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Abstract

We develop a vocabulary for real-time interactive computer animation of
mathematical homotopies. We distinguish metarealistic from photorealistic
rendering and classify homotopies by the way they are implemented in im-
mersive virtual environments. The nature of the geometrical pipeline and
its OpenGL C-library suggest this progression: rigid motions, articulations,
topological distortions of space, and general deformations.

Apologia

Two decades ago, when I coined the acronym RTICA (for Real-Time Interactive
Computer Animation), it was wishful thinking that we should be able to do such a
thing in the classrooms, in our student labs, in our offices, at home! By the end of
that decade Silicon Graphics Iris workstations had made all this possible. By 1992,
the “C” in the acronym could be expanded to CAVE, the recursively expanding
acronym for a new technology[10] in immersive virtual environments. Along the
way, what at first was mostly “a manner of speaking” has matured into a reusable
vocabulary.

My acronym is intended to be pronounced, not spelled out. Try it! Make it
sound like “articae”: many artful things. The A also expands variously to Ani-
mation, Animator, Animatrix. And, “animation” itself has some welcome double

∗An abridged version of this paper appeared in the proceedings of the MOSAIC 2000 Conference,
Seattle, 2000. The real-time interactive computer animations mentioned herein, were presented at
the conferenceMatematica e Cultura: Arte, Teconologia, Immagini, Bologna, 2000.



meanings: the process of bringing to life, and that which has been so enlivened.
Similarly, the “animator”, like the “editor”, is both the human operator and the
graphic tool used to produce the animation. There is, as yet, no such word as “an-
imatrix”. Perhaps there should be: for the tenth muse, who inspires us to write
computer programs to make pictures come alive.

In this essay I shall explore computer animation from the viewpoint of a math-
ematician for whom drawing mathematical pictures came as a late vocation, and
for whom teaching what he learned became the principal arbiter for many choices
and decisions. I hope this attempt to formalize my “axioms” (if only to rationalize
my ideosyncrasies) will at least amuse the reader.

First, I draw a sharp distinction between photorealistic rendering of computer
images and a species of non-photorealistic rendering,1

Next, I choose a particular family of mathematical phenomena to illustrate,
namely several kinds ofhomotopies. These can be classified according to the dif-
ficulty of rendering them as real-time interactive animations. Two related areas
of mathematics are particularly hard to imagine and therefore good subjects for
metarealistic rendering. They are 3-dimensional non-Euclidean geometry, and the
visualization of processes extended in 4 isotropic geometrical dimensions.

Finally, I adopt a more polemical turn of speech which touches on the rightful
place of mathematical illustration in the brief history of computer graphics. To
maintain focus, I trace the evolution of my metarealistic enterprise,illiView, as an
example of technology driven research.

Metarealism vs. Photorealism

There is no ambiguity in the meaning of photorealism in computer graphics. After
21

2 centuries of photography2 and over a century of movies to fall back on, we have
no difficulty in deciding when a computer animation really looks and acts “real”.
We have an even longer collective pictorial experience, formed in the eons dur-
ing which artists developed (hardly photorealistic) renderings of every conceivable
scene and action. By and large — and exceptions are worth pondering elsewhere
— artists drew on the real world. Their pictures used real and familiar objects even
when the intended meaning was supernatural, spiritual, or just fanciful. Even im-
pressionism, which Webster[35] defines as “a type of realism the aim of which is
to render the immediate sense impression of the artist apart from any element of
inference or study of the detail,” and subsequent abstract styles (by-and-large !),

1This new discipline [27, 19, 1, 23] treats computer simulations of all graphics media other that
photography.

2In 1727 Prof. Johann Heinrich Schulze, discovered the photographic properties of silver-halide
[2, 13ff]. Daguerre, 1839, received a life-long pension for his discovery from the French government.
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Figure 1: Snapshot into a gravitational lensing project by John Estabrook, Ulises Cervantes-
Pimentel, Birgit Bluemer and George Francis. In this real-time interactive CAVE animation an
invisible mass distorts our view of the world. A second image forms within the Einstein radius
about the mass, which is inside the spiral ball. The ball is confined to bounce about the cubical stage.
The rules of this CAVE-to-CAVE game, based on the Prisoner’s Dilemma and implemented on the
DuoDesk, amused the NCSA PACI-Partners and visitors to Supercomputing98[12].

mean to evoke an emotional or intellectual response which the viewer might have
had on looking at the actual model for the picture.

