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Apologia

Two decades ago, when I coined the acronym RTICA (for Real-Time InteractiveRevisions as per
Emmer, 23sep01,
28oct01, 5nov01 Computer Animation), it was wishful thinking that we should be able to do such

a thing in the classrooms, in our student labs, in our offices, at home! By the
end of that decade Silicon Graphics Iris workstations had made all this possible.
By 1992, the C in the acronym could be expanded to CAVE, the recursively
expanding acronym for a new technology[12] in immersive virtual environments.
Along the way, what at first was mostly a manner of speaking has matured into
a reusable vocabulary.

My acronym is intended to be pronounced, not spelled out. Try it! Make
it sound like articae: many artful things. The A also expands variously to
Animation, Animator, Animatrix. And, animation itself has some welcome
double meanings: the process of bringing to life, and that which has been so
enlivened. Similarly, the animator, like the editor, is both the human operator
and the graphic tool used to produce the animation. There is, as yet, no such
word as animatrix. Perhaps there should be: for the tenth muse, who inspires
us to write computer programs to make pictures come alive.

In this essay I shall explore computer animation from the viewpoint of a
mathematician for whom drawing mathematical pictures came as a late voca-
tion, and for whom teaching what he learned became the principal arbiter for
many choices and decisions. I hope this attempt to formalize my axioms (if only
to rationalize my ideosyncrasies) will at least amuse the reader.

First, I draw a sharp distinction between photorealistic rendering of com-
puter images and a species of non-photorealistic rendering. This new discipline
[33, 23, 1, 29] treats computer simulations of all graphics media other that pho-
tography.

Next, I choose a particular family of mathematical phenomena to illustrate,
namely several kinds of homotopies. These can be classified according to the dif-
ficulty of rendering them as real-time interactive animations. Two related areas
of mathematics are particularly hard to imagine and therefore good subjects for
metarealistic rendering. They are 3-dimensional non-Euclidean geometry, and
the visualization of processes extended in 4 isotropic geometrical dimensions.

Finally, I adopt a more polemical turn of speech which touches on the rightful
place of mathematical illustration in the brief history of computer graphics. To
maintain focus, I trace the evolution of my metarealistic enterprise, illiView, as
an example of technology driven research.

Metarealism vs. Photorealism

There is no ambiguity in the meaning of photorealism in computer graphics. In
1727 Prof. Johann Heinrich Schulze discovered the photographic properties of
silver-halide [2, 13ff]. Daguerre, 1839, received a life-long pension for his discov-
ery from the French government. After two and a half centuries of photography
and over a century of movies to fall back on, we have no difficulty in decid-
ing to what degree a computer animation really looks and acts real. We have
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an even longer collective pictorial experience, formed in the eons during which
artists developed (hardly photorealistic) renderings of every conceivable scene
and action. By and large — and exceptions are worth pondering elsewhere —
artists drew on the real world. Their pictures used real and familiar objects
even when the intended meaning was supernatural, spiritual, or just fanciful.
Even impressionism, which Webster[41] defines as “a type of realism the aim
of which is to render the immediate sense impression of the artist apart from
any element of inference or study of the detail,” and subsequent abstract styles
(by-and-large !), mean to evoke an emotional or intellectual response which the
viewer might have had on looking at the actual model for the picture.

Not so when we use computer graphics to render abstractions that do not
have concomitant realities. Lately there has been a welcome resurgence of the
fascination with the fourth geometrical dimension. In the latter half of the
nineteenth century there was some popular interest in worlds of four or more
isotropic spatial dimensions. Two generations of relativistic science and science
fiction has made it difficult to persuade college freshmen and the general pub-
lic alike that the fourth dimension need not invariably be time[4, 7, 25, 28].
Hypercubes rotating in 4-space are found in screen-savers and are routinely as-
signed as machine problems in computer science courses. Since the advent of
computer animation and virtual reality, non-Euclidean geometry has come into
fashion[24, 18, 37, 42]. Java applets for drawing lines in the hyperbolic plane
and on a spherical surface can be found on the web. Instructive excursions into
special and general relativity, molecular biology, cosmology etc. all benefit from
particularly non-realistic simulations which bend the laws of physics, use stick
and balls to model membranes, enlarge planetary diameters a thousandfold,
and travel through the cosmos faster than light. These cinematic fictions are
necessary so that we can see anything at all on the screen, and to animate it in
real-time.

