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A 3D-Printed Model of a 694-cell Photonic lcosahedral Quasicrystal

[High-res. Stereolitographic (SLA-250) model in plastic of an icosahedral quasicrystal,
Source: W. Man et al., Nature, 2005:1 3oi10.1038/nature03977 |

» The first reported quasicrystalline structure was that of a metal alloy

Alp 14Mng g With icosahedral point symmetry (Schechtman, D. et al. 1984.

“Metallic Phase with Long-Range Orientational Order and No Translational

Symmetry”, Phys.Rev. Lett., 53: 1951-1953.
Comment: Paul J. Steinhardt, 1986. Distinguishing a Quasicrystal from an Icosahedral Glass Via

Lattice Imaging, Phys. Rev. Lett. 57: 2769).
e This is where the quasicrystal story began, ... or has it ?!




1. CRYSTALS and L ATTICES

A crystal is a regular structure with long-range order and a single periodic unit (cell) that by exact

repetition forms a lattice with both rotational and translational symmetry.

e The lattice is a mathematical concept.

> In Geometry and Abstract Algebra--Group Theory a lattice in X" is a discrete

subgroup of ;" which spans the real vector space R"
>

i
A= Z-:m:,-_ a; € &
i=1
where {v . ... v } is a basis for g™,
e In the context of Crystallography, Material Science and Solid-state physics, a latticeis a

synonym for the "frame work" of a crystalline structure, a 3-dimensional array of regularly
spaced points coinciding with the atom or molecule positions in a crystal.

» Thus, a crystal lattice is a discrete, periodic arrangement of points in n dimensions
larger than (or equal to) 1 and less than or equal to 3; its points are the atoms (or ions)
that make up the crystal.

1a. An Example

A Face Centered Cubic (fcc) Crystalline Cluster and Lattice

D

Idealized, Discrete Geometry



http://en.wikipedia.org/wiki/Materials_science
http://en.wikipedia.org/wiki/Solid-state_physics
http://en.wikipedia.org/wiki/Crystalline_structure
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Crystal

Regular OCTAHEDRON

1b.

1a. The first Brillouin zone of a face-centred cubic (FCC) lattice, with its points of high symmetry marked;
its symmetry group is Oy, .

1.D. For the BCC lattice the first Brillouin zone is a rhombic dodecahedron.
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http://en.wikipedia.org/wiki/face-centred_cubic

1c. e Brillovin Zones

FT or FFT
Crystal Lattice --------- =2 Reciorocal Latiica

< FT

A SIMPLIFIED, 2D- REPRESENTATION

The reciprocal lattices (dots) and cormesponding
first Brillouin zones of (a) square lattice and (b)

hexagonal lattice,

» Mathematically, the Brillouin zone is the Voronoi cell around the origin of
the reciprocal lattice.

> Physically, the Brillouin zone turns out to be very important for understanding the
electronic structure of crystals. It is defined by the set of points in reciprocal (or k-)
space that are closest to the origin of k-space without crossing any Bragg planes.

Diffracted X-ray Beam

)
d
y
AB=dsin(8)=BC .~ ABC=2dsin(8)
AB'«204in(8) =BC' +  ABC «24BC =44 sin (8)
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http://en.wikipedia.org/wiki/Voronoi_cell

Cubic lattice system CUB(1),FCC(1), BCC(1)

BCC path: M-H-N-T-P-H|P-N

CuUB path: I‘-K—M-I‘-R—le—R [Ssrtygmanrs & Stk D11 10 VM crereruabacd S0 15 116] FCC pEﬂ'I: F-X-W-K-]“-L-U-W-L-Km-x

[ntymumn & Cortamin [11: 101004 cnmmtei 301005 6] Body Centered Cubic Lattice (BCC) [Seetymwan & Curtmein, D08 10.1016] commess: 2010, 00

Simple Cubic Lattice (CUB) BZ. BZ. Face Centered Cubic Lattice (FCC)
BZ.

s 4
Wi

"—
L/

-

.

p

N

d

HEX path: [-M-K-T-A-L-H-AIL-MK-H

[Setpawan & Curarcla, DOI: 10,1016 commatsc 2010.05010f

Hexagonal Lattice (HEX) BZ.

Face-centered-cubic (fcc) crystal struc-
ture of PuO; (Pu atoms in green, O
CcP atoms in red).