Not so when we use computer graphics to render abstractions thatdo nothave
concomitant realities. Lately there has been a welcome resurgence of the fasci-
nation with the fourthgeometricaldimension. In the latter half of the nineteenth
century there was some popular interest in worlds of four or more isotropic spatial
dimensions. Two generations of relativistic science and science fiction has made it
difficult to persuade college freshmen and the general public alike thatthe fourth
dimension need not invariably be time[4, 6, 21]. Hypercubes rotating in 4-space
are found in screen-savers and are routinely assigned as machine problems in com-
puter science courses. Since the advent of computer animation and virtual reality,
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non-Euclidean geometry has come into fashion[20, 14, 31, 36]. Java applets for
drawing lines in the hyperbolic plane and on a spherical surface can be found on
the web. Instructive excursions into special and general relativity, molecular biol-
ogy, cosmology etc. all benefit from particularlynon-realisticsimulations which
bend the laws of physics, use stick and balls to model membranes, enlarge plane-
tary diameters a thousandfold, and travel through the cosmos faster than light. All
this so you can see anything at all, and to animate it in real-time.

This enterprise deserves its own name, and I proposemetarealistic rendering,
fully aware of the hazard of coining jargon.3 This is not a synonym for what is gen-
erally calledvirtual reality. The “virtual” in VR just means that we use novel pro-
jection (e.g. stereo) and input controls (e.g. head-tracking) to convincingly evoke
the illusion of experiencing something “real”, much as in a dream. The prefix
meta, having the innocent meaning of “between, with, after, along side of” (Web-
ster) also has less desirable connotations, such as “metaphysical”, “metaphorical”
and “metamorphosing”. But recall that Aristotle’s book on the essential nature of
reality merely followed his book on its physical reality. Only later didmetaphysics
suggest something transcendent, philosophical, theological. Similarly “metaphor”
has become bent out of shape in computing. No longer just the “poetic reuse of
a word,” it seems to mean the imposition of a familiar cognitive structure on an
unfamiliar one. For example, the “desktop metaphor” trades on our familiarity
with desktop furnishings, and then has us “mouse” pictures4 about the computer
screen, and to eject a floppy by depositing it in a trash can (a dubious metaphor!).
Finally, in computing jargon, the transformation of the physical characteristic of an
object, literally itsmetamorphosis(meta=trans, morphe=form), has lost the prefix
to become justmorphing. So, having demythologized some undesirable conno-
tations, let us briefly consider whether the distinction betweenphotorealisticand
metarealistic renderingdeserves a place in the philosophy of technology.

The photorealist has this significant advantage over a metarealistic colleague.
The former can compare personal experience with its imitation (counterfeit, not
facsimile) at every step along its development. Faithfulness to reality guides the
programming strategy; it is an unambiguous criterion for choosing techniques.
Thus for photorealism, Phong shading and anti-aliasing are invariably “better”
than mere Gouraud shading and the “jaggies”, because it makes the image look
more like the photograph of the original, of the “real-thing”. On the other hand,
consider a rendering of what a four-dimensional artist would have to draw on a
three-dimensional canvas in order to evoke the same illusion of an impossible fig-

3The literature is littered with multiple terms competing for the same fuzzy meaning, and derelict
corpses of splendid terms that nobody uses.

4Representing files but blasphemously called “icons”.
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ure as the Penrose tribar popularized by Escher[26, 11]. What does such a 4-D
object “really” look like? Should it be shaded at all? How much do we care about
its jaggies? Actually, we do care. But only after the depiction is totally convincing
in its raw-and-ready draft. Only then, resources permitting, might we engage a
computer artist to help us to meet the competition for inclusion in the SIGGRAPH
Electronic Theater.

Thus, we find that the metarealist must use other criteria, other standards of
comparisons than the photorealist. Among these are fidelity to physical principles,
mathematical honesty, even something like a Calvinist economy in programming
the RTICA so that its scientific message does not get lost in a baroque program-
ming style. After all, it is usually the student programmer of the RTICA who gains
the greatest intellectual benefits from the exercise. Photorealistic perfection intim-
idates the student programmer and distracts the engaged observer. The latter is
expected to think through the mathematical ideas expressed in the RTICA. Thus,
the less the artifact looks “like something else” the better.

Animating Homotopies

Real-time interactive computer animation is particularly appropriate for illustrat-
ing mathematical objects calledhomotopies. These deal with topological changes
that happen over time. As such, a homotopy is the natural mathematical abstrac-
tion of any temporal change-of-shape. Rather than proposing some grand scheme
for animating all possible homotopies, we identify a fewelementaryand typical
homotopies and develop a vocabulary for exploring their RTICAs.5 However, we
do propose to transfer the notion of homotopy into the vocabulary of computer
graphics.

