 

Fig. 5.1a-c. Minimal deterministic finite automata  corresponding to sets of configurations with 
(temporal) periods exactly p under cellular automaton rules a 90, b 18 and c 22 

with any period p is always finite, and is exactly k hp, where h is the invariant 
entropy of the cellular automaton mapping (h = 2 for rule 90) 13. This result follows 
from the fact that the complete space-time pattern generated by the evolution of 
such a cellular automaton is completely determined by any patch of site values 
with infinite temporal extent, but spatial width h (typically equal to 2r). Moreover, 
any possible set of site values may occur in this patch. If the complete space-time 
pattern is to have period p, then so must the patch; but there are exactly k hp 
possible patches with period p. (For large p, this result is as expected for any 
expansive homeomorphism (e.g. [10, Ii]).) 

In general, the sets of configurations with a particular periodicity under a 
cellular automaton rule are infinite, as illustrated for rules 18 and 22 in Figs. 5.1b 
and 5.1c. Presumably there are sets of this kind with arbitrarily large periods. 
These infinite sets are nevertheless finite complement languages. For example, for 
the set of configurations with period two under rule 18, only the distinct blocks 
111, 1011, 1101 and 10101 are excluded. It is common in class 3 cellular automata 
to find configurations with almost every possible period; for class 4 cellular 
automata, only some periods are typically found. 

13 The actual configurations with particular periods may be found by methods analogous to 
those used in [29] for the complementary problem of determining the temporal periods of 
configurations with given spatial period 



Cellular  A u t o m a t a  47 

Periodic configurations form a small subset of all the configurations in the limit 
sets for cellular automata. Their entropy nevertheless provides a lower bound on 
the entropy of the complete limit sets. For rule 90, the set of periodic configurations 
has zero entropy, yet the complete limit contains all possible configurations, and 
thus has entropy 1. For rule 18, the period 2 set has entropy ~ 0.4057 (given as the 
logarithm of the largest root of 2 3 -  2-1) ,  while the period 4 set has entropy 
~0.1824 (26-2  - 1). For rule number 22, the period 4 set has entropy -~0.3219 
(25 - 24 + 23 - 2  z -  1). Since irreversible cellular automaton mappings are contrac- 
tive, the entropy of the set obtained after a finite number of time steps gives an 
upper bound on the entropy of the complete limit set. Using results from Table 3 
one then finds 

0.4057 < (~) < ~sE181,,~0.8114, 
(5.2) < (oo) < 0.1824 ~ st2al ~ 0.9390 

Simulation Sets 

The complete invariant sets for many cellular automata • are very complicated. 
Parts of these invariant sets may however have a simpler structure, and may 
consist of configurations for which ~b "simulates" a simpler cellular automaton 
rule. Thus for example stable configurations under • may be considered as those 
for which • "simulates" the identity mapping. 

One class of configurations for which a cellular automaton rule ~1 may simulate 
a rule ~b z are those obtained by "blocking transformations." Each symbol in the 
possible configurations of ~2 is replaced by a length bx block of symbols in 4~1, and 
each time step in the evolution of (b z is simulated by bT time steps of evolution 
under ~1. Thus, for example, rule 18 simulates rule 90 under the (bx=2, bT=2) 
blocking transformation 00~0, 01-~1 [1, 38, 5]. The evolution of an arbitrary 
configuration under rule 90 is thus simulated by the evolution under rule 18 of a 
configuration consisting of the digrams 00 and 01. But since rule 90 is surjective, 
all possible configurations correspond to an invariant set. Thus configurations 
containing only 00 and 01 digrams form an invariant set for rule 18. The entropy 
of these configurations is 1/2, so that 

0.5 < (~) < = st18j ,,~ 0.8114. (5.3a) 

Rule 22 simulates rule 90 under the (4,4) blocking transformation 0000~0, 0001 
1, implying that 

0.25 < sI~2)1 ~< 0.9390. (5.3b) 