Quick and Dirty Preview of Solid State Physics

Bloch Waves and

Brillouin Zones
*  Brlloun Zones defined in Reciprocal Space around latice point
E » First Brillouin Zone defined as the volume encompassed around a laitice

point withoul crossing any Bragg planes
» Second Bnllouin Zone is the volume
oblained by crossing only one plane
» Conlinue on to hugher orders

=

1 * Penodicity of wavefunction mandates all ¥
j unique information is contained within Brillouin Zones for
' the first Brillouin zone 2-D Square Lattice
#:"-L » Wave-functions in higher zones can be obtained by translating the
| R “pieces” back through the Bragg planes to the First Brillouin Zone. é%
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2. STABILITY and Electron Distributions for METAL ALLOYS

2.a. The concept of a Cohesive Enerqy in a solid

E
kinetic energy per electron
/ Welr) E
TminT0 ¥ 0 4
0 o :A E__&LI ___________________________ &y
N 3s
golr)+ Welr)
\ lowest binding
energy
Eu( r)
Na metal Na free atom

The curve &(r) represents the lowest energy of electrons with the wave vector

k=0 while the curve € yinetic represents an average kinetic energy per electron.

€ ioniz represents the ionization enerqgy needed to remove the outer 3s electron

in a free Na metal to infinity and € cis the cohesive enerqgy. (THE BOSS!)

The position of the minimum in the cohesive energy gives an equilibrium
interatomic distance ro. Gaps, or voids, between atoms would increase this
distance and decrease the system’s stability.

{

2.b. How are electrons distributed in Metals and Metal Alloys ?

How inter-metallic bonds or valence electrons contribute to

the metal alloy stability ?

(Assuming, of course, that all atoms are as closely packed as physically
possible!)




First, we choose a suitable coordinate, or 3D reference frame for the electrons, which is
usually selected in the k-space, or the space of the wave vectors of the electron wave functions
in a crystal and thermal vibrations of a lattice.

k

4
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Figure 1: Spherical surface in k-space for electrons in three

k

dimensions.

* In metallic and inter-metallic materials (alloys, for example) the metal ions are thought to be
located at the crystal lattice points and to share a large number of energetic electrons that
behave like a nearly “free-gas’ of Fermions with a density of states (DOS) which is continuous
throughout the crystal. For a free electron gas this is a parabola up to the Fermi level (or gap),

Ef!
DOS := NUMBER OF ELECTRONIC STATES per ENERGY INTERVALS that are available to the electrons:

DOS -VE

f =p¥2m

Figure 3: Free-electron DOS in 3-dimensional k-space

E=p’/2m —>



Because of the periodicity of the crystal lattice there are Bloch waves of the electrons
in the crystalline metals whose behavior can be completely characterized by
considering only the first Brillouin zone. Therefore, the stability of the metal might be
related to the intersection of the DOS at the Fermi level with the face of the Brillouin
zone (Jones, 1936; Mott and Jones, 1937), i.e., as long as the DOS is within, (or at) the
Brillouin zone the metallic crystal is stable. Hume-Rothery was very happy with this
explanation until Brian Pippard showed that the DOS in CusSng alloys extended well

beyond the first Brillouin zone [110] face !

At the Fermi level there opens a Fermi (or Jones) gap in the DOS -- the DOS has a
minimum at the Fermi energy —so called “pseudogap”-- in most metal alloys.

[Remark: In graphite layers and MOSFET type devices there is a 2D- free electron gas (2DEG)!]

Quick and Dirty Preview of Solid State Physics
JOHNS HOPKINS
Nustration of Nearly-Free
Electron Gas in 1-D
?ﬂl’-_f vi \
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A little basic, 101 Chemistry:

> The arrangement of electrons in the (electron) orbitals of an atom is called the atom’s electron
configuration.

> One uses the Pauli exclusion principle (“An orbital can hold at most ONLY 2 eIectrons’iT =
up-down spin pair -> total spin is zero) and the Aufbau ‘principle’ or rules to arrange the electrons in
stable electron orbitals of an atom:

® Electrons are placed in the lowest energetically available subshell
o If two or more energetically equivalent orbitals are available (e.g., p, d, f etc.) then
electrons should be spread out between subshells before their spins are paired up (Hund's
rule)
Summary: When filled, the # of electrons in orbitalsis:s2 | p6|d10 | f 14 >

The lowest energy levels are the most stable and are therefore filled up first !