Turning a sphere inside out is the best known of such homotopies[32]. In the
four decades since Smale proved its existence, and the two decades since Nelson
Max first captured Morin’s eversion in a computer animation, there have been many
metarealistic renderings of this “Helen of Homotopies.”

Let us review the common meanings of our vocabulary. But, why should we
care what the non-specialist, ignorant of the jargon, might hear? Mostly, we do so
to anticipate the conscious or subliminal associations our usage will arouse. It also
permits us to appreciate the circumstances under which the common term entered
the jargon, and the evolution of its meaning along with the technology.

A quick dictionary[28] search yields
5The students in my courses on geometrical graphics are my chief assistants in this enterprise.

I present them a smorgasbord of sample homotopies, often worked on by previous students. They
choose one, or come up with a new one, and build a semester project around it. This pedagogical
aspect has a healthy influence on my understanding of what is elementary and typical.
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Figure 2:Thirteen topes (stages) of the symmetry-3 eversion in the “Optiverse” by John M. Sulli-
van, Stuart Levy and George Francis [15, 18, 33]. Clockwise (from top-left), this regular homotopy
turns a bi-colored sphere inside out by passing through Boy’s Surface (center). It is not an isotopy of
the sphere in 3-space, nor can it be regarded as the shadow of an isotopy in 4-space. In metarealistic
terms this famous eversion is an essential deformation.

Animate: Create the illusion of motions.

Motion: Change in position, change of body, gesture, gait.

Animated Cartoon:A motion picture consisting of a photographed series of draw-
ings.

Motion Picture: Series of filmed (photographed) images viewed in sufficiently
rapid succession to create the illusion of motion and continuity.

We consolidate these into our working definition of animation:

Animation: A sequence of pictures viewed rapidly enough to evoke an experience
of continuous motion.
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We have less success finding a common word for that which we animate. We
borrow “homotopy” from topology rather than using the familiar terms:transfor-
mation and metamorphosis? Indeed, both say “change of shape”, one in Latin,
the other in Greek. But both also have undesirable connotations. In the common
tongue, transformation has come to mean just about any kind of change. In math-
ematics it is synonymous with every function or mapping between two sets. In
contrast, the second term has too restricted (entomological and mystical) mean-
ings in the common language.6 So we borrow a technical term from topology and
popularize it.

All uses of the termhomotopyin topology have this common denominator.
Two continuous mappings,f0, f1 : X → Y , from the same source spaceX into
the target spaceY are homotopic if there is a continuous mappingh : X× [0, 1] →
Y so that for eachx ∈ X, h(x, 0) = f0, h(x, 1) = f1(x). One writesft(x) for
h(x, t) and refers toft as ahomotopy.7 The place that remains the same throughout
the homotopy (from Greek: same+place) isX; thetopesare its continuous images,
Ft = ft(X), depicting what is being deformed inY . Note thatFt is the deforming
shape, andft is its parametrization.8

To capture a homotopy into a computer program, both sourceXd and target
Y n must be subsets of real Cartesian spaces of dimensionsd andn. Whend > n
we tend to speak ofprojectingX to Y . Whend < n we think of insertingX into
Y .9 Whend = n, and often as notf0 is the identity map, thenf1 represents some
“rearrangement” of space, and the homotopyft is a continuousdistortionof space
until the rearrangement is complete.10

Common examples of insertions (d < n) are discrete sets of points (d = 0)
such as particle systems, curves (d = 1), and surfaces (d = 2) in space (n = 3). To
observe the distortion of space (d = n) we insert lower dimensional marker objects
and follow their fate. We observe projections from space (d = 3) to a surface
(n = 2) either by what appears on the 2-dimensional screen itself, or in terms
of pictures affixed to surfaces in space. Ray tracing, texture–, and environment
mappings should come to mind.

In practice, we require the in-between maps,ft, which parametrize the topes of
the animation, to be of the same species as the initial and final maps. Thus, when

6The popular amputation,morphingcomes closest, but already has a narrower technical meaning.
7Seifert and Threllfall[34] speak of ahomotopic deformationfrom f0 to f1. The noun comes

later.
8The neologism “tope” avoids also importing the topological term “image” into a field where

“image” already has too many meanings.
9Also not a customary word, our use of “insertion” should remind the reader ofimmersion, imbed-

dingbut also singular surfaces in general position, calledWhitney maps.
10Think of “warping”, though this term is used also for bending an object already inserted in space.
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f0, f1 : X → Y have some structure or regularity, it shall be preserved throughout
the homotopy. For example, whenX is homeomorphic11 to each of its topesFt,
the deformation is called anisotopy. WhenX ⊂ Y andft is the restriction toX of
a homotopygt of Y into itself, we say that it is anambient homotopy. Combining
both, anambient isotopyis what we mean by adistortion of X. Though it may
be difficult to imagine, almost every isotopy we encounter extends to an ambient
isotopy.