A cellular automaton rule may simulate other rules with the same values of k 
and r under different blocking transformations (cf. the simulation network given in 
[5]). Some rules, apparently only surjective ones such as rule 90, simulate 
themselves, and thus correspond to fixed points of the blocking transformation. In 
other cases, one rule may simulate another under several distinct blocking 
transformations. For example, rule 18 simulates rule 90 under both 00--*0, 01 ~ 1, 
and 00--*0, 10~ 1, while rule 22 simulates rule 90 under any permutation of 0000 
~0,  0001---1. One may consider the sets of blocks appearing in these blocking 



48 S. Wolfram 

transformations to represent different "phases." An initial configuration then 
consists of several "domains," each of which contains blocks of one phase. The 
domains are separated by "walls." For rule 18, these walls appear to execute 
random walks, and annihilate in pairs, yielding progressively larger domains of a 
single phase [38]. The simulation of rule 90 by rule 18 may thus be considered 
"attractive" [3]. For rule 22, no such simple behaviour is observed. 

Blocking transformations yield a particular class of configurations, corre- 
sponding to simple finite complement languages. Other classes of configurations, 
specified by more general grammars, may also yield simulations. (An example 
occurs for rule number 73, in which configurations containing only odd-length 
sequences of 0 and 1 sites simulate rule 90.) In addition, a set of configurations 
evolving under one rule may simulate an invariant set of configurations evolving 
under another rule. 

6. Comments on Limiting Behaviour 

Section 2 showed that after any finite number of time steps, the set of 
configurations ~ )  generated by any cellular automaton forms a regular language. 
Some cellular automata yield regular languages even in the infinite time limit; 
others appear to generate limit sets corresponding to more complicated formal 
languages. Cellular automata which exhibit different classes of overall behaviour 
appear to yield characteristically different limiting languages. 

As discussed in Sect. 4, some cellular automata in Tables 1-3 yield regular 
languages which attain a fixed form after a few time steps. The limit sets for such 
cellular automata are thus regular languages. In fact, except for surjective rules, the 
limit sets found appear to contain only temporally periodic configurations, and are 
therefore finite complement languages. These cellular automata exhibit simple 
large time behaviour, characteristic of classes 1 and 2. 

Rule i28 provides a more complicated example, discussed in Sect. 4. After t 
time steps, any pair of ones in configurations generated by this rule must be sepa- 
rated by at least 2t sites. The complete set of possible configurations forms a finite 
complement regular language, with a minimal DFA illustrated in Fig. 4.1 whose 
size ~(~) increases linearly with time. After many time steps, almost all initial con- 
figurations evolve to the null configuration. However, even after an arbitrarily long 
time, configurations containing just a single block of ones may still appear. A block 
ofn ones, flanked by infinite sequences of zeroes, is generated after any number of 
time steps t from a block of n + 2t ones. Such configurations therefore have exactly 
one predecessor under any number of time steps of the cellular automaton 
evolution. They thus appear in the limit set for rule 128, although if all initial 
configurations are given equal weight, they are generated with zero probability. 
Once generated, their evolution is never periodic. An increasing number of distinct 
blocks are excluded from the successive YU ) obtained by evolution under rule 128. 
The set of configurations generated in the infinite time limit does not, therefore, 
correspond to a finite complement language. Nevertheless, the set does form a 
regular language, shown in Fig. 6.1. While the set contains an infinite number of 
configurations, its entropy vanishes, as given by the limit of Eq. (4.1). 



Cellular Automata 49 

1 

Fig. 6.1. The deterministic finite automaton representing the regular language corresponding to 
the limit set for cellular automaton rule 128. This infinite complement regular language is obtained 
as the infinite time limit of the series of finite complement regular languages illustrated in Fig. 4.1. 
It contains an infinite number of configurations, but has zero limiting entropy 

Several rules given in Tables 1-3 exhibit behaviour similar to rule 128: they 
generate (finite complement) regular languages whose minimal grammars increase 
in size linearly or quadratically with time, but in the infinite time limit, yield regular 
language limit sets. These limit sets contain one or a few periodic configurations, 
together with an infinite number of aperiodic configurations, generated from a set 
of initial configurations of measure zero. The sets have zero entropy, and do not 
correspond to finite complement languages. (Only trivial finite complement 
languages can have zero entropy.) All the class i cellular automata (except for the 
trivial rule 0) in Tables 1-3 exhibit such limiting behaviour. The generation of limit 
sets corresponding to regular languages that are not finite complement languages 
appears to be a general feature of class 1 cellular automata. 