2.c. The Possible Connection with the Hume-Rothery Rule for

the Average # of Valence Electrons/atom (e/a) in metal alloys
(Jones, 1936; Mott and Jones, 1937; Evans, et al. 1979; Mizutani, U., 2008, 2010)

“The discovery of quasicrystal phases and (their) approximants in the Al(rich)-Mn system
has revived the interest for complex aluminides containing transition-metal atoms.

e On the one hand, it is now accepted that the Hume-Rothery stabilization plays a crucial
role.
« On the other hand, transition-metal atoms have also a very important effect on their

stability and their physical properties. [Guv Trambly De Laissardiére (LPTM, CNRS), Duc Nguyen-

Manh, Didier Mayou (LEPES, UKAEA; Submitted on 20 Oct 2004 (v1), last revised 3 May 2005 (this version, v2)):
http://arxiv.org/abs/cond-mat/0410513 ].

2.d. Hume-Rothery Rule No. 2 (cca. 1926) :
Metal alloys are stable for certain precise values of the

average (total) number of valence electrons per atom := e/a.

Example : Cug Sng has astable bcc structure for a value of
e/a=1.615... = (5x1 + 8x2)/(5+8) = 21/13 ! (The Cu atoms valence is taken to be 1!)

QEAH._Xé e/a=7/5=1.40=>f.c.c; e/a=21/13/=1.62=>b.c.c ; e/a=9/5=1.80 =>h.c.p.
Al(rich)=TM quasicrystals and related phases are now also
considered as Hume-Rothery alloys !

[Transition-metal atoms (TM atoms) are: TM = Ti, V, Cr, Mn, Fe, Co, and Ni.]

> In the literature, there are lots of theoretical studies-- from first-principles
(ab initio)— of the electronic structure of Al(rich)=TM crystals and Al(rich)-TM
crystalline approximants of quasicrystals.

+ At low energy, the total DOS is nearly-free electrons like--
their states are mainly sp states of the Al atoms.

+ The &-states of TM (TM =Ti, V, Cr, Mn, Fe, Co, Ni) are observed in the middle of the sp
band.

+ In phases containing Cu atoms, the d peak of Cu is strong and it is located at an energy
lower than that of d-peak of TM.


http://arxiv.org/find/cond-mat/1/au:+Laissardi%7Be%7Dre_G/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Nguyen_Manh_D/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Nguyen_Manh_D/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Mayou_D/0/1/0/all/0/1
http://arxiv.org/abs/cond-mat/0410513v1
http://arxiv.org/abs/cond-mat/0410513

Guy Trambly De Laissardiére et al (2005): “Electronic structure of complex spd
Hume-Rothery phases in transition-metal aluminides.” [ in The Science of Complex Alloy
Phases, USA, (2005) p. 345-374]:

“In this paper, we review studies that unify the classical Hume-Rothery stabilization for SP
electron phases with the virtual bound state model for transition-metal atoms embedded in

the aluminum matrix. These studies lead to a new theory for "SPd electron phases"”. It is
applied successfully to Al(Si)--transition-metal alloys and it gives a coherent picture of
their stability and other physical properties.”

» These results are based on first-principles (ab initio) calculations of the
electronic structure and simplified models, compared to experimental results.”

i

0.7 grrrrrerprerrerereprrrrer IRLAMLLLL proTTTTTT AL A LAY I T
0.6
0.3
0.4
0.3
0.2
0.1

o b

DOS (states / (eV Mn atom))

DOS (states / (eV Al atom))

Figure 2: Non-magnetic DOS in a AljgyMn model. Mn atoms are in substitution to Al

atoms in an Al f.c.e. Al(1l) and Mn atoms are first-neighbors.
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Figure 1: LMTO total DOS orthorhombic of o-AlgMn, tetragonal w-Al;CuaFe, cubic a-
Al-Mn and cubic a’-Al-Cu-Fe [13].

Ab initio Quantum Computations for spd Hume-Rothery Metal Alloys.

® The red arrow points to the calculated Fermi pseudogap in the DOS !
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http://arxiv.org/find/cond-mat/1/au:+Laissardi%7Be%7Dre_G/0/1/0/all/0/1

2.e. DOS of spd electron orbital Phases: SpPp—d hybridization

<<ll

In many transition-metal aluminides, the Fermm level Eg 1s found near a large valley in
the DOS that splits the band between bonding states and anti-bonding states (figure 1).
This valley, called “pseudogap”, 1s generally attributed to a combined effect including the
electron diffraction by the Bragg planes of a prominent Brillouin zone and a strong Al(sp)
hybridization.” >>

Experimental Photo-emission Spectroscopy and specific heat measurements have
confirmed the presence of a Fermi pseudogap in the DOS of many Al-TM quasicrystals and
their crystalline approximants.