Classifying Homotopies

We propose a classification of homotopies which takes into consideration the man-
ner in which their RTICA generates the stream of pictures. It is thus hardware
and software dependent, but not determined by it. The brief elaboration after each
abstract definition will make this clear.

motion: We are moving about a static scene. Or, in the solipsistic coordinate
system of our personal reference frame, the entire world is being rigidly
moved about in front of us. Either way, we need to understand clearly what
motionentails.

The customary metaphor of changingcamera coordinates, of making acamera
path, is a vestige of the days that an RTICA was used mainly to produce a video-
tape for a passive audience. Virtual reality and immersive virtual environments are
better served by the “observer” metaphor. The world, represented by adisplay list
of polygons,X, is subjected to a succession of Euclidean isometries,M(t), be-
fore being projected to the screen. In customary graphics programming libraries,
such as OpenGL[25],M(t) is a one-parameter family of 4-dimensional matrices
applied to the vertices ofX expressed inhomogeneous coordinates. Thus, the
abstract group of 3-dimensional Euclideanisometries(rotation followed by trans-
lation) is represented as a subgroup of the 4-dimensional linear group. Other 3D
geometries, such as spherical and hyperbolic, can also be so represented and are
treated in a similar way[14]. To the topologist,M(t) is a path in the isometry group
of a 3-dimensional geometry.12

articulation: While the scene is not totally static here, and objects move about
independently, they retain their geometric shape.

11Essentially the same shape. Technically, eachft is one-to-one and mapsX ontoFt; its inverse
is also continuous.

12In this context the letter “M” is a mnemonic for “matrix”, “motion”, as well as “MODELVIEW”
in the vocabulary of OpenGL.
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Such a clockwork of rigidly moving components (a marionette) would seem
to differ qualitatively from a simple motion. In fact, it does so only quantitatively.
One builds ahierarchy13 which assigns to each component its proper motion and
place in the world scene. That is, thei-th object has a display listXi and an
associated isometry,Pi, which places it into the coordinate system of the next
higher object.

For Jim Blinn’sBlobby Man[8], for example, each fingerXi, i = 1, .., 5 would
becomePiXi when it is attached to the hand,X6, which is attached to the armX7,
the shoulder, the torso etc. Thus the thumb is rendered asM0...P7P6P1X1, where
M0 incorporates the observers motion. Of course, all the matrices are multiplied
together into one before any vertex in the finger is sent down the pipeline. Thus the
matrix for the arm isM7 = M0...P7, andM6 = M7P6 is the matrix for the hand.
The world motion,M0, affects all objects and plays a special role as the inverse
of the camera matrix. Suppose we place the observer (ourselves or the camera)
somewhere,P0, in the world. We could build an avatar,X0, for ourselves so that
we appear asM0P0X0. If now we wish to see through our own eyes thenX0 is
rendered without modification, whenceM0P0 = I andM0 = P−1

0 . If we wished
to see through a camera held in the hand, for example, we would replace eachMi

by M−1
6 Mi.

distortion: Here the motionM(t) is not Euclidean, spherical or hyperbolic. We
do not assume that theM belongs to any particular group of isometries.
But the actionMX remains linear (a matrix multiplication). In general, the
motion,M(x, t), depends also on the location where it is applied, as well as
on time.

A trivial example of this is a change in scale, especially a non-isotropic one,
as when a sphere turns into an ellipsoid. Any decoration on the sphere, or an
entire articulated hierarchy of objects subordinate to the sphere, would be similarly
distorted in the graphics pipeline.

The general case, whereM also depends on location, is rarely implemented
in a graphics library or in the hardware of a graphics system. We would have
liked to use such an acceleration Lou Kauffman’s ambient isotopy of 3-space
which illustrates Dirac’s String Trick. Here, independent rotations of concen-
tric spheres, parametrized by their radius, have the effect of straightening a twice
twisted ribbon[30, 17, 22]. Since it was a distortion of space itself, everything in it
(such as very many twisted ribbons) followed along, and no ribbons passed through
themselves. Unlike an articulation, a distortion of space guarantees that initially
disjoint elements will not collide during the homotopy. As we had no hardware

13Also called a “scene graph” because the order of the matrix multiplications forms a directed tree.
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acceleration for this kind of homotopy, it was implemented as a time-consuming
per-vertex deformation and the videotape was ultimately made in the traditional
frame-by-frame manner rather than capturing a real-time, interactive animation.

deformation: All changes from frame to frame involve changes in the vertices
that make upX. Instead of time acting onM , it now acts onX(t). That is,
the coordinates of each vertex of an object are changed in time,x → h(x, t),
before they are sent down the pipeline.