Tables 1-3 suggest the result, discussed in Sect. 4, that cellular automata 
capable of class 3 or 4 behaviour give rise to sets of configurations represented by 
regular languages whose complexity increases rapidly with time. The limit sets for 
such cellular automata are therefore presumably not usually regular languages. If 
a finite description of them can be given, it must be in terms of more complicated 
formal languages. 

Any language that can be described by a regular grammar must obey the 
regular language "pumping lemma" (e.g. [7]). This requires that it be possible to 
write all sufficiently long symbol sequences c~ appearing in the language in the form 
0~1~2~ 3 SO that for any n the symbol sequence ~ 1 ~ 3  also appears in the language. 
(This result follows from the fact that any sufficiently long sequence must 
correspond to a path containing a cycle in the DFA. This cycles may then be 
traversed any number of times, yielding arbitrarily repeated symbol sequences.) 
The sets generated after a finite number of time steps in cellular automaton 
evolution always obey this condition: arbitrary repetitions of the string c~ z are 
obtained by evolution from initial configurations containing arbitrarily-repeated 
sequences evolving to ~2. 

It is possible to construct cellular automata for which the regular language 
pumping lemma fails in the large time limit, and which therefore yield non-regular 
language limit sets. In one class of examples [39, 34], there are pairs of localized 
structures which propagate with opposite velocities from point sources. After t 
time steps, such cellular automata generate configurations consisting roughly of 



50 S. Wolfram 

repetitions of sequences 

(10J20Jt) j<=t. (6.1) 

In the infinite time limit, arbitrarily long identical pairs of symbol sequences thus 
appear. The limit sets for such cellular automata are therefore not regular 
languages. Instead it appears that they correspond to context-free languages. 

The pumping lemma for regular languages may be generalized to context-flee 
languages. Any sufficiently long sequence in a context-free language must be of 
the form elc~2a3a4a5 such that exe~e3e[e5 is also in the language for any n. The 
possibility for separated equal length identical substrings is a reflection of the 
non-local nature of context-flee languages, manifest for example in the inde- 
finitely large memory stacks required in machines to recognize them. 

Limiting sets of configurations of the form (6.1) that violate the regular 
language pumping lemma nevertheless obey the context-flee language pumping 
lemma, and thus correspond to context-flee languages. 

The correspondence between sets of infinite cellular automaton configura- 
tions and context-free languages is slightly more complicated than for regular 
languages. In all cases, the cellular automaton configurations correspond to 
infinite symbol sequences generated according to a formal grammar. For regular 
languages, it it also possible to construct finite automata which recognize words 
in the language, starting at any point. The necessity for a stack memory in the 
generation of context-free languages makes their recognition starting at any 
point in general impossible. Infinite configurations generated by context-flee 
grammars must thus be viewed as concatenations of finite context-free language 
words. Only at the boundaries between these words is the stack memory for the 
machine generating the configuration empty, so that sequences of symbols may 
be recognized. Configurations generated by context-sensitive and more com- 
plicated grammars must be considered in an analogous way. 

If the limit set for a cellular automaton is a context-flee language, whose 
generation requires a computer with an indefinitely large stack memory, then one 
expects that the regular language sets obtained at successive finite time steps in 
the evolution of the cellular automaton would require progressively larger finite 
size stack memories. If the limiting context-flee grammar contains say Q (non- 
terminal) productions, then there are O(Q t) possible stack configurations after t 
time steps, and the set of configurations obtained may be recognized by a finite 
automaton with about Qt states. In addition, the context-free pumping lemma is 
satisfied for repetitions of substfings of length up to about t. Regular languages 
that approximate context-free languages for t time steps should have compara- 
tively simple repetitive forms. The regular languages of Fig. 4.1 generated at finite 
times by rule 128 have roughly the expected form, but their limit is in fact a 
regular language. The absence of obvious patterns in the regular grammars such 
as Figs. 4.24.4 generated by typical class 3 cellular automata after even a 
few time steps suggests that the limiting languages in these cases are not context- 
flee. They are presumably context-sensitive or unrestricted languages. 