“The spd aluminides are characterized by a strong sp—d hybridization between the Al sp states
and the TM d—orbitals. Many experimental studies of photoemission spectra have shown this property
(E. Belin-Ferr'e...) It is illustrated from the LMTO calculation through the comparison between the
DOS’s calculated with the sp—d hybridization (“exact” calculation) and the DOS’ s calculated by setting
to zero the matrix elements of the Hamiltonian that correspond to the sp—d hybridization (calculation
‘without sp—d hybridization’ [19]). The width of the TM DOS is strongly reduced in the calculation
without sp—d hybridization with respect to the exact calculation. Indeed the width of the TM DOS (mainly
d-state DOS) is proportional to the square of the matrix element that couples the d-states and the sp—
states in the (quantum) Hamiltonian.” [Guy Trambly De Laissardiére (LPTM, CNRS) et al, 2005].

"Negative valence’ of transition-metal atoms
In his original work on negative valence, Raynor [1] assumed a transfer of electrons from the
conduction band (sp band) to the d band in order to compensate the unpaired spins of the TM
elements, and fill the d band. In this scheme the TM atoms remove electrons from the sp band and
thus have a negative valence.

“"But a transfer of several electrons on one atom is unrealistic in metallic alloys since it corresponds to a
too large electrostatic energy for metallic alloys [2].
The LMTO results allow to solve this paradox and to understand the apparent negative valence of
TM in AI-TM compounds. Indeed, there is an increase of the sp DOS below ErF as compared to the
free electron DOS due to the combined effect of sp—d hybridization and the diffraction of sp states by
Bragg planes. In this scheme filling these additional sp states below Er plays the same role as filling of
the d band in Raynor’s scheme. It results in an apparent negative valence of TM. Contrary to the d
orbitals these additional sp states are delocalized and do not lead to a strong electrostatic
energy. Yet one may expect that these additional sp states are linked to the TM atom and that they
follow its displacement. This could explain the anomalous effective charge of TM elements as
deduced from optical conductivity [24].”

Table 2: Negative valence of transition-metal elements in Al{rich) alloys:
According to Raynor [1] and quantity (—AN,) caleulated from LMTO [14].

Cr Mn Fe Co Ni
Raynor —4.66 —3.66 —2.66 —1.66 —0.66
LMTO | —3.2 (AljaCr) | —2.7 (AljoMn) | —2.5 (Al;CusFe) | —1.3 (AlgCos) | —1 (AlyNi)
—2.0 (AlgMn) —0.9 {Al;Cog)

11
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2.f. Generalization of the Jones theory for the spd electron phases

“Following a classical approximation [5, 6] for Al(Si)-Mn alloys, a simplified model is

considered where sp states are nearly-free and d_states are localized on Mn sites i.
The effective Hamiltonian for the sp states is thus written as :

R k2 i
Hepsisp) = 55— + Vet

where VB, eff is an effective Bragg potential that takes into account the scattering of sp-states by the

strong potential of Mn atoms. VB, eff depends thus on the positions I'; of Mn atoms.
By assuming that all Mn atoms are equivalent (and “avoid’ each other!), one obtains:

1"?3,.1;;{1'] = E ""B_cff(K]ffiK'r- {10]
K

s _ Es |tK|Q —iK.r;

Vierr(K) = Vi(K) + - E e . (11)

T

where the vectors K belong to the reciprocal lattice, fg 15 a average matrix element that
couples sp states k and k — K wia the sp-d hybridization, and Ej; is the energy of d states.
The term Vi(K) is a weak potential independent of the energy F. It corresponds to the
Brageg potential for sp Hume-Rothery compounds.

The last term in equation (11), is due to the d-resonance of the wave function by the
potential of Mn atoms. It is strong in an energy range FE; — ' < F < E; + ', where 2T
1= the width of the d DOS. This term is essential as it does represent the diffraction of the
sp electrons by a network of d orbitals, 1.e. the factor (ZI e_iK'ri} corresponding to the
structure factor of the Th atoms sub-lattice. As the d band of Mn 1s almost half filled,
Fyp = Fy, this factor is important for energy close to Ep. Note that the Bragg planes
associated with the second term of equation (11) correspond to Bragg planes determined
by diffraction.