This enterprise deserves its own name, and I propose metarealistic render-
ing, fully aware of the hazard of coining jargon. The literature is littered with
multiple terms competing for the same fuzzy meaning, and derelict corpses of
splendid terms that nobody uses. But this is not a synonym for what is generally
called virtual reality. The virtual in VR just means that we use novel projec-
tions (stereo, for example) and input controls (head-tracking, for example) to
convincingly evoke the illusion of experiencing something real, much as in a
dream. The prefix meta, having the innocent meaning of “between, with, after,
along side of” (Webster) also has less desirable connotations, such as metaphys-
ical, metaphorical and metamorphosing. But recall that Aristotle’s book on
the essential nature of reality merely followed his book on its physical reality.
Only later did metaphysics suggest something transcendent, philosophical, the-
ological. Similarly metaphor has become bent out of shape in computing. No
longer just the “poetic reuse of a word,” it seems to mean the imposition of
a familiar cognitive structure on an unfamiliar one. For example, the desktop
metaphor trades on our familiarity with desktop furnishings, but then has us
use a mouse (uncommon on desktops) to move pictures representing files but
blasphemously called icons, about the computer screen, and later, to eject a
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floppy by depositing it in a trash can (a dubious metaphor!). Finally, in com-
puting jargon, the transformation of the physical characteristic of an object,
literally its metamorphosis (meta=trans, morphe=form), has lost the prefix to
become just morphing. So, having demythologized some undesirable connota-
tions, let us briefly consider whether the distinction between photorealistic and
metarealistic rendering deserves a place in the philosophy of technology.

The photorealist has this significant advantage over a metarealistic colleague.
The former can compare personal experience with its imitation (counterfeit, not
facsimile) at every step along its development. Faithfulness to reality guides the
programming strategy; it is an unambiguous criterion for choosing techniques.
Thus for photorealism, Phong shading and anti-aliasing are invariably superior
to mere Gouraud shading and the jaggies (aliasing contours), because it makes
the image look more like the photograph of the original, the real-thing. On the
other hand, consider a rendering of what a four-dimensional artist would have
to draw on a three-dimensional canvas in order to evoke the same illusion of an
impossible figure as the Penrose tribar popularized by Escher[32, 13, 11]. What
does such a 4-D object really and truly look like? Should its image be shaded
at all? How much do we care about the jaggies? Actually, we do care. But only
after the depiction is totally convincing in its raw-and-ready draft. Only then,
resources permitting, might we engage a computer artist to help us to meet the
competition for inclusion in it Electronic Theater at SIGGRAPH.1

Thus, we find that the metarealist must use other criteria, other standards
of comparisons than the photorealist. Among these are fidelity to physical
principles, mathematical honesty, even something like a Calvinist economy in
programming the RTICA so that its scientific message does not get lost in a
baroque programming style. After all, it is usually the student programmer
of the RTICA who gains the greatest intellectual benefits from the exercise.
Photorealistic perfection intimidates the student programmer and distracts the
engaged observer. The latter is expected to think through the mathematical
ideas expressed in the RTICA. Thus, the less the artifact resembles something
else, something too familiar, the better.

Animating Homotopies

Real-time interactive computer animation is particularly appropriate for illus-
trating mathematical objects called homotopies. These deal with topological
changes that happen over time. As such, a homotopy is the natural mathe-
matical abstraction of any temporal change-of-shape. Rather than proposing
some grand scheme for animating all possible homotopies, we identify a few
elementary and typical homotopies and develop a vocabulary for exploring their
RTICAs.2 However, we do propose to transfer the notion of homotopy into the
vocabulary of computer graphics.

Turning a sphere inside out is the best known of such homotopies[38]. In the
four decades since Smale proved its existence, and the two decades since Nelson
Max first captured Morin’s eversion in a computer animation, there have been
many metarealistic renderings of this Helen of Homotopies.
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Let us review the common meanings of our vocabulary. But, why should we
care what the non-specialist, ignorant of the jargon, might hear? Mostly, we do
so to anticipate the conscious or subliminal associations our usage will arouse. It
also permits us to appreciate the circumstances under which the common term
entered the jargon, and the evolution of its meaning along with the technology.

A quick dictionary[34] search yields

Animate: Create the illusion of motions.

Motion: Change in position, change of body, gesture, gait.

Animated Cartoon: A motion picture consisting of a photographed series of
drawings.

Motion Picture: Series of filmed (photographed) images viewed in sufficiently
rapid succession to create the illusion of motion and continuity.

We consolidate these into our working definition of animation:

Animation: A sequence of pictures viewed rapidly enough to evoke an experi-
ence of continuous motion.

We have less success finding a common word for that which we animate. We
borrow the word homotopy from topology rather than using the familiar terms:
transformation and metamorphosis? Indeed, both say “change of shape”, one
in Latin, the other in Greek. But both also have undesirable connotations.
In the common tongue, transformation has come to mean just about any kind
of change. In mathematics it is synonymous with every function or mapping
between two sets. In contrast, the second term has too restricted (entomological
and mystical) meanings in the common language. The popular amputation,
morphing comes closest, but already has a narrower technical meaning. So we
borrow a technical term from topology and hope to popularize it.

