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PAPER  

 

The paper will briefly give an introduction to the structural properties of randomly generated patterns 

of intersecting 1D and 2D elements in 2D and 3D space. The conclusion is that these random 

configurations create patterns for basic structural types as lattice and plate structures. This issue has 

already been discussed and proven in [Wester 2003 and 2004]  

 

In this paper I will concentrate my investigations on the structural behaviour of the relatively recently 

discovered - partly chaotic and partly orderly - geometries as Penroses (found by Roger Penrose in 

1970
th
), described in [Gardner 1989] and quasicrystals (found by Daniel Schechtman in 1980

th
), 

described in [Senechal 1996 and Robbin 1997]. These new geometries give almost unlimited 

possibilities for configurations and shapes in 2D and 3D, geometries which can form single and 

double layer facetted domes, two or multilayer space trusses as well as 3D mega structures – all as 

pure lattice or pure plate structures or a combination of these. The topology of these geometries turns 

out to be duals to the random patterns mentioned before and described in [Wester 2004], following 

the topological duality and embedded in the Euler-Descartes theorem for the topology of polyhedra 

and polytopes: 

V – E + F – C = K 

 

linking the number of Vertices (0D elements), Edges (1D elements), Faces (2D elements) and Cells 

(3D elements) - and K is a constant, depending on the genus of the configuration [Coxeter 1973].  

 

 

 

 

 

 

 

 

 

Figure 1: A random 2D pattern of 1D elements (represented by human hair) (left) and the 

similar planar bar-and-node counterpart (centre) and a dual penrose configuration (right). 

Centre and right have similar rigidity conditions as lattice structures. 
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Figure 2: The puzzle of combining the two building blocks to a close packing quasicrystal 

system (two left). Examples of 2D and 3D architectural quasicrystal structures (two right). 

 

The concept of the structural duality [Wester 1984 and 1997] discovered by the author in 1976 

follows the topological duality, and this gives a key to the understanding of the structural behavior of 

the penrose and quasicrystal geometry. It is the first time that the rigidity of these semi-chaotic 

structural configurations have been described. 

 

The quasicrystal geometry seems to imply many potential possibilities for architectural structures 

[Weinzierl and Wester 2001], not least because they easily can adapt to function, landscape, different 

spans etc, using a minimum of different structural elements: In a configuration you will find only one 

length of bars (1D) making up only one type of facet (2D), enclosing only two types of cells (3D) all 

joined by only one type of nodes (0D).  

 

The system, so far neglected in architecture, seems to contain a huge amount of unrealised 

possibilities for architectural expressions because of the simultaneous morphological simplicity and 

complexity.  

 

2 The Rhombic 2D Penrose Pattern as a Plane Lattice Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: How many bracing bars are needed for rigidity? – and where to put them? 
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The rules of duality tell us that vertices swap with facets while edges remain the same number (see the 

Euler theorem above where C is 0 or 1 in 3D). The result is that a penrose composed of rhombs is 

dual to the pattern formed by random intersection of 1D elements (fig. 1 left) which consists of 4 -

valent vertices. This implies that the average vertex in a large penrose is 4-valent i.e. the penrose fulfil 

internally the necessary number of bars to nodes for rigidity and the number of bracings is related to 

the border [Wester 2004]. 

 

As the rhomb-based penrose pattern consists of two different rhombic 4-gons, it will be possible to 

identify bands (so-called “ribbons” or “pasta-bands”) through the pattern. These ribbons cut the 

parallel edges of the rhombs. Because of the underlying pentagonal symmetry we find parallel ribbons 

in the five directions. If all ribbons are marked then they form a pattern crossing each other in 4-way 

vertices and they will include all rhombs even the ribbons are not identical. The parallel lines crossing 

the ribbons belong to the orderly part of the penrose pattern while the differences of the individual 

ribbons belong to the chaotic part, see fig.4.  