This qualitative analysis suggests that both sp—d hybridization and diffraction of sp
states by the sub-lattice of Mn atoms are essential to understand the electronic structure
of Al(Si)-Mn alloys. The strong effect of sp-d hybridization on the pseudogap is then
understood in the framework of Hume-Rothery mechanism. ”

2.0._Structural Stability of complex spd electron phases

Although there have been several first-principles calculations for different Al(rich)-TM
compounds and related quasicrystalline phases, 1t 1s desirable to elucidate why the qua-
sicrystalline phase is stable only by forming with TM of group VIIA (Mn, Re) and group
VIIIA (Fe, Ru, Os, Co, Rh, Ir, N1)? It 1s also essential to know whether these calculations
confirm (or not) a Hume-Rothery mechanism for stabilizing spd compounds like that has
been shown for simple sp compounds.

By using a Rigid Band Approximation within local Density Functional theory,
the effect of the average number of (valence) electrons per atom, e/a, on the relative stability
has been studied [18].

12



This shows (“figure 7” of source) that transition-metal trialuminides go from the tetragonal AI3TM
structure to the monoclinic Al13TMa structure as a function of the average electron number per atom

ratio:. TETRAGONAL (1.5) --> MONOCLINIC (?)--=> AlgMn icosahedral quasicrystal (~2.15)

X/

% The AI3TM type structure is more stable for transition-metal trialuminides with TM at the
beginning of the d series (Sc, Ti, V, Y, Zr, Nb, La, Hf, Ta),....ela=? (3x3-3)/4=1.50,
whereas

X/

% the Al13Fea4 type structure is more stable for the transition-metal trialuminides with
TM = Mn, Fe, Co, Ni Tc, Ru, Rh, Pd, Re, Os, Ir and Pt [18]. e/a = ?...left as an exercise !
Does the actual monoclinic structure agree with that expected for the e/a value of ...?

s These theoretical predictions of the relative stability of the transition-metal trialuminides
between the simple tetragonal AlsTM structure and the more complex monoclinic

Al13TMa structure, agree with the Hume-Rothery condition for stabilization in terms of e/a.

% For the AlgMn icosahedral quasicrystal, e/a is: (6x3 - 2)/7 = 16/7 = 2.286, or 2.0 if Val_Mn=-41,
whereas for other quasicrystals e/a = 1.75 ! [close to the Al13Fe4 value...?]

s Concerning the DOS, it results that the consequences of the Hume-Rothery rules for the
transition-metal trialuminides are the same as for the simpler sp electron compounds:

”
The most stable phases are those for which E|:is located in a pseudogap of the total DOS.

Er := Fermilevel
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Hamlet: “And therefore as a stranger give it welcome.
There are more things in heaven and earth, Horatio, than are
dreamt of in your philosophy.”
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Further Readlng The solid-state “pin-ball machine’
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3. OUASICRYSTALS
3.1. AINiCo Quasicrystals

IN THE PLANE, THE AINiCo QUASICRYSTAL, WHICH CONSISTS OF
OVERLAPPING DECAGONS, IS APERIODIC. BUT THE STACKED PLANES
HAVE PERIODIC STRUCTURE. (EM Images by Steinhardt and Jeong,2000. Nature ,382,433-35).

quasicrystalline
ordering; by looking at right angles to the planes. they could observe
the effects of the periodic. crystalline-like ordering of the stack.

Peter Gille of the Ludwig-Maximilians-University, Munich, grew the
quasicrystal. and the samples were prepared and characterized by Hom
and by Wolfgang Theis of the Free University of Berlin. At the ALS,
Rotenberg, Horn, and Theis examined the samples by means of low-
energy electron diffraction and by angle-resolved photoemission at
beamline endstation 7.0.1.2.

"Our principal findings were that the distribution of the electronic
states in momentum space correlates with the electron diffraction
pattern. just like in an ordinary crystal. The electrons aren't localized
to clusters, instead they feel the long-range quasicrystal potential,"
Rotenberg says.

"We found that the electrons propagate nearly freely. like conduction

electrons in an ordinary metal."” he continues. "and we found there is a
Fermi surface. crossed by nickel and cobalt d-electrons: its topology
should determine some of the material's fundamental properties."

15



BPand-like properties., COIMIIOIL 11l
metals and other ordinary cryvstals,
were Mot expected 1 guasicrystals.
BPut thhen guasicryvstals thhemselves
are an unexpaected phenoimenory.

THE CONSTANT ENERGY
CONTOURS FOR NEARLY
FREE S-P ELECTRONS IN
AINiICo QUASICRYSTALS
(DATA, TOP) ARE DERIVED
FROM THREE-DIMENSIONAL
SPHERES DISTRIBUTED
APERIODICALLY IN
MOMENTUM SPACE (MODEL,
BOTTOM).