All uses of the term homotopy in topology have this common denominator.
Two continuous mappings, f0, f1 : X → Y , from the same source space X into
the target space Y are homotopic if f0 and f1 fit into a continuum of mappings
in between. More precisely, there is a continuous mapping

h : X × [0, 1] → Y

so that for each x ∈ X we have h(x, 0) = f0 and h(x, 1) = f1(x). One writes
ft(x) for h(x, t) and refers to ft as the homotopy from f0 to f1.3 The place that
remains the same throughout the homotopy (from Greek: same+place) is X; the
topes are its continuous images, Ft = ft(X), depicting what is being deformed
in Y . Note that Ft is the deforming shape, and ft is its parametrization. The
neologism tope avoids having to import the topological term image into a field
where image already has too many meanings.

To capture a homotopy into a computer program, both source Xd and target
Y n must be subsets of real Cartesian spaces of dimensions d and n. When d > n
we tend to speak of projecting X to Y . When d < n we think of inserting X into
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Y . The non-standard term insertion collects the notions of embedding (globally
1:1), immersion (locally 1:1), as well as Whitney stably singular, which allows
for controlled, non-pathological deviations. When d = n, and often as not
f0 is the identity map, then f1 represents some rearrangement of space, and
the homotopy ft is a continuous distortion of space until the rearrangement is
complete. Think of the commonly used term warping,, although warping is used
more generally for all kinds of bending of objects already inserted in space.

Common examples of insertions (d < n) are discrete sets of points (d = 0)
such as particle systems, curves (d = 1), and surfaces (d = 2) in space (n = 3).
To observe the distortion of space (d = n) we insert lower dimensional marker
objects and follow their fate. We observe projections from space (d = 3) to a
surface (n = 2) either by what appears on the 2-dimensional screen itself, or
in terms of pictures affixed to surfaces in space. Ray tracing, texture mapping,
and environment mappings should come to mind.

In practice, we require the in-between maps, ft, which parametrize the topes
of the animation, to be of the same species as the initial and final maps. Thus,
when f0, f1 : X → Y have some structure or regularity, it shall be preserved
throughout the homotopy. For example, when X is homeomorphic to each of
its topes Ft, the deformation is called an isotopy. 4 When X ⊂ Y and ft is the
restriction to X of a homotopy gt of Y into itself, we say that it is an ambient
homotopy. Combining both, an ambient isotopy is what we mean by a distortion
of X. Though it may be difficult to imagine, almost every isotopy we encounter
extends to an ambient isotopy.

Classifying Homotopies

We propose a classification of homotopies which takes into consideration the
manner in which their RTICA generates the stream of pictures. It is thus hard-
ware and software dependent, but not determined by it. The brief elaboration
after each abstract definition will make this clear.

motion: We are moving about a static scene. Or, in the solipsistic coordinate
system of our personal reference frame, the entire world is being rigidly
moved about in front of us. Either way, we need to understand clearly
what motion entails.

The customary metaphor of changing camera coordinates, of making a cam-
era path, is a vestige of the days that an RTICA was used mainly to produce a
videotape for a passive audience. Virtual reality and immersive virtual environ-
ments are better served by the observer metaphor. The world, represented by a
display list of polygons, X, is subjected to a succession of Euclidean isometries,
M(t), before being projected to the screen. In customary graphics programming
libraries, such as OpenGL[31], M(t) is a one-parameter family of 4-dimensional
matrices applied to the vertices of X expressed in homogeneous coordinates.
Thus, the abstract group of 3-dimensional Euclidean isometries (rotation fol-
lowed by translation) is represented as a subgroup of the 4-dimensional linear
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group. Other 3D geometries, such as spherical and hyperbolic, can also be
so represented and are treated in a similar way[18]. To the topologist, M(t)
is a path in the isometry group of a 3-dimensional geometry. In this context
the letter M is a mnemonic for matrix, motion, as well as MODEL VIEW in the
vocabulary of OpenGL.

articulation: While the scene is not totally static here, and objects move about
independently, they retain their geometric shape.

Such a clockwork of rigidly moving components (a marionette) would seem to
differ qualitatively from a simple motion. In fact, it does so only quantitatively.
One builds a hierarchy which assigns to each component its proper motion and
place in the world scene. Hierarchies are also called scene graphs because the
order in which matrix multiplications are applied to objects forms a directed
tree. That is, the i-th object has a display list Xi and an associated isometry,
Pi, which places it into the coordinate system of the next higher object.