 

Observations show that if one ribbon is fully braced hence rigid, then it is possible to extend the rigid 

domain as non-braced rhombs by the rule: “one new node is fixed by two new bars”. In this way the 

entire domain from the braced ribbon until the next parallel non-braced ribbon is rigidly connected to 

the braced ribbon. This is valid for both sides of the braced ribbon. To continue it is necessary to 

brace only one rhomb in the neighboring parallel ribbon. Then the whole ribbon has become rigid and 

hence is the seed for the rigidity until the next parallel band, etc. See fig.6, left.  

 

As indicated above then the average vertex for a penrose is 4-valent. The “regular version” of this 

could be the 2D pattern of squares which have the same characteristics. The (two straight) ribbons in 

the square net cross each other and cut parallel edges. This property is used for the method by means 

of a subgraph to determine the number and position of bracing bars to evaluate if such a pattern is 

rigid or not [Baglivo and Graver 1983]. The proofs for the stability condition for the square net and 

the rhombic penrose are similar because the possible movements (gliding) of the parallel bars crossing 

the ribbons are the same. Where the square net operates with numbered rows and columns, the 

penrose operates with the five rows of different orientated ribbons called a,b,c,d,e all numbered 

according to the selected part of the penrose. The minimal number of bracing bars is the total number 

of ribbons minus one – just as for the square net. The five different systems of ribbons have the same 

ability to glide as the two directions in the square net. 

        Figure 4: Penrose with 3 x 5 ribbons   Figure 5: The b2 gliding ribbon.  
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If the bracing subgraph 

connects all points and is 

forming a single tree i.e. 

without circuits, then the 

penrose is rigid using the 

minimal number of bracing 

bars (or plates). The needed 

14 bracing bars for the left 

example can be verified by 

successively fixing one new 

node by two bars, starting 

along the rigidly braced b3 

ribbon.  

Figure 6: Braced penroses and their subgraphs 

 

3 The Quasicrystal Pattern as a 2D Lattice (Surface) Structure in 3D 

 

Imagine a large quasicrystal cleaved into two halves and use the surface as a single layer structure. 

The rigidity of such shapes follow the rules for polyhedral combined lattice and plate structures as 

described in [Wester 1991], i.e. for an unsupported closed polyhedron, all (rhombic) facets must be 

either braced into triangles with bars or with plates in all rhombs to be rigid, see fig.2c.  

 

4 The Quasicrystal Pattern as a 3D Lattice Structure in 3D 

 

The rules of duality tells that the number of vertices and cells swap while edges and facets swap (see 

the Euler theorem above). The result is that a quasicrystal composed of golden cubes is dual to the 

pattern formed by random intersection of 2D diaphragms which consists of 6-valent vertices, only. 

This implies that the average vertex in a quasiqrystal is 6-valent i.e. a “large” quasicrystal fulfil the 

necessary number of bars to nodes for rigidity [Wester 2004]. 

 

As penroses have ribbons with parallel bars, the quasicrystals have double layers separated with 

parallel bars (sandwiches) of similar regularities. Six sets of such sandwiches intersect each other 

with the same kind of parallel qualities as the five sets of ribbons in the penrose. One could expect 

that the similarity between the penrose and the quasicrystal as lattice structures implies similar 

operational methods for designing rigid quasicrystals, but this seems not to be the case. Such methods 

are still under discussion. Until useful methods are found then the rule that: On the basis of rigid 3D 
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elements, the step-by-step method: “three new bars is needed to fix one new node” can be used to 

successively establish a rigid 3D quasicrystal structure.  

 

The sandwich seems to be an interesting alternative to space trusses as it has possibilities in its 

functionality by adaptation to small and large rooms, to the landscape, high and low areas etc.  

 

The content of chapter 3 and 4 will appear and be discussed further in part II of this paper, which will 

be presented at a future conference. 

Figure 7: An architectural quasicrystal composition. 
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