The entropies of regular languages are always logarithms of algebraic integers 
[as in Eq. (3.5)]. Context-free languages may, however, have entropies given by 
logarithms of general algebraic numbers (whose minimal polynomials are not 



Cellular Automata 51 

necessarily monic). The enumeration of words in a formal language may be cast 
in algebraic terms by considering the sequence of words in the language as a 
formal power series satisfying equations corresponding to the production rules 
for the language (e.g. [40]). For the simple regular language ((0")10) (repetition 
understood) of Fig. 1.3b, with production rules 

UO"+SOUO, U 0 - - ~ S l U l  , U 1 -*SoUo, (6.2) 

(where the terminal symbols So and st represent 0 and 1 respectively), the 
corresponding equations are 

Uo=SoUo+Slul+l, ul=SoUo+l. (6.3) 

Solving for Uo as the start symbol one obtains 

Uo = (sl + 1)/(1 -So-SlSo). (6.4) 

The expansion of this generating function (accounting for the non-commutative 
nature of symbol string concatenation) yields the sequence of possible words in 
the language. Replacing all terminal symbols in the generating function by a 
dummy variable x, the coefficient of x" in its expansion gives the number of 
distinct symbol sequences of length n in the language. The asymptotic growth 
rate of this number, and thus the entropy of the language, are then determined by 
the smallest real root of the (monic) denominator polynomial. The generating 
function for any regular language is always a rational function of x. For a 
context-free language, however, the equations analogous to (3.8) are in general 
non-linear in the ui. At least for unambiguous languages, the positions of the 
leading poles in the resulting generating functions obtained by solving these 
simultaneous polynomial equations are nevertheless algebraic numbers [41]. 

There is a finite procedure to find the minimal regular grammar that 
generates a given regular language, as described in Sect. 2. No finite procedure 
exists in general, however, to find the minimal context-free or other grammar 
corresponding to a more complicated language. The analogue of the regular 
language complexity is thus formally non-computable for context-free and more 
complicated languages. This is an example of the result that no finite procedure 
can in general determine the shortest input program that generates a particular 
output when run for an arbitrarily long time on some computer (e.g. [42]). 
Explicit testing of successively longer programs is inadequate, since the insolu- 
bility of the halting problem implies that no upper bound can in general be given 
for the time before the required sequence is generated. Particular simple cases of 
this problem are nevertheless soluble, so that, for example, the minimal 
grammars for regular languages are computable. 

The entropies for regular and context-free languages may be computed by the 
finite procedures described above. The entropies for context-sensitive (type 1) and 
unrestricted (type 0) languages are, however, in general non-computable numbers 
[43]. Bounds on them may be given. But no finite procedure exists to calculate 
them to arbitrary precision. (They are in many respects analogous to the non- 
computable probabilities for universal computers to halt given random input.) If 



52 S. Wolfram 

many class 3 and 4 cellular automata do indeed yield limit sets corresponding to 
context-sensitive or unrestricted languages, then the entropies of these sets are in 
general non-computable. 

The discussion so far has concerned the generation of infinite configura- 
tions by cellular automaton evolution. One may also consider the evolution of 
configurations in which nonzero sites exist only in a finite region. Then for class 3 
cellular automata with almost all initial states, the region of nonzero sites 
expands linearly with time. (Such expansion is guaranteed if, for example, 
~b[1, 0 ....  ,0] = 1 and so on.) For class 4 cellular automata, the region may expand 
and contract with time. One may characterize the structures generated by 
considering the set of finite sequences generated at any time by evolution from a 
set of finite initial configurations. For class 3 cellular automata, this set appears 
to be no more complicated than a context sensitive language, while for class 4 
cellular automata, it may be an unrestricted language. Notice that the set 
generated after a fixed finite number of time steps always corresponds to a 
regular language, just as for infinite configurations. (The regular grammar for 
these finite configurations consists of all paths with the relevant length that begin 
and end at the 00...0 node of the NDFA analogous to Fig. 2.1.) 

Consider the language formed by the set of sequences of length n generated 
after any number of time steps in the evolution of a class 3 cellular automaton 
from all possible initial configurations with size n~ 4. This language appears to be 
at most context-sensitive, since a word of length n in it can presumably be 
recognized in a finite time by a computer with a memory of size at most n. In its 
simplest form, the computer operates by testing configurations generated by 
evolution from all k "° possible initial states. Since the configurations expand 
steadily with time, the evolution of each configuration need be traced only until it 
is of size n; the required configuration of length n is either reached at that time, or 
will never be reached. 