For Jim Blinn’s Blobby Man[9], for example, each finger Xi, i = 1, .., 5 would
become PiXi when it is attached to the hand, X6, which is attached to the arm
X7, the shoulder, the torso etc. Thus the thumb is rendered as M0...P7P6P1X1,
where M0 incorporates the observers motion. Of course, all the matrices are
multiplied together into one before any vertex in the finger is sent down the
pipeline. Thus the matrix for the arm is M7 = M0...P7, and M6 = M7P6 is the
matrix for the hand. The world motion, M0, affects all objects and plays a
special role as the inverse of the camera matrix. Suppose we place the observer
(ourselves or the camera) somewhere, P0, in the world. We could build an
avatar, X0, for ourselves so that we appear as M0P0X0. If now we wish to
see through our own eyes then X0 is rendered without modification, whence
M0P0 = I and M0 = P−1

0 . If we wished to see through a camera held in the
hand, for example, we would replace each Mi by M−1

6 Mi.

distortion: Here the motion M(t) is not Euclidean, spherical or hyperbolic. We
do not assume that the M belongs to any particular group of isometries.
But the action MX remains linear (a matrix multiplication). In general,
the motion, M(x, t), depends also on the location where it is applied, as
well as on time.

A trivial example of this is a change in scale, especially a non-isotropic one,
as when a sphere turns into an ellipsoid. Any decoration on the sphere, or
an entire articulated hierarchy of objects subordinate to the sphere, would be
similarly distorted in the graphics pipeline.

The general case, where M also depends on location, is rarely implemented
in a graphics library or in the hardware of a graphics system. We would have
liked to use such an acceleration Lou Kauffman’s ambient isotopy of 3-space
which illustrates Dirac’s String Trick. Here, independent rotations of concentric
spheres, parametrized by their radius, have the effect of straightening a twice
twisted ribbon[36, 21, 26]. Since it was a distortion of space itself, everything
in it (such as very many twisted ribbons) followed along, and no ribbons passed
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through themselves. Unlike an articulation, a distortion of space guarantees
that initially disjoint elements will not collide during the homotopy. As we had
no hardware acceleration for this kind of homotopy, it was implemented as a
time-consuming per-vertex deformation and the videotape was ultimately made
in the traditional frame-by-frame manner rather than capturing a real-time,
interactive animation.

deformation: All changes from frame to frame involve changes in the vertices
that make up X. Instead of time acting on M , it now acts on X(t).
That is, the coordinates of each vertex of an object are changed in time,
x → h(x, t), before they are sent down the pipeline.

In a sense, all homotopies can be animated as deformations. It is the only
way to do it in a graphics system that lacks a hierarchical geometric library with
matrix algebra and hardware acceleration. However, when such shortcuts are
available, it makes sense to disinguish this residual category from the previous
three, which can be more easily programmed and more speedily displayed.

We often combine motions, M(t), with deformations, X(t). But for un-
familiar events it is best to alternate them, drawing M(µ(t))X(ξ(t)), where
dµ/dt = 0 whenever dξ/dt 6= 0 and vice-versa. Doing both simultaneously can
be distracting unless one time scale, µ(t), is very much slower than the other
one, ξ(t).

The Geometry Pipeline

We shall now trace what befalls a display list as it passes down the graphics
pipeline by working backward from what you see on the screen. Window systems
are ubiquitous, so the absolute screen coordinates of a figure have no primary
importance. To locate a point in a visible region of the screen (namely in a
window), we specify fractions of the width and heights taken in the appropriate
direction. The x-coordinate, or abcissa, always goes from left to right, but the
ordinate is as often top-down as bottom-up. This way the numerical description
(of the geometrical objects to be drawn on the screen) is invariant under moving
and resizing the window. What to do if the aspect ratio of the resized window
has changed, is a matter of choice. Technically, one distinguishes between the
window and the viewport into which a view of the world is transformed, either
orthographically or perspectively. The window then need not coincide with the
viewport, especially if they have different aspect ratios. Also, the window may
have more than one viewport, as for stereographic pairs.

It is, however, more practical to consider an abstract 3-dimensional space
described in world coordinates, in which everything happens. On the screen,
we see a certain portion of this world through the window. An important
motion through this world is a steerable flight through a scene, X. Here X
represents all objects already placed into the world coordinates. An incremental
adjustment of the controller (mouse or CAVE wand) at moment t is imposed
on M0. We multiply on the left by a small Euclidean isometry M̃t. Thus
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M0(t + dt)X = M̃tM0(t)X. The M̃ is a rotation by a tiny angle followed by a
translation by a tiny vector. An accumulation of such increments applied to an
initial M0(0) (which is usually the identity) constitutes a flight-path or motion
through the world. 5

Here is what happens to the homogeneous coordinates, (x, y, z, w), of a ver-
tex after it leaves interactive control and passes into the clipping part of the
geometry pipeline. Only vertices inside the clipping cube

−1 ≤ x

w
≤ 1,−1 ≤ y

w
≤ 1,−1 ≤ z

w
≤ 1

are admissible. Line segments and triangles that cross its boundary are cropped,
( x

w , y
w ) is scaled into the viewport, and z

w is discretized into the depth buffer.
The division of (x, y, z) by w is the reason that perspective projections can
also be implemented by one last matrix multiplication in the 4-dimensional
linear group. The very cleverly designed (but misnamed) projection matrix
maps a viewing frustum homeomorphically into the clipping cube. The viewing
frustum consists of a rectangular window and the portion of the rectangular cone
from the origin through this window located between the window and a parallel
clipping plane further back. One is reminded of Albrecht Dürer’s etching of the
artist sighting a reclining nude, and marking a transparent canvas where the
sight lines pierce it.