In a sense, all homotopies can be animated as deformations. It is the only way
to do it in a graphics system that lacks a hierarchical geometric library with matrix
algebra and hardware acceleration. However, when such shortcuts are available,
it makes sense to disinguish this residual category from the previous three, which
can be more easily programmed and more speedily displayed.

We often combine motions,M(t), with deformations,X(t). But for unfamiliar
events it is best to alternate them, drawingM(µ(t))X(ξ(t)), wheredµ/dt = 0
wheneverdξ/dt 6= 0 and vice-versa. Doing both simultaneously can be distracting
unless onetime scale, µ(t), is very much slower than the other one,ξ(t).

The Geometry Pipeline

We shall now trace what befalls a display list as it passes down the graphics pipeline
by working backward from what you see on the screen. Window systems are ubiq-
uitous, so the absolutescreen coordinatesof a figure have no primary importance.
To locate a point in a visible region of the screen (namely in awindow), we spec-
ify fractions of the width and heights taken in the appropriate direction. The x-
coordinate, or abcissa, always goes from left to right, but the ordinate is as often
top-down as bottom-up. This way the numerical description (of the geometrical
objects to be drawn on the screen) is invariant under moving and resizing the win-
dow. What to do if the aspect ratio of the resized window has changed, is a matter
of choice. Technically, one distinguishes between the window and theviewport
into which a view of the world is transformed, either orthographically or perspec-
tively. The window then need not coincide with the viewport, especially if they
have different aspect ratios. Also, the window may have more than one viewport,
as for stereographic pairs.

It is, however, more practical to consider an abstract 3-dimensional space de-
scribed inworld coordinates, in which everything happens. On the screen, we see a
certain portion of this world through the window. An important motion through this
world is a steerable flight through a scene,X.14 An incremental adjustment of the

14HereX represents all objects already placed into the world coordinates.
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controller (mouse or CAVE wand) at momentt is imposed onM0. We multiply on
the left15 by an “small” Euclidean isometry,̃Mt. ThusM0(t+dt)X = M̃tM0(t)X.
TheM̃ is a rotation by a tiny angle followed by a translation by a tiny vector. An
accumulation of such increments applied to an initialM0(0) (which is usually the
identity) constitutes a flight-path or motion through the world.

Here is what happens to the homogeneous coordinates,(x, y, z, w), of a vertex
after it leaves interactive control and passes into theclipping part of the geometry
pipeline. Only vertices inside theclipping cube

−1 ≤ x

w
,
y

w
,

z

w
≤ 1

are admissible. Line segments and triangles that cross its boundary are cropped,
( x

w , y
w ) is scaled into the viewport, andzw is discretized into the depth buffer. The

division of (x, y, z) by w is the reason that perspective projections can also be
implemented by one last matrix multiplication in the 4-dimensional linear group.
The very cleverly designed (but misnamed)projection matrixmaps aviewing frus-
tumhomeomorphically into the clipping cube. The viewing frustum consists of a
rectangular window and the portion of the rectangular cone from the origin through
this window located between the window and a parallel clipping plane further back.
One is reminded of Albrecht D̈urer’s etching of the artist sighting a reclining nude,
and marking a transparent canvas where the sight lines pierce it.

We have seen, then, that a vertex in the display list of an object undergoes
a sequence of multiplications by matrices representing the Euclidean motion of
rotations (about the origin) followed by a translation.16 All the power (and frequent
confusion) of interpreting the meaning of multiplying a vector by a matrix, and, by
extension, the interpretation of the associative law of matrix multiplication, comes
to into play here. In addition to Birkhoff and MacLane’s[7] classicalalibi and
alias interpretations, we have aplacement. An object, described by a display list of
coordinates in “its own natural” Cartesian framework, isplacedinto the reference
frame of another object higher in the articulation hierarchy.