In a class 4 cellular automaton, evolution from an initial configuration of size 
no may yield arbitrarily large configurations, but then ultimately contract to give a 
size n configuration. No upper bound on the time or memory space required to 
generate the size n configuration may therefore be given. The problem of 
determining whether a particular finite configuration is ever generated in the 
evolution of a class 4 cellular automaton from one of a finite set of initial 
configurations may therefore in general be formally undecidable. No finite 
computation can give all the structures of a particular size ultimately generated in 
the evolution of a class 4 cellular automaton. 

The procedure for recognizing finite configurations generated by class 3 
cellular automata, while finite in principle, may require large computational 
resources. Whenever the context-sensitive language corresponding to the set of 
finite configurations cannot be described by a context-free or simpler grammar, the 
problem of recognizing words in the language is PSPACE-complete with respect 
to the lengths of the words (e.g. [28]). It can thus presumably be performed 

14 This is analogous to but distinct from the problem &finding all initial configurations which 
ultimately evolve to a particular complete final configuration, such as the null configuration (cf. [2, 
44, 45]) 



Cellular Automata 53 

essentially no more efficiently than by testing the structures generated by the 
evolution of each of the k "° possible finite initial configurations. 

As well as considering the evolution of finite complete configurations, one may 
also consider the generation of finite sequences of symbols in the evolution of 
infinite configurations. Enumeration of sets of length n sequences that can and 
cannot occur provide partial characterizations of sets of infinite configurations. 
However, even for configurations generated at a finite time t, such enumeration in 
general requires large computational resources. A symbol sequence of length n 
appears only if at least one length no = n + 2r t  initial block evolves to it after t time 
steps. A computation time polynomial in n and t suffices to determine whether a 
particular candidate initial block evolves to a required sequence. The problem of 
determining whether any such initial block exists is therefore in the class NP. One 
may expect that for many cellular automata, this problem is in fact NP-complete. 
(The procedure of Sect. 2 provides no short cut, since the construction of the 
required DFA is an exponential computational process.) It may therefore 
effectively be solved essentially only by explicit simulation of the evolution of all 
exponentially-many possible initial sequences. 

In the limit of infinite time, the problem of determining whether a particular 
finite sequence is generated in the evolution of a cellular automata becomes in 
general undecidable. For a cellular automaton with only class i or 2 behaviour, the 
limit set always appears to correspond to a regular language, for which the 
problem is decidable. But for class 3 and 4 cellular automata, whose limit sets 
presumably correspond to more complicated formal languages, the problem may 
be undeciable. (The problem is in general in the undecidability class H1 [46]; the 
set of finite sequences that occur is thus recursively enumerable, but not neces- 
sarily recursive.) Even when the general problem is undecidable, the appearance 
of particular finite sequences in the limit set for a cellular automaton may be 
decidable. The fraction of particular sequences whose appearance in the limit set is 
undecidable provides a measure of the degree of unpredictability or "computa- 
tional achievement" of the cellular automaton evolution (presumably related to 
"logical depth" [-47]). 

7. Discussion 

This paper has taken some preliminary steps in the application of computation 
theory to the global analysis of cellular automata. Cellular automata are viewed as 
computers, whose time evolution processes the information specified by their 
initial configurations. Many aspects of this information processing may be 
described in terms of computation theory. The intrinsic discreteness of cellular 
automata allows for immediate identifications with conventional computational 
systems; but the basic approach and many of the results obtained should be 
applicable to many other dynamical systems. 

Self-organization in cellular automata involves the generation of distinguished 
sets of configurations with time. These sets are described as formal languages in 
computation theory terms. Each configuration corresponds to a word in a 
language, and is formed from a sequence of symbols according to definite 



54 S. Wolfram 

grammatical rules. These grammatical rules provide a complete and succinct 
specification of the sets generated by the cellular automaton evolution. 