We have seen, then, that a vertex in the display list of an object undergoes
a sequence of multiplications by matrices representing the Euclidean motion of
rotations (about the origin) followed by a translation. More precisely, these
modeling matrices are in the 3-dimensional affine group, where the rotation is
relaxed to be an arbitrary invertible linear transformation. This allows uniform,
and non-uniform scaling. All the power (and frequent confusion) of interpreting
the meaning of multiplying a vector by a matrix, and, by extension, the interpre-
tation of the associative law of matrix multiplication, comes to into play here.
In addition to Birkhoff and MacLane’s[8] classical alibi and alias interpretations,
we have a placement. An object, described by a display list of coordinates in “its
own natural” Cartesian framework, is placed into the reference frame of another
object higher in the articulation hierarchy.

Let us illustrate the subtle differences in the case of a planar rotation:

[
u
v

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
x cos θ − y sin θ
y cos θ + x sin θ

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
Customary matrix muliplication “row vector dot column vector” reveals

(u, v) to be the coordinates of the same point in a coordinate system which
was rotated by an angle of −θ. The point has an alias.

alias
[

u
v

]
=


[

cos θ
− sin θ

]
·
[

x
y

]
[

+sin θ
cos θ

]
·
[

x
y

]

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Factoring the second expression, we have a trigonometric interpolation which
move the point (x, y) towards its left-perpendicular (−y, x) by an angle of θ along
a circular arc. Thus the point has an alibi as to its whereabouts.

alibi
[

u
v

]
=

[
x
y

]
cos θ +

[
−y
x

]
sin θ

Rearranging and factoring a different way, shows that (u, v) is what you
get if you follow the recipe “go x units along the abcissa followed by y units
along the ordinate” when the meaning of abscissa and ordinate has changed by
a rotation of the coordinate frame of orthogonal unit vectors along the axes.
The point has a new place inside a different frame of reference.

place
[

u
v

]
=

[
cos θ
sin θ

]
x +

[
− sin θ
cos θ

]
y

To illustrate the flexibility of our language, let us read

P1P2P3X = P1(P2P3X) = (P1P2)(P3X)

in two ways. In the first, the object X has been moved about it’s own space by
the composite motion P2P3 and then placed into the reference frame (coordinate
system) P1. In the second, X has been placed by P3 into a new reference frame,
where it is then moved by the composite motion P1P2.

Permutations of the alias-alibi-placement attitudes generate many more ver-
balizations of varying practicality. However, it time to apply our new vocabu-
lary to a perennial problem in mathematical visualization, that of seeing into
the fourth dimension.

The Fourth Dimension.

It is curious how very much the popular mind is intrigued by the Fourth Di-
mension and it would be interesting to speculate why this might be so. See, for
example, the article[27] in this volume. But here is not the place for even the
most cursory review of this issue. The reader should set aside an evening for
browsing the web on the subject. Special attention to the work of Tom Banchoff
[4, 6] on the subject will be richly rewarded. What we can do here is to extend
our vocabulary for metarealistic rendering a short distance in the direction of
the Fourth Dimension.

First of all, we should distinguish between attempts to visualize phenomena
extended in 4 isotropic dimensions, and our recognizing four and higher dimen-
sional reality by its special effects in 3D. Borrowing from media jargon, we might
call the former 4D-viz and the latter 4D-fx. It is appropriate here to remind the
reader that, when all is said and done, we can see only curves and surfaces. We
draw inferences about space and bodies by the way curves and surfaces arrange
themselves under lighting, occlusion, motion parallax, binocular vision etc. We
can learn to draw similar inferences about higher dimensions from the way we
furnish ordinary space. We do this in basically four different ways.
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decorations: Curves, surfaces and rooms,6 whose points are endowed with
more attributes than fit into 3-degrees of freedom, are equipped with visual
artefacts, glyphs, which express the attributes.

The whole of scientific visualization might be subsumed under this first
rubric. For example, we might paint temperatures on heated objects in vivid
color. We distinguish two hyper-attributes, say pressure and temperature, by
color and texture. Visualizing surfaces in 4-space by painting the fourth dimen-
sion on a 3D slice or shadow of it is less successful. Graphs of complex functions
are particularly sensitive to such graphical misadventures. The reason is simple.
While we are not apt to rotate pressure into temperature, we do want to rotate
an object in 4D every which way.