«“One may predict a guasicrystal structure starting from electrons and quantum
mechanics, as approximated by interatomic pair -potentials calibrated with ab initio total-
energy calculations, combined with the experimentally known composition and lattice

constants. the “basic Ni’ decagonal phase O(Al-y Niy; C0y).” [c.L. Henleya, M.

Mihalkovic, M. Widom. Total-energy-based structure prediction for d(AINiCo). Journal of Alloys and Compounds
342 (2002) 221-227 ; www.elsevier.com/ locate/ jallcom].
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3b. Photonic Quasicrystals
BACK TO THE PHOTONIC, [COSAHEDRAL QUASICRYSTAL MODEL !

Frequency, f (c/0)
=

=
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Figure 2| Measured transmission for an icosahedral quasicrystal. a, T(ff),  frequency bands, The dashed line is a 1/cosf curve characteristic of Bragg
transmission as a function of frequency (measured in units of ¢/d) and angle,  scattering from a Brillouin zone face. b, T(f) for a rotation about a five-fold
for a rotation about a two-fold rotation axis of the quasicrystal rotation axis corresponding to the dashed line in Fig, 1¢. Inset, schematic of
(corresponding to the dotted line in Fig. 1¢) using two overlapping the microwave hom and lens arrangement used for these measurements,
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Figure 3 | Comparison of calculated bands and measured transmission for a
diamond structure. a, Calculated dispersion relation fon the boundary of
the first Brillouin zone versus 6, for the diamond structure along the dotted

curvein Fig. 1d. b, T(f,0) for the sample rotation along the same curve. There
is excellent agreement at the photonic gap centre frequencies.

[Source: W. Man et al., Nature, 2005 :1 30&10.1038/nature03977 |
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Wavevector, k,

Figure 4 | Imaging of Brillouin zone for diamond and icosahedral

quasicrystal structures. a, Brillouin zone for the diamond structure along
the four-fold direction as seen in the contour plot of calculated frequency
deviation (5f = f — (¢/m)|k| /{2%)) versus k. b—e, The Brillouin zone can be
seen in a plot of the measured T(r = f, § = 8) (using the same scale as Fig, 3)
for the diamond lattice along the four-fold (dashed in Fig. 1d) axis (b) and

two-fold {dotted in Fig. 1d) axis (c); and for the quasicrystal along the five-
fold {dashed in Fig. 1c) and two-fold (dotted in Fig. 1c) axes (d). The inner
decagon in d and the solid and dashed lines in e correspond to the dashed
and dotted lines in Fig. 1c. The dash-dotted line is a non-triacontahedral

zone face,
LI S U O b
12

)

§10 Waveguid ﬂﬁ_u

S 1, J—.— ]

§ Hom ! Coaxiajcablei
Vector analyser |

Sosh

0 30 60 % 120 15 1800 30 60 9 120 150 180
Angle, 6 (degree) Angle, 6 (degree)

Figure2 | Measured transmission for an icosahedral quasicrystal. a, T(f,6),
transmission as a function of frequency (measured in units of ¢/d) and angle,
for a rotation about a two-fold rotation axis of the quasicrystal
(corresponding to the dotted line in Fig, 1¢) using two overlapping

frequency bands, The dashed line is a 1/cosfl curve characteristic of Bragg
scattering from a Brillouin zone face. b, T(f6) for a rotation about a five-fold
rotation axis corresponding to the dashed line in Fig, 1¢. Inset, schematic of
the microwave hom and lens arrangement used for these measurements,
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4. IONIC and METALLIC GLASSES (my own Data)
4a. LiCl —nH,0 Glasses at 77K, Chem. Phys. Letts. (1978)

Instead of only X-ray scattering | have used Solids NMR & Neutron Scattering Data

---=> distorted FCC cluster structure

+
M ' \

Water molecules

Chloride ion, CI-
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FCC =>distortion =» LiCl x nH,0, for 2.2<n< 13!

ST
fetlet et Lo
EiSe =l

r(cl)~1.8A, r(Na")=1.0A .

4b. Lanthanum Nitrate, La(NO3)3 — nH,0 Glasses at 77K,
for 4<n<29

The number of electrons in each of Lanthanum's shells is 1s2; 2s2 p6; 3s2 p6 d10; 4s2 p6 d10; 5s2 p6 d1; 6s2 and its
electronic configuration is [Xe] 5d* 6s°.

