

Penrose tiling and diffraction pattern by Ron Lifshitz Cornell University Laboratory of Solid State Physics

> George Francis Quasicrystals ITG Forum Beckman Institute 6 February 2007

Steffen Weber
JFourier3 (java program) www.jcrystal.com

LOBOFOUR 1982 by Tony Robbin

COAST
Tony Robbin 1994
Danish Technical University Erik Reitzel - engineer RCM Precision - fabrication Poul lb Hendriksen - photos

Early Penrose Tiling

Later Penrose Tiling

David Austin, "Penrose Tiles Talk Across Miles" AMS 2005

Penrose Tiling with fat and skinny rhombi

Skinny and Fat Rhombi

With decorations permitting only certain fittings

Easy to draw decorations

Ammann's decorations

this tiling follows the matching

Inflation: half rhombi fit together into enlargements of the rhombi which fint into enlargements of the rhombi....

...yielding
a hierarchy of inflations.

Follow a ribbon
(tapeworm?) with all ties parallel.

DeBruijn's Pentagrid

DeBruijn's Pentagrid with ribbons.

Frequence of skinny to fat ribbons is golden

－	－	－	－	－	－	－	－	－	－	。	－	\bigcirc
－	－	－	。	－	－	－	－	。	。	。		－
。	－	－	－	－	。	。	－	－		－	－	－
－	－	。	。	。	－	。			－	－	－	－
－	－	－	－	－	－		－	－	－	－	－	－
－	－	－	－		－	－	－	－	－	－	。	－
－	－			。	。	－	－	－	－	－	－	－
		－	－	－	－	－	－	－	－	－	－	－
－	－	－	－	－	。	－	－	－	－	－	－	－
n	n	。	－	－	n	n	－	n	n	n	n	－

－	－	－	－	。	。	－	－	－	－	。		\％
－	。	。	。	。	－	。	。	－	。			－
。	－	－	。	－	－	。	－			－	－	－
－	－	－	。	－	－	－			－	－	－	－
－	－	－	－	－			－	－	－	－	－	－
－	－	－				－	－	－	。	－	－	－
－	。			。	－	－	。	。	－	－	－	－
			－	。	－	－	。	－	。	－	。	－
	－	－	－	－	－	。	－	－	。	。	－	－
ค	－	n	－	n	n	ค	－	－	\sim	－		－

－	－	－	－	－	－	－	－	－	－	。	－	8
－	－	。	。	－	－	－	－	。	－			
。	－	－	－	－	。	－	－	－		－	－	。
－	－	。	。	。	－	－			－	－	－	。
。	。	－	－	。	－		－	－	。	－	－	。
－	－	－	－		－	－	－	－	－	－	－	。
－	－			－	。	－	－	－	。	－	－	。
－		－	－	。	－	－	－	－	。	－	－	。
－	－	－	－	－	。	－	－	－	－	－	－	。
n	－	。	－	n	n	n	－	－	－	－	n	n

Quasi.py: A visualization of quasicrystals in PC cluster based virtual environments

 By: Matthew Gregory, Sophomore, CS, UIUC ${ }^{\star}$
email Sketch, Robbin, 7/22/2006

1. Draw unit normals through each of the faces of a regular dodecahedron. This creates six "axes". Select a set of discrete points along these "axes", this program uses unit distances. For each of the (6 choose $3=20$) combinations of "axes", pick one of the points along each chosen "axis" that is in the previously selected set. Find the intersection of the "planes perpendicular to the chosen "axes" which pass through the appropriate picked points.
2. Project this intersection point onto each of the "axes" and truncate it to the next lowest of the points in the discrete set. This gives a lattice point in six-dimensional space. Beginning from this point, use a systematic method to find the remaining 7 points of a threedimensional face of a sixdimensional hypercube.
3. Using the original matrix of six axis vectors, project this face into threedimensional space.

Exception: When 4 or more of these projections fall into the discrete set, it indicates the construction of a more complex cell, which is composed of smaller cells. These special cases are as follows:

4 - Rhombic Dodecahedron (12 sides, 4 cells)

Picture taken from Wolfram Mathworld

5 - Rhombic Icosahedron (20 sides, 10 cells)

Pi. aken from Wolfram Mathworld

6 - Rhommic Triacontahedron (30 sides, 20 cells)

Picture taken from Wolfram Mathworld

Our Results:

- Done correctly, cells pack without intersection, forming a quasicrystal.