A common way of indicating many hyper-attributes is to place glyphs at a
sample of points. We remember the little arrows representing velocity vector
field from our calculus courses. Glyphs generalize this idea in the form of small,
solid shapes, which have an obvious direction. Limited ranges of other attributes
are mapped to physical features of the glyph, for example, its size, color, shape,
texture, and other details.

charting: Three dimensional subspaces of R4 are mapped faithfully to a flat,
3-dimensional canvas.

What kind of subspaces, e.g. manifolds, and how faithful, e.g. conformal,
are subjects of a finer classification than we have in mind here. Think of a
Mercator or a polar projection of a sphere to a page in an atlas, but bothe are
one dimension higher. Topologists prefer to call it a chart rather than a map to
emphasize that the the mapping is one-to-one and provides a local coordinate
system.

Among the most satisfactory examples of this genre are the elegant real-
izations of non-Euclidean geometries of 3-space in terms of projections from
3-manifolds in R4. For a positively curved geometry of space we use a con-
formal projection of the 3-sphere from its pole to flat 3-space. The geometers
commonly call this projection stereographic, which also means binocular, and the
geographers prefer polar, which has yet other geometrical meanings. Straight
lines become circles, and geometrically flat Clifford tori become the sensuously
oblique Cyclides of Dupin[3]. Central projection of a 3-dimensional paraboloid
to the 3-ball gives it a hyperbolic geometry, exquisitely rendered in the the final
minutes of the Geometry Center’s classic video Not Knot [24].

Our real-time interactive CAVE animation, A Post-Euclidean Walkabout[18],
has four such charts. In the first act we are still in Euclidean space and merely
fly around and through a morphing shape of a sea shell. Act two starts with a
suitably triangulated and painted hyperbolic octagon in the Poincaré model of
the hyperbolic plane. It lifts off the plane and wraps itself into a double torus.
Though topologically distorted, the triangulation remains as a testimony to the
conformal structure on the Riemann surface. Next, we enter hyperbolic 3-space
and fly through its tesselation by right-angled dodecahedra. In the final act we
visit the dodecahedral subdivision of the 3-sphere, the 120-cell.
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The efficiency of these 4D-fx is the result of the intrinsically 4-dimensional
nature of the Silicon Graphics geometry pipeline, which powers the CAVE. All
three isometry groups, Euclidean, hyperbolic and spherical, have a representa-
tion in the 4D general linear group which acts on the projective models of the
three geometries of space. This Klein Model of hyperbolic 3-space is conformal
at the origin.7 To give the CAVE visitors the correct illusion of flying while
keeping them resolutely fixed at the origin, we inflict a 1-parameter family of
hyperbolic isometries on the dodecahedral tesselation.

shadows: Generalize to one dimension higher, the familiar perspective, axono-
metric, and orthographic projections from the fine and graphic arts.

One immediate problem with this is the fact that we look at a perspective
drawing of a 3-D scene from the outside. Add one dimension and we now
experience the picture first hand, by being in it.

However, even with 3D perspective our perception depends on a 2D picture
having lots of curves in it: edges, profiles, contours, 1-D textures. Similarly, we
can learn to recognize 3D projections of surfaces extended in 4D by the way
their shadows on our 3D canvas deform even as the object is rigidly rotating
in 4D. This school of thought originated with Tom Banchoff’s classic computer
animations[5].

Somewhat more difficult to follow is a homotopy of a surface in 4D, such
as the unraveling of an unknot. An embedding of a 2-sphere in 4D is called a
4D-knot. It is a trivial 4D knot, an unknot, precisely if an isotopy moves it into
a 3D-flat, and there, it looks like a sphere. The lower dimensional analogue of
such a thing is an unknotted tangle, say your garden hose with end screwed
to end, magically untangling itself, without cutting and pasting, so as to lie
flat on the lawn as a perfect circle. This was Dennis Roseman’s subject in our
CAVE tryptich, Laterna matheMagica[19]. There, the shadow of the unknot
was decorated with a color to indicate the intersection with a 3D-flat slicing
through the surface.

slices: If we interpret one axis in R4 as time, then the succession of orthogonal
3-spaces organize themselves into one spatio-temporal experience, e.g. a
movie, an earthquake, a dream. Conversely, any process in space-time can
be regarded as a monolithic 4-dimensional entity.

If we slice a plane through a surface in 3D we see curves wriggling in the
plane. The curves need not be amorphous. Floor plans of buildings are also
2D slices of surfaces in 3D, which change discontinuously as we move through
the ceiling. Contour lines of maps depicting mountain tops, passes and valleys
are familiar examples of slices. If we pass a 3D slice through a surface in 4D
we get curves in space which undergo interesting recombinations. Of course, we
might start with the recombinations and organize them into a coherent surface
in 4-space.