La™ has the electronic configuration : 2,8 18, 18,8
Local Structure(s):

Distorted Icosahedra of Hydrated La™ ions with (2 +1)
hydration shells:

1(6); 11(12) + 3 attached N03- hydrated with 3 water
molecules each: Total complex hydration = 27 H20 !!

i
o7 ™o

lh:= —La" 18 H,0 +3x] ~3H,0].

The hydrated Lanthanum Nitrate x 27H,0 glasses have a local cluster structure which is
a distorted version of the ICOSAHEDRAL COORDINATION in the crystal structures of
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http://en.wikipedia.org/wiki/%C3%85
http://en.wikipedia.org/wiki/%C3%85

Ammonium Nitrolanthanates

Ammonium Nitratolanthanates(III)

Fig. 4. Coordination polyhedron around the lanthanum atom. (a) A view along the “capping atoms” O(1) and
O(1)“. (b) A view perpendicular to that in (a). The letter a refers to the symmetry operation —x, y, 3—z.

0(33) o(11)° 0(33)°

0(22)9
0{23) 0(23)°

Fig. 1. A perspective view of the
[La(NO,)s(H,0),]>~ complex with the atomic
numbering system. The letter a refers to the
symmetry operation —x, y, +—z.

Acta Chemica Scandinavica A 36 (1982) 465 —470

Fig. 6. View of one chain of lanthanide-centered polyhedra running along the b-axis in Ndz(1,2-bdc)s(Hz0): (4). Open

circles indicate the additional terminal water bounded to Nd1 and Nd4 cations.
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(4

The coordination polyhedron around the La
atom can be described in both compounds as a
slightly distorted icosahedron. This was also the
case for the magnesium and potassium compounds.
The pattern of the coordinated nitrate groups is,
however, different from the potassium compound.
In both cases the water molecules occupy rtrans
positions of the capping atoms in the icosahedron.
In the present complexes each of the five nitrate
groups contributes one oxygen atom to each of the
two five-membered rings in the icosahedron while in
the potassium compound one of the nitrate groups
belongs entirely to one of the rings. Fig. 4 shows
the coordination polyhedron; distances and angles

involved are listed in Tables 3 and 4. »

Lanthanum (La)
Bohr Model

+ USES: 1. Lanthanum-rich lanthanide compositions have been used extensively for cracking
reactions in FCC catalysts, especially to manufacture low-octane fuel for heavy crude oil. It is
utilized in green phosphors based on the aluminate (La0.4Ce0.45Th0.15)PO4.

o 2. Lanthanide zirconates and lanthanum strontium manganites are used for their catalytic
and conductivity properties and lanthanum stabilized zirconia has useful electrical and

mechanical properties.

o 3. Lanthanum's ability to bind with phosphates in water creates numerous uses in water treatment.
It is utilized in laser crystals based on the ytrium-lanthanum-fluoride (YLF) composition. Lanthanum
metal is predominantly used in the production of mischmetal and steel additives but is also important
in the production of hydrogen storage alloys for nickel-metal hydride (NiMH) batteries.

Fig. 4. View of the structure of Lm(1,2-bdc)s(H-0) (1 and 3) along the ¢ direction, showing the atomic and polyhedral
arrangement of the layers of lanthanides with the phthalates groups. Journal of Solid State Chemistry, 183 (9) Sept. 2010: 1943-1948
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4c. Other Glass Local Structures that | determined in 1977
by Solids NMR at 77K

4+ Cd(NOs), -sH,0, s=18,
A distorted lcosahedron, too !
Distorted Octahedra:

* ZI'I(N03)2 -mH,0 m<13
+ Ca (NOg)z -p H,0

%+ CuClp-qH,0 g=6!
Dynamic Jahn-Teller Effect: the stable structure of hexa-hydrated

Cu*? is an axially distorted octahedron!

[Ar] 3d10 4s1. A filled or half-filled d shell is more stable. So, in the most stable configuration the 3p shell takes an
electron from the 4s orbital.

4d. Metal Glasses (at the Cavendish Laboratory in 1978-79)

COQP-distort.lcosahedra;FeNiPB,Pd4Si,Fe4B, CugZr...
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< CogP -rod,
Quasi-icosahedral (with shared caps): from X-ray

Scattering (XRS) and Ferromagnetic Resonance
(e/a = (9x2 +4)/10 = 2.20 => icosahedral !, but P is non-metal !!)