Let us illustrate the subtle differences in the case of a planar rotation:[
u
v

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
x cos θ − y sin θ
y cos θ + x sin θ

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
15Unfortunately, OpenGL, only multiplies an existing matrix on the right since that is the natural

place for implementing articulated hierarchies. Some matrix arithmetic is therefore inevitable.
16More precisely, these modeling matrices are in the 3-dimensional affine group, where the ro-

tation is relaxed to be an arbitrary invertible linear transformation. This allows uniform, and non-
uniform scaling.
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Customary matrix muliplication “row vector dot column vector” reveals(u, v)
to be the coordinates of the same point in a coordinate system which was rotated
by an angle of−θ. The point has an “alias”.

alias

[
u
v

]
=



[
cos θ
− sin θ

]
·
[

x
y

]
[

+sin θ
cos θ

]
·
[

x
y

]


Factoring the second expression, we have a trigonometric interpolation which
move the point(x, y) towards its left-perpendicular(−y, x) by an angle ofθ along
a circular arc. Thus the point has an “alibi” as to its whereabouts.

alibi

[
u
v

]
=

[
x
y

]
cos θ +

[
−y
x

]
sin θ

Rearranging and factoring a different way, shows that(u, v) is what you get if
you follow the recipe “gox units along the abcissa followed byy units along the
ordinate” when the meaning of abscissa and ordinate has changed by a rotation of
the coordinate frame of orthogonal unit vectors along the axes. The point has a
new “place” inside a different frame of reference.

place

[
u
v

]
=

[
cos θ
sin θ

]
x +

[
− sin θ
cos θ

]
y

To illustrate the flexibility of our language, let us read

P1P2P3X = P1(P2P3X) = (P1P2)(P3X)

in two ways. In the first, the objectX has been moved about it’s own space by
the composite motionP2P3 and then placed into the reference frame (coordinate
system)P1. In the second,X has been placed byP3 into a new reference frame,
where it is then moved by the composite motionP1P2.

Permutations of thealias-alibi-placementattitudes generate many more ver-
balizations of varying practicality. However, it time to apply our new vocabulary
to a perennial problem in mathematical visualization, that of seeing into the fourth
dimension.
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The Fourth Dimension.

It is curious how very much the popular mind is intrigued by the“Fourth Dimen-
sion” and it would be interesting to speculate why this might be so. But here is
not the place for even the most cursory review of this issue. The reader should
set aside an evening for browsing the web on the subject. Special attention to the
work of Tom Banchoff [4] on the subject will be richly rewarded. What we can do
here is to extend our vocabulary for metarealistic rendering a short distance in the
direction of the Fourth Dimension.

First of all, we should distinguish between attempts tovisualizephenomena ex-
tended in 4 isotropic dimensions, and our recognizing four and higher dimensional
reality by itsspecial effectsin 3D. Borrowing from media jargon, we might call the
former4D-vizand the latter4D-fx. It is appropriate here to remind the reader that,
when all is said and done, we can see only curves and surfaces. We draw infer-
ences about space and bodies by the way curves and surfaces arrange themselves
under lighting, occlusion, motion parallax, binocular vision etc. We can learn to
draw similar inferences about higher dimensions from the way we furnish ordinary
space. We do this in basically four different ways.

decorations: Curves, surfaces androoms,17 whose points are endowed with more
attributes than fit into 3-degrees of freedom, are equipped with visual arte-
facts,glyphs, which express the attributes.

The whole of scientific visualization might be subsumed under this first rubric.
For example, we might paint temperatures on heated objects in vivid color. We dis-
tinguish twohyper-attributes, say pressure and temperature, by color and texture.
Visualizing surfaces in 4-space by painting the fourth dimension on a 3D slice or
shadow of it is less successful. Graphs of complex functions are particularly sensi-
tive to such graphical misadventures. The reason is simple. While we are not apt to
rotate pressure into temperature, we do want to rotate an object in 4D every which
way.

A common way of indicating many hyper-attributes is to placeglyphsat a sam-
ple of points. We remember the little arrows representing velocity vector field from
our calculus courses. Glyphs generalize this idea in the form of small, solid shapes,
which have an obvious direction. Limited ranges of other attributes are mapped to
physical features of the glyph, for example, its size, color, shape, texture, and other
details.

17The correct technical term is “volumes”, as in “volumetric rendering”. But non-specialists might
be misled into thinking of books.
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charting: Three dimensional subspaces ofR4 are faithfully mapped to a flat, 3-
dimensional canvas.18 Think of a Mercator or a polar projection of a sphere
to a page in an atlas, only one dimension higher. Topologists prefer to call
this achart rather than a “map” to emphasize that the the mapping is one-to-
one.

Among the most satisfactory examples of this genre are the elegant realizations
of non-Euclidean geometries of 3-space in terms of projections from 3-manifolds
in R4. For a positively curved geometry of space we use a conformal projection19

of the 3-sphere from its pole to flat 3-space. Straight lines become circles, and geo-
metrically flat Clifford tori become the sensuously “oblique” Cyclides of Dupin[3].
Central projection of a 3-dimensional paraboloid to the 3-ball gives it a hyperbolic
geometry, exquisitely rendered in the the final minutes of the Geometry Center’s
classic video “Not Knot”[20].

