Circle Algorithms

Emily Gunawan

August 9, 2004

1 Euler's Method

Simple harmonic motion is derived from the following differential equation,

$$
\begin{equation*}
x \prime \prime(t)+x(t)=0, \tag{1}
\end{equation*}
$$

which can also be written as $x \prime \prime(t)=-x(t)$.
This derives

$$
\begin{gather*}
y(t)=x \prime(t) \tag{2}\\
y \prime(t)=x \prime \prime(t)=-x(t)
\end{gather*}
$$

and rewritten as

$$
\begin{gathered}
x \prime(t)=y \\
y^{\prime}(t)=-x \prime(t) .
\end{gathered}
$$

As explained in Math 198 class notes, in order to derive a circle algorithm using Euler's method, first switch to Leibniz notation,

$$
x^{\prime}(t)=\frac{d x}{d t} .
$$

Second,

$$
\begin{aligned}
\frac{d x}{d t} & =y \\
\frac{d y}{d t} & =-x
\end{aligned} \quad \Longrightarrow d x=y d t
$$

Third, replace dt by a finite, small number δ, which makes $d x=y \delta$ and $d y=-x \delta$.
Fourth, replace dx and dy by a finite displacement,

$$
d x=x_{\mathrm{next}}-x .
$$

By substitution, get a set of difference equations $x_{n e x t}-x=y \delta$ and $y_{n e x t}-y=-x \delta$, which can be written as

$$
\begin{equation*}
x_{n e x t}=x+y \delta \tag{3}
\end{equation*}
$$

$$
y_{\text {next }}=y-x \delta
$$

Translated into Python code, it should look something like
$\mathrm{h}=.015$
$\mathrm{x}=1$; $\mathrm{y}=0$
for i in range $(2 * \pi / \mathrm{h})$:
$\mathrm{xn}=\mathrm{x}+\mathrm{y} * \mathrm{~h}$
$y=-x * h+y$
$\mathrm{x}=\mathrm{xn}$
draw (x,y)
Blinn explains that, for each iteration, (3) is calculated, which process can be written as the following product,

$$
\left[\begin{array}{l}
x_{\mathrm{next}} \\
y_{\mathrm{next}}
\end{array}\right]=\left[\begin{array}{cc}
1 & -h \\
h & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The determinant of the matrix $\left[\begin{array}{cc}1 & -h \\ h & 1\end{array}\right]$ equals $1+h^{2}$. It means that $[x, y]$ is magnified by this amount each time through the loop, which creates a net spiraling effect. Each iteration carries $[x, y]$ to another circular path of greater radius than the previous one. In conclusion, no matter how small δ is made to be, Euler's method does not give satisfactory results.

2 Gauss-Seidel's Method

Modify the difference equations (3) by using the new x value over the current x value to evaluate $y_{\text {next }}$. The result is the following difference equation,

$$
\begin{array}{r}
x_{\text {next }}=x+y \delta \\
y_{\text {next }}=-x_{n e x t} \delta+y \tag{4}
\end{array}
$$

which is equivalent to

$$
\begin{array}{r}
x_{\mathrm{next}}=x+y \delta \\
y_{\mathrm{next}}=-(x+y \delta) \delta+y \\
=-x \delta-y \delta^{2}+y \\
=-x \delta+y\left(1-\delta^{2}\right)
\end{array}
$$

Hence,

$$
\left[\begin{array}{c}
x_{\mathrm{next}} \\
y_{\mathrm{next}}
\end{array}\right]=\left[\begin{array}{cc}
1 & -\delta \\
\delta & 1-\delta^{2}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The determinant of the above matrix is 1 , and this algorithm creates an ellipse stretched in the northeast-southwest and squeezed in the northwest-southeast direction that resembles a circle more than the Euler's method does. According to Blinn, the maximum radius error is approximately $\delta / 4$. Prove if this is so.

3 Rational Polynomials

If

$$
\begin{equation*}
x=\frac{1-t^{2}}{1+t^{2}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\frac{2 t}{1+t^{2}}, \tag{6}
\end{equation*}
$$

then

$$
\begin{array}{r}
x^{2}+y^{2}=\left(\frac{1-t^{2}}{1+t^{2}}\right)^{2}+\left(\frac{2 t}{1+t^{2}}\right)^{2} \\
=\frac{1-2 t^{2}+t^{4}+4 t^{2}}{\left(1+t^{2}\right)^{2}} \\
=\frac{\left(1+t^{2}\right)^{2}}{\left(1+t^{2}\right)^{2}} \\
=1
\end{array}
$$

4 Bresenham Circle

The expression $r^{2}=x^{2}+y^{2}$ represents the equation that parameterize a circle with radius r. Blinn's Bresenham's circle algorithm utilizes what he calls an "error " function. If $P(x, y)$ represents the current pixel on the graph, then let the error be how far P is from the correct point on the circle. Hence,

$$
\begin{equation*}
E_{\mathrm{now}}=r^{2}-x^{2}-y^{2} \tag{7}
\end{equation*}
$$

If $E_{\text {now }} \geq 0$, which means that the pixel is either on or inside the circle, a pixel is moved one pixel to the right by

$$
x_{\text {next }}=x+1,
$$

which makes

$$
\begin{array}{r}
E_{\text {next }}=r^{2}-x_{\mathrm{next}}^{2}-y^{2} \\
=r^{2}-(x+1)^{2}-y^{2} \\
=E_{\text {now }}-2 x-1 .
\end{array}
$$

On the other hand, if $E_{\text {now }}<0$, the pixel is outside the circle and needs to be moved diagonally by

$$
x_{\mathrm{next}}=x+1 \text { and } y_{\mathrm{next}}=y-1,
$$

which makes

$$
\begin{aligned}
& E_{\text {next }}=r^{2}-x_{\text {next }}^{2}-y_{\text {next }}^{2} \\
& =r^{2}-(x+1)^{2}-(y-1)^{2} \\
& =E_{\text {now }}-2 x-1+2 y-1 .
\end{aligned}
$$

Starting from $(0,1)$ and moving to the right or right diagonal, the following conditions will always be true during each iteration,

$$
x<=y ; x>=0 ; y>0 .
$$

Because of these, a step to the right decreases E and a diagonal step increases E. Blinn decribes an algorithm that keeps track of the current sign of E and, at each iteration, drive the next pixel toward a direction that gets the next E closer to its opposite sign. Written in Python, starting from $(0,100)$ with radius of 100 , the code looks something like $\mathrm{x}=0$; $\mathrm{y}=100$
$\mathrm{E}=0$
while $\mathrm{x}_{\mathrm{i}}=\mathrm{y}$:
(tab) if $\mathrm{E}_{\mathrm{j}} 0$:
(tab tab) $\mathrm{E}=\mathrm{E}+\mathrm{y}+\mathrm{y}-1$
(tab tab) $\mathrm{y}=\mathrm{y}-1$
(tab) $\mathrm{E}=\mathrm{E}-\mathrm{x}-\mathrm{x}-1$
(tab) $\mathrm{x}=\mathrm{x}+1$
pixset(x, y)

5 REFERENCES

J.Blinn, Jim Blinn's Corner: A Trip Down the Graphics Pipeline chapter 1 (1996).
J.K.Francis, Math 198: Hypergraphics Lab and Class Notes (2003).
J. Kennedy, blah