Section 2 showed that, starting with all possible initial configurations, the sets 
generated by a finite number of time steps of cellular automaton evolution always 
correspond to regular formal languages. Such languages are recognized by finite 
automata. These finite automata are specified by finite state transition graphs; 
words in the languages correspond to all possible paths through these graphs. The 
(limiting) set entropies of such regular languages are then given as logarithms of the 
algebraic integers corresponding to the largest eigenvalues of the incidence 
matrices for their state transition graphs. 

In genral, several different finite automata or regular grammars may yield the 
same regular language. However, it is always possible to find a simplest finite 
automaton, or set of grammatical rules, which correspond to any particular 
regular language. This simplest finite automaton provides a canonical representa- 
tion for sets generated by cellular automaton evolution, and its size (number of 
states) gives a measure of their "complexity." The larger the "regular language 
complexity" for a set of configurations, the more complicated is the minimal set of 
grammatical rules necessary to describe it as a regular language. 

Section 4 suggests the general result that the regular language complexity 
is non-decreasing with time for all cellular automata. This result gives a 
quantitative characterization of progressive self-organization in cellular auto- 
mata. It may give a first indication of a generalization of the second law of 
thermodynamics to irreversible systems. 

Entropy may be estimated from experimental data by fitting parameters in 
simple models which reproduce the data. Extraction of regular language 
complexities from experimental data requires the identification of maximal 
(regular language) patterns in the data, or the construction of a minimal 
(finite automaton) model that generates the data. Given perfect data (and an upper 
bound on the regular language complexity), a direct method may be used (e.g. 
[48]). In practice, it will probably be convenient to construct stochastic finite 
automata which provide probabilistic reproductions of the available data (cf. 
estimates for the structure of Markovian sources (e.g. [49])). 

Dynamical systems theory methods were used in [2] to identify four 
general classes of cellular automaton behaviour. Sections 4 and 6 suggested 
computation theory characterizations of these classes. The limit sets for cellular 
automata with only class 1 or 2 behaviour are regular languages. For most class 3 
and 4 cellular automata, the regular language complexity increases steadily with 
time, so that the set of configurations obtained in the large time limit does not 
usually form a regular language. Instead (at least for appropriate finite size 
configurations) the limit sets for class 3 cellular automata appear to correspond to 
context-sensitive languages, while those for class 4 cellular automata correspond 
to general languages. 

Regular languages are sufficiently simple that their properties may be 
determined by finite computational procedures. Properties of context-free and 
more complicated languages are, however, often not computable by finite means. 
Thus, for example, the minimal grammars for such languages (whose sizes would 



Cellular Automata 55 

provide analogues of the regular language complexity) cannot in general be found 
by finite computations. Moreover, for context-sensitive and general languages, 
even quantities such as entropy are formally non-computable. 

When cellular automaton evolution is viewed as computation, one may 
consider that the limiting properties of a cellular automaton are determined by an 
infinite computational process. One should not expect in general that the results of 
this infinite process can be summarized in finite mathematical terms. For 
sufficiently simple cellular automata, apparently those of classes 1 and 2, however, 
it is nevertheless possible to "short cut" the infinite processes of cellular automaton 
evolution, and to give a finite specification of their limiting properties. For most 
class 3 and 4 cellular automata, no such short cut appears possible: their behaviour 
may in general be determined by no procedure significantly faster than explicit 
simulation, and many of their limiting properties cannot be determined by any 
finite computational process. (Such non-computable limiting behaviour would be 
an immediate consequence of the universal computation capability conjectured 
for class 4 cellular automata, but does not depend on it.) 

Non-computability and undecidability are common phenomena in the 
systems investigated in pure mathematics, logic and computation. But they have 
not been identified in the systems considered in theoretical physics. In many 
physical theories one can in fact imagine constructing complicated systems which 
behave, for example, as universal computers, and for which undecidable propo- 
sitions may be formulated. Cellular automata (and other dynamical systems) may 
be considered as simple physical theories. This paper has suggested that in fact 
even simple, natural, questions concerning the limiting behaviour of cellular 
automata are often undecidable (except for very simple systems such as those 
corresponding to class 1 and 2 cellular automata). One may speculate that 
undecidability is common in all but the most trivial physical theories. Even simply- 
formulated problems in theoretical physics may be found to be provably insoluble. 