Our real-time interactive CAVE animation,A Post-Euclidean Walkabout[14],
has four such charts. In the first act we are still in Euclidean space and merely fly
around and through a morphing shape of a sea shell. Act two starts with a suitably
triangulated and painted hyperbolic octagon in the Poincaré model of the hyper-
bolic plane. It lifts off the plane and wraps itself into a double torus. Though topo-
logically distorted, the triangulation remains as a testimony to the conformal struc-
ture on the Riemann surface. Next, we enter hyperbolic 3-space and fly through its
tesselation by right-angled dodecahedra. In the final act we visit the dodecahedral
subdivision of the 3-sphere, the 120-cell.

The efficiency of these4D-fx is the result of the intrinsically 4-dimensional
nature of the Silicon Graphics geometry pipeline, which powers the CAVE. All
three isometry groups, Euclidean, hyperbolic and spherical, have a representation
in the 4D general linear group which acts on theprojective modelsof the three
geometries of space. ThisKlein Modelof hyperbolic 3-space is conformal20 at the
center of the unit ball. To give the CAVE visitors the correct illusion of flying while
keeping them fixed to the origin, we inflict a 1-parameter family of isometries on
the dodecahedral tesselation.

shadows: Generalize to one dimension higher, the familiar perspective, axono-
metric, and orthographic projections from the fine and graphic arts.

18What kind of subspaces, e.g. manifolds, and how faithful, e.g. conformal, are subjects of a finer
classification than we have in mind here.

19The commonly used term, “stereographic” for this projection is often misunderstood to mean
“binocular.” The geographer prefers “polar’; the geometer prefers “conformal.”

20Conformal mean “angle-preserving” and implies that circles map to circles. To be conformal
just at one point means that visual angles from that point are “true”. In particular, right angleslook
correct.
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One immediate problem with this is the fact that we look at a perspective draw-
ing of a 3-D scene from theoutside.Add one dimension and we now experience
the “picture” by being in it.

However, even with 3D perspective our perception depends on a 2D picture
having lots of curves in it: edges, profiles, contours, 1-D textures. Similarly, we
can learn to recognize 3D projections of surfaces extended in 4D by the way their
shadows on our 3D canvas deform even as the object is rigidly rotating in 4D. This
school of thought originated with Tom Banchoff’s classic computer animations[5].

Somewhat more difficult to follow is a homotopy of a surface in 4D, such as the
unraveling of an unknot. An embedding of a 2-sphere in 4D is called a4D-knot.
It is a trivial 4D knot, anunknot, precisely if an isotopy moves it into a 3D-flat,
and there, it looks like a sphere. The lower dimensional analogue of such a thing
is an unknotted tangle, say your garden hose with end screwed to end, magically
untangling itself, without “cutting and pasting,” so as to lie flat on the lawn as a
perfect circle. This was Dennis Roseman’s subject in our CAVE tryptich,Laterna
matheMagica[15]. There, the “shadow” of the unknot was decorated with a color
to indicate the intersection with a 3D-flat slicing through the surface.

slices: If we interpret one axis inR4 as time, then the succession of orthog-
onal 3-spaces organize themselves into one spatio-temporal experience.21

Conversely, any process in space-time can be regarded as a monolithic 4-
dimensional entity.

If we slice a plane through a surface in 3D we see curves wriggling in the
plane. The curves needn’t be amorphous. Floor plans of buildings are also 2D
slices of surfaces in 3D, which change discontinuously as we move through the
ceiling. Contour lines of maps depicting mountain tops, passes and valleys are
familiar examples of slices. If we pass a 3D slice through a surface in 4D we get
curves in space which undergo interesting recombinations. Of course, we might
start with the recombinations and organize them into a coherent surface in 4-space.

However a better analogy is obtained by considering a maze. A 2D-maze is
what we solve on a piece of paper. Even when we are in the maze, as in a park
or on a floor of an unfamiliar building, we can find our way out as soon as we see
a floor-plan. A 3D-maze is just a stack of floor-plans, a building for example. So
a 4D-maze is a stack of buildings, and finding your way around and out of such a
maze is best left to Virtual Reality [29].

21A movie, and earthquake, a dream.
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Technology-driven Research

From the beginning of my topological apprenticeship I was repelled by the cus-
tomary highly formal, mostly verbal, and poorly illustrated descriptions of homo-
topies. In time, I also learned that the authors of these descriptions secretly drew
pictures for themselves to clarify their thoughts, to simplify, and even to discover
new theorems. Only their modest skills and lack of training in the graphic arts kept
them from making their expositions easier to follow. Or so I thought! In fact, it
was the custom in the heyday of Bourbaki to disparage pictures in mathematics. It
was rationalized by claims that pictures lead to erroneous inferences, that they are
expensive to print, that they take up space better devoted to elaborate notation.