However a better analogy is obtained by considering a maze. A 2D-maze
is what we solve on a piece of paper. Even when we are in the maze, as in a
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park or on a floor of an unfamiliar building, we can find our way out as soon
as we see a floor-plan. A 3D-maze is just a stack of floor-plans, a building for
example. So a 4D-maze is a stack of buildings, and finding your way around
and out of such a maze is best left to Virtual Reality [35].

Technology-driven Research

From the beginning of my topological apprenticeship I was repelled by the cus-
tomary highly formal, mostly verbal, and poorly illustrated descriptions of ho-
motopies. In time, I also learned that the authors of these descriptions secretly
drew pictures for themselves to clarify their thoughts, to simplify, and even to
discover new theorems. Only their modest skills and lack of training in the
graphic arts kept them from making their expositions easier to follow. Or so
I thought! In fact, it was the custom in the heyday of Bourbaki to disparage
pictures in mathematics. It was rationalized by claims that pictures lead to
erroneous inferences, that they are expensive to print, that they take up space
better devoted to elaborate notation.

Determined to illustrate homotopies more effectively, and to teach others
to do likewise, I needed to find new graphic media. For my purposes, the
medium had to be completely under my control. Inspired by Hilbert Cohn-
Vossen[30], I first learned to draw with pencil, chalk and ink pen, on paper
napkins, blackboards and drafting vellum[20]. But some homotopies simply
would not fit into a set of one, two, or however many discrete pictures; they
required animation [25].

Traditional cell-animation (á la Disney) was out of the question. This
medium requires substantial group effort. Cell-animation teams are highly dif-
ferentiated and specialized. Having little talent for management and no ap-
preciable resources, I had to look for other ways to animate my homotopies.
Computer animation looked attractive, in particular the promise of real-time
interactive computer animation. Once early on, I was too late to make a video-
tape in time for a public presentation. The convention then (and still today)
was to capture frames into animation buffers, transfer them over the the net,
and lay them onto the tape. My NCSA colleague, Ray Idaszak, suggested that
I build flexible steering gadgetry into the program and wire the Personal Iris
workstations directly to the beta-cam recorder. I rehearsed my talk as I steered
the RTICA, and the tape got done in time for the conference.

Computer animation, which meets current standards of quality, continues to
be produced in the traditional stop-action manner, because computers cannot
produce frames of the required quality in the twenty-fourth of a second needed
for the animation to pass the threshold of fluidity. As computer speed catches
up to yesterday’s standards, tomorrow’s techniques of photorealism streak out
of range of real-time interaction. Typically, an RTICA is used for a computer
animation only initially: to explore and refine, perhaps to choreograph the
action and plan the camera paths. At this stage of the production, rough,
sketch-like rendering suffices. Later, often at tremendous cost in resources (time,
cycles and storage) the planned frames are rendered and stored at leisure until
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they can be assembled into a videotape or digital movie. By and large, this
process was not for me.

Some of my projects did require division of labor and specialization to be suc-
cessful, to result in SIGGRAPH quality videotapes produced in the traditional
manner[10, 22, 36, 39]. These projects required far too much emotional effort
and their completion generally left me drained and unproductive for months!
Quantitatively speaking, it was more cost-effective to concentrate on the con-
struction of the RTICA than on the production of competitive videotapes.

The decision to optimise the efficiency of an RTICA, and to find homotopies
most suitable for the technology at hand, eventually paid off handsomely. Real-
time interactive animation was exactly what was needed for immersive virtual
environments, such as the CAVE[15, 17, 18, 19, 37]. This new medium presented
its own geometrical and pedagogical challenges. Adapting CAVE programming
to the classroom involves careful design of examples and prototypes like the
illiShell (1994) and illiSkeleton(1998).

My illiView project8 acquired new shibboleths like “transfer of technology”
and “rapid prototyping.” Each new technological opportunity and demand gen-
erated criteria for choosing the homotopy to be taken on next. Not infrequently,
a student in a geometrical graphics course would express the desire to experi-
ment with a particular set of graphical features unfamiliar to me. In keeping
with the mathematical nature of the courses, this also required finding a suitable
homotopy to be illustrated with the new technology.

This, then, is the context in which our present article takes its origins. Our
modest expansion of the technical vocabulary for treating real-time interactive
computer animation with some precision, at least fits our experience. We hope
that it will prove equally useful to other graphicist who practice metarealistic
rendering, whether they approve of this name for their work or not.
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Notes

1This annual convention of the Association for Computing Machinery draws close to 40,000
visitors and the Electronic Theater presents the industry standard of quality and interest in
computer animation. And yet, in 1998 there were only two pieces of thirty with a frankly
mathematical content. In 2001 there were none.

2 The students in my courses on geometrical graphics are my chief assistants in this en-
terprise. I present them a smorgasbord of sample homotopies, often worked on by previous
students. They choose one, or come up with a new one, and build a semester project around
it. This pedagogical aspect has a healthy influence on my understanding of what is elementary
and typical. The website originally created by them, http://new.math.uiuc.edu, continues to
present the current and archived work.