> Feo‘;Nio‘zPquoJ + XRS and Spin Wave Resonance
Fe3 Ni..: e/a ~ (3x3+2)/6 = 1.83 ... 1.91 = distorted h.c.p. or ~ dodecahedral ?

< PdqGe from XRS + Neutron Scattering (NS)

e/a = (4 +4)/5=1.60 - bcc lattice ? , but Germanium is a semiconductor !); perhaps,
there is so much metal in the glass that the metallic character apparently predominates,
but there are neither Brioullin zones nor Bloch waves in metallic glasses?!

DX Pd,Si from XRS and NS
* FeyB
‘:‘ C usZr

2 »
Lanthanum Nitrate Hexahydrate —80 x Polarized Light Micrograph:

“Lanthanum (1) nitrate hexahydrate (La(NOs)3) is a strange compound!”
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Only 24 Bravais crystal lattices = 230 crystallographic (or space) groups

(onlv 14 crystal lattices are shown here !)

P

hexagonal = rhombohedral

There are many more quasicrystalline arrangements of atoms possible,
corresponding to some 776+... superspace groups up to 6D.
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9. CONCLUSIONS

1. Icosahedral structures, albeit distorted, were observed in
both hydrated Lanthanide crystals and ionic glasses a full 7
to 20 years prior to the reporting of the icosahedral
guasicrystalline structure of Alg14Mnggg (Al;sMngg ~AlgMn)
in 1984.

2. Both quasicrystals and metallic glasses (e.g., Nig7Zrs3) have
Pseudo Brillouin zone(s) and a Fermi pseudo-gap.

3.The stability of the quasicrystalline and of crystalline metal alloys
depends in a systematic manner on the electron distribution in
these systems, and can be predicted surprisingly well from e/a values—
the average number of valence electrons per atom-- for a wide range of
binary alloys, from CuAl alloys, to brasses, and to AITM alloys (including
quasicrystalline AlgMn) for the entire series of transition metals (TMs)
that are "Hume-Rothery complex alloys’. It seems that ab initio quantum

computations are now possible for all such metal alloy structures,
fulfilling Hume-Rothery’s dream from 1936!

4.1n ionic glasses with water, quasicrystals and crystals the close
packing of atoms and the valence electron interactions result in
stable or meta-stable coordination structures that cover the
complete range of Platonic polyhedra, albeit often in distorted
forms, thus deviating from the ideal polyhedra.

5. Aside from ab initio computations, there is plenty of scope for

geometric and topological approaches to these systems.
(Mathematics is thus neither Platonic nor it is an ivory tower!)
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Evans et al. (1979) Pseudopotential-hased caomputations for CuAl alloys:
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Figure 5 The integrand H(k) (equation (41)) plotted for a range of wave vectors k and
several values of the electronjatom ratio Z for CuAl: (a), Z = 14 (Fcc favourable); (b)
Z = 1-8 (scc favourable); (c), Z = 22 (cc favourable); (d), Z = 2-3 (Bcc ~ Fec) The
calculations are based on the Thomas-Fermi approximation to the screened pseudopoten-
tials. The arrows in each diagram denote the position of 2K, and the positions of the
relevant reciprocal lattice vectors g are indicated. Note that the g's vary with concen-
tration since the atomic volume of the alloy changes.
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Phase stability in x and [} brasses 1949
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Figure 3. (a), the free energy difference per electron F*SC — FF° for CuSn as a function of
the electron atom ratio Z. The calculations use the Ashcrolt empty-core pseudopotential
with & = 1-24au and r{" = 1-30 au. The labelling of the curves follows that in
figure 1a). (b}, the free energy difference per electron FH* — FFCC for CuSn as a function
of the electron per atom ratio Z, The c/a ratio is taken to be the idea! ratio for all
concentrations. The labelling of the curves follows that in figure 1{a).

CuSh Alloys
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CuZn Alloys
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Figure 2. (a), the free energy difference per electron F®C® — FFCC for CuZn as a function
of the electron/atom ratio Z. The calculations use the Ashcroft empty-core pseudopoten-
tial with r&* = 1-2d au and rZ" = 127 au. The labelling of the curves follows that in
figure 1(a). (b), the free energy difference per electron FE® — FFCC for CuZn as a function
of the electron/atom ratio Z. The c¢/a ratio is taken to be 1-857, the value observed
for pure Zn. at all concentrations. The labelling of the curves follows that in figure 1(a).
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Hamlet: “And therefore as a stranger give it welcome.
There are more things in heaven and earth, Horatio,

than are dreamt of in your philosophy.” (william Shakespeare)
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