Determined to illustrate homotopies more effectively, and to teach others to do
likewise, I needed to find new graphic media. For my purposes, the medium had
to be completely under my control. Inspired by Hilbert Cohn-Vossen[24], I first
learned to draw with pencil, chalk and ink pen, on paper napkins, blackboards and
drafting vellum[16]. But some homotopies simply would not fit into a set of one,
two, or however many discrete pictures; they required animation [21].

Traditional cell-animation (́a la Disney) was out of the question. This medium
requires substantial group effort. Cell-animation teams are highly differentiated
and specialized. Having little talent for management and no appreciable resources,
I had to look for other ways to animate my homotopies. Computer animation
looked attractive, in particular the promise of real-time interactive computer ani-
mation. Once early on, I was too late to make a videotape in time for a public
presentation. The convention then (and still today) was to capture frames into an-
imation buffers, transfer them over the the net, and lay them onto the tape. My
NCSA colleague, Ray Idaszak, suggested that I build flexible steering gadgetry
into the program and wire thePersonal Irisworkstations directly to the beta-cam
recorder. I rehearsed my talk as I steered the RTICA, and the tape got done in time
for the conference.

Computer animation, which meets current standards of quality, continues to
be produced in the traditional stop-action manner, because computers cannot pro-
duce frames of the required quality in the twenty-fourth of a second needed for
the animation to pass the threshold of fluidity. As computer speed catches up to
yesterday’s standards, tomorrow’s techniques of photorealism streak out of range
of real-time interaction. Typically, an RTICA is used for a computer animation
only initially: to explore and refine, perhaps to choreograph the action and plan
the camera paths. At this stage of the production, rough, sketch-like rendering suf-
fices. Later, often at tremendous cost in resources (time, cycles and storage) the
planned frames are rendered and stored at leisure until they can be assembled into
a videotape or digital movie. By and large, this process was not for me.
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Some of my projects did require division of labor and specialization to be “suc-
cessful,” to result in SIGGRAPH quality videotapes produced in the traditional
manner[9, 18, 30, 33]. These projects required far too much emotional effort and
their completion generally left me drained and unproductive for months! Quanti-
tatively speaking, it was more cost-effective to concentrate on the construction of
the RTICA than on the production of competitive videotapes.

The decision to optimise the efficiency of an RTICA, and to find homotopies
most suitable for the technology at hand, eventually paid off handsomely. Real-
time interactive animation was exactly what was needed for immersive virtual en-
vironments, such as the CAVE[12, 13, 14, 15, 31]. This new medium presented
its own geometrical and pedagogical challenges. Adapting CAVE programming to
the classroom involves careful design of examples and prototypes like theilliShell
(1994) andilliSkeleton(1998).

My illiView project22 acquired new watchwords like “transfer of technology”
and “rapid prototyping.” Each new technological opportunity and demand gener-
ated criteria for choosing the homotopy to be taken on next. Not infrequently, a
student in a geometrical graphics course would express the desire to experiment
with a particular set of graphical features unfamiliar to me. In keeping with the
mathematical nature of the courses, this also required finding a suitable homotopy
to be illustrated with the new technology.

This, then, is the context in which our present article takes its origins. Our mod-
est expansion of the technical vocabulary for treating real-time interactive com-
puter animation with some precision, at least fits our experience. We hope that it
will prove equally useful to other graphicist who practice metarealistic rendering,
whether they approve of this name for their work or not.
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Figure 3: Thirteen topes (stages) of the “illiSnail” animation in the “Post-Euclidean Walkabout”
by Chris Hartman, Joanna Mason, Ulrike Axen, Paul McCreary, and George Francis[14]. Clockwise
(from top-left), we chart Blaine Lawson’s ruled, minimal surfaces in the 3-sphere by projecting them
conformally to 3space, passing through a meridian 2-sphere (1), a half-twist Möbius band (2) with
a circular border (3) closing up to Steiner’s cross-cap (4) and Roman surface (5). A once-twisted
ribbon (6,7) closes up to the Clifford torus, seen from the outside (8) and inside (center). A 3-half
twisted ribbon (9) closes up (10) to half of Lawson’s minimal Kleinbottle. This surface is also the
mapping cylinger ofw2 = z3, and Ulrich Brehm’s trefoil knot-box. This real-time interactive CAVE
animation has conformal projections (charts), shadows and slices of surfaces embedded, rotating,
and isotopically deforming in 4-space.
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