Undecidability and non-computability are features of problems which attempt 
to summarize the consequences of infinite processes. Finite processes may always 
be carried out explicitly. For some particularly simple processes, the consequences 
of a large, but finite, number of steps may be deduced by a procedure involving 
only a small number of steps. But at least for many computational processes (e.g. 
[28]), it is believed that no such short cut exists: each step (or each possibility) must 
in fact be carried out explicitly. It was suggested that this phenomenon is common 
in cellular automata. One may speculate that it is widespread in physical systems. 
No simple theory or formula could ever be given for the overall behaviour of such 
systems: the consequences of their evolution could not be predicted, but could 
effectively be found only by direct simulation or observation. 

Acknowledgements. I am grateful to A. Aho, C. Bennett, J. Conway, D. Hillis, L. Hurd, D. Lind, O. 
Martin, M. Mendes France, J. Milnor, A. Odlyzko, N. Packard, J. Reeds, and many others for 
discussions. A preliminary version of this paper was presented at a workshop on "Coding and 
Isomorphisms in Ergodic Theory," held at the Mathematical Sciences Research Institute, 
Berkeley (December 8-13, 1983). I thank M. Boyle, E. Coven, J. Franks, and many of the other 
participants for their comments. Some of the results given above were obtained using the 
computer mathematics system SMP [50]. 



56 S. Wolfram 

References 

1. Wolfram, S.: Statistical mechanics ofceUular automata. Rev. Mod. Phys. 55, 601 (1983) 
2. Wolfram, S.: Universality and complexity in cellular automata. Physica 10D, 1 (1984) 
3. Packard, N.H.: Complexity of growing patterns in cellular automata, Institute for Advanced 

Study preprint (October 1983), and to be published in Dynamical behaviour of automata. 
Demongeot, J., Goles, E., Tchuente, M., (eds.). Academic Press (proceedings of a workshop 
held in Marseilles, September t983) 

4. Wolfram, S.: Cellular automata as models for complexity. Nature (to be published) 
5. Wofram, S.: Cellular automata. Los Alamos Science, Fall 1983 issue 
6. Beckman, F.S.: Mathematical tbundations of programming. Reading, MA: Addison-Wesley 

1980 
7. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. 

Reading, MA: Addison-Wesley 1979 
8. Minsky, M.: Computation: finite and infinite machines. Englewood Cliffs, NJ: Prentice-Hall 

1967 
9. Rozenberg, G., Salomaa, A. (eds.): L systems. In: Lecture Notes in Computer Science, Vol. 15 

Rozenberg, G., Salomaa, A.: The mathematical theory of L systems. New York: Academic 
Press 1980 

10. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of 
vector fields. Berlin, Heidelberg, New York: Springer 1983 

11. Walters, P.: An introduction to ergodic theory. Berlin, Heidelberg, New York: Springer 1982 
12. Weiss, B.: Subshifts of finite type and sofic systems. Monat. Math. 17, 462 (1973); Coven, E.M., 

Paul, M.E.: Sofic systems. Israel J. Math. 20 165 (1975) 
13. Field, R.D., Wolfram, S.: A QCD model for e+e " annihilation. Nucl. Phys. B213, 65 (1983) 
14. Smith, A.R.: Simple computation-universal cellular spaces. J. ACM 18, 331 (1971) 
15. Berlekamp, E.R., Conway, J.H., Guy, ILK.: Winning ways for your mathematical plays. New 

York: Academic Press, Vol. 2, Chap. 25 
16. Lind, D.: Applications of ergodic theory and sofic systems to cellular automata. Physica 

100, 36 (1984) 
17. de Bruijn, N.G.: A combinatorial problem. Ned. Akad. Weten. Proc. 49, 758 (1946); 

Good, I.J.; Normal recurring decimals. J. Lond. Math. Soc. 21, 167 (1946) 
I8. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9, 541 (1958) 
19. Cvetkovic, D., Doob, M., Sachs, H.: Spectra of graphs. New York: Academic Press 1980 
20. Billingsley, P.: Ergodic theory and information. New York: Wiley 1965 
21. Chomsky, N., Miller, G.A.: Finite state languages. Inform. Control 1, 91 (1958) 
22. Stewart, I.N., Tall, D.O.: Algebraic number theory. London: Chapman&Hall 1979 
23. Lind, D.A.: The entropies of topological Markow shifts and a related class of algebraic 

integers. Ergodic Theory and Dynamical Systems (to be published) 
24. Milnor, J.: Unpublished notes (cited in [2]) 
25. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. 

Syst. Theor. 3, 320 (1969); 
Hedlund, G.A.: Transformations commuting with the shift. In: Topological dynamics. 
Auslander, J., Gottschalk, W.H. (eds.). New York: Benjamin 1968 

26. Amoroso, S., Part, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps 
for tessellation structures. J. Comp. Syst. Sci. 6, 448 (1972) 

27. Nasu, M.: Local maps inducing surjective global maps of one-dimensional tessellation 
automata. Math. Syst. Theor. 11,327 (1978) 

28. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP- 
completeness. San Francisco: Freeman 1979, Sect. A10 

29. Martin, O., Odlyzko, A.M., Wolfram, S.: Algebraic properties of cellular automata. Commun. 
Math. Phys. 93, 219 (1984) 

30. Hedlund, G.: Private communication 



Cellular Automata 57 

31. Manning, A.: Axiom A diffeomorphisms have rational zeta functions. Bull. Lond. Math. Soc. 
3, 215 (1971); 
Coven, E., Paul, M.: Finite procedures for sofic systems. Monat. Math. 83, 265 (1977) 

32. Franks, J.: Private communication 
33. Coven, E.: Private communication 
34. Hurd, L.: Formal language characterizations of cellular automata limit sets (to be published) 
35. Rosenfeld, A.: Picture languages. New York: Academic Press (1979) 
36. Golze, U.: Differences between 1- and 2-dimensional cell spaces. In: Automata, Languages 

and Development, Lindenmayer, A., Rozenberg, G. (eds.). Amsterdam: North-Holland 1976 
Yaku, T.: The constructibility of a configuration in a cellular automaton. J. Comput. System 
Sci. 7, 481 (1983) 

37. Grassberger, P.: Private communication 
38. Grassberger, P.: A new mechanism for deterministic diffusion. Phys. Rev. A (to be published) 

Chaos and diffusion in deterministic cellular automata. Physica 10D, 52 (1984) 
39. Hillis, D., Hurd, L.: Private communications 
40. Salomaa, A., Soittola, M.: Automata-theoretic aspects of formal power series. Berlin, 

Heidelberg, New York: Springer 1978 
41. Kuich, W.: On the entropy of context-free languages. Inform. Cont. 16, 173 (1970) 
42. Chaitin, G.: Algorithmic information theory. IBM J. Res. Dev. 21, 350 (1977) 
43. Kaminger, F.P.: The non-computability of the channel capacity of context-sensitive 

languages. Inform. Cont. 17, 175 (t970) 
44. Smith, A.R.: Real-time language recognition by one-dimensional cellular automata. J. 

Comput. Syst. Scq. 6, 233 (1972) 
45. Sommerhalder, R., van Westrhenen, S.C.: ParalM language recognition in constant time by 

cellular automata. Acta Inform. 19, 397 (1983) 
46. Rogers, H.: Theory ofrecursive functions and effective computability. New York: McGraw- 

Hill 1967 
47. Bennett, C.H.: On the logical "depth" of sequences and their reducibilities to random 

sequences. Inform. Control (to be published) 
48. Conway, J.H.: Regular algebra and finite machines. London: Chapman & Hall 1971 
49. Shannon, C.E.: Prediction and entropy of printed English. Bell Syst. Tech. J. 30, 50 (1951) 
50. Wolfram, S.: SMP reference manual. Computer Mathematics Group. Los Angeles: Inference 

Corporation 1983 
51. Packard, N.H., Wolfram, S.: Two dimensional cellular automata. Institute for Advanced Study 

preprint, May 1984 
52. Hopcroft,H.:An nlog n algorithm for minimizing statesin a finite automaton.In :P roceedings of 

the International Symposium on the Theory of Machines and Computations. New York: 
Academic Press 1971 

53. Hurd, L.: Private communication 

Communicated by O. E. Lanford 

Received December 12, 1983; in revised form April 17, 1984 