3 Homotopy theory is a major branch of topology today and its concepts permeate many
more fields of mathematics, like algebra and analysis. The classic textbook by Seifert and
Threllfall[40] speaks of a homotopic deformation from f0 to f1. The noun came later.

4The concept of homeomorphy is central in topology; it means “of the same shape.” Tech-
nically, each ft is one-to-one and maps X onto its tope Ft in Y ; its inverse, f−1

t : Ft → X is
thus well defined and continuous.

5Unfortunately, OpenGL primitives multiply the current matrix only on the right since
that is the natural place for implementing articulated hierarchies. Therefore some matrix
arithmetic is inevitable. Moreover, OpenGL departs from the traditional representations of
vectors as rows on the left of the matrix to the current standard of column vectors on the
right. Even in mathematics this was not always so. Birkhoff and MacLane [8] use the former,
and earliers yet, we used Einstein notation, and the issue was moot.

6The correct technical term is volumes, as in volumetric rendering. But non-specialists
might be misled into thinking of books. The mathematical sammelbegriff in question is, of
coures, 3D-manifold. But one shrinks from the automotive misconstructions of that term. In
VR the term world is coming into vogue.

7Confomal means angle-preserving in general. The Poincaré Model of hyperbolic space is
conformal at all of its points. Its straight lines are Euclidean circles. To be conformal just at
the origin means that visual angles from that viewpoint are the same in hyperbolic geometry
as in the Euclidean geometry in which the model is constructed. But that suffices for distant
angles to also look correct to our Euclidean eyes. In particular, right angles look right.

8Named in admiration of the Geometry Center’s geometrical viewing package, Minneview,
its highly successful successor, Geomview, and cousin Meshview by Andy Hanson, illiView
differs from these in many respects, as described in [25].
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Figure 1: Snapshot into a gravitational lensing project by John Estabrook, Ulises Cervantes-
Pimentel, Birgit Bluemer and George Francis. In this real-time interactive CAVE animation
an invisible mass distorts our view of the world. A second image forms within the Ein-
stein radius about the mass, which is inside the spiral ball. The ball is confined to bounce
about the cubical stage. The rules of this CAVE-to-CAVE game, based on the Prisoner’s
Dilemma and implemented on the DuoDesk, amused the NCSA PACI-Partners and visitors
to Supercomputing98[15].
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Figure 2: Thirteen topes (stages) of the symmetry-3 eversion in the “Optiverse” by John M.
Sullivan, Stuart Levy and George Francis [19, 22, 39]. Clockwise (from top-left), this regular
homotopy turns a bi-colored sphere inside out by passing through Boy’s Surface (center). It
is not an isotopy of the sphere in 3-space, nor can it be regarded as the shadow of an isotopy
in 4-space. In metarealistic terms this famous eversion is an essential deformation.
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Figure 3: Thirteen topes (stages) of the “illiSnail” animation in the “Post-Euclidean Walk-
about” CAVE show at SIGGRAPH94 by Chris Hartman, Glenn Chappell, Ulrike Axen, Paul
McCreary and George Francis[18]. Clockwise (from top-left), we chart Blaine Lawson’s ruled,
minimal surfaces in the 3-sphere by projecting them conformally to 3space, passing through
a meridian 2-sphere (1), a half-twist Möbius band (2) with a circular border (3) closing up to
Steiner’s cross-cap (4) and Roman surface (5). A once-twisted ribbon (6,7) closes up to the
Clifford torus, seen from the outside (8) and inside (center). A 3-half twisted ribbon (9) closes
up (10) to half of Lawson’s minimal Kleinbottle. This surface is also the mapping cylinger
of w2 = z3, and Ulrich Brehm’s trefoil knot-box. This real-time interactive CAVE animation
has conformal projections (charts), shadows and slices of surfaces embedded, rotating, and
isotopically deforming in 4-space.
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Figure 4: Four cross-eyed stereograms from the ”Air on the Strings of Dirac” by Dan Sandin,
Lou Kauffman, Chris Hartman, Glenn Chappell, John Hart and George Francis[36, 21, 26]
presented in the Electronic Theater, SIGGRAPH93. Any number (here 4) of ribbons, each
with two full twists, kept stationary at the center and the periphery of the orb, untwist in the
space between without gettting tangled up. This ambient isotopy of space is an example of
a distortion which is a special effect of the quaternionic geometry of the group of Euclidean
rotations.
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Figure 5: The arena for the physics based game, ”CAVE Gladiator”, by Kevin Vlack, Alex
Bourd, Alex Francis, Umesh Thakkar and George Francis[17]. This fanciful and wholly non-
violent game, combining elements from ice hockey, basketball, and archery, was used for a
human factors experiment. Binocular vision is obviously essential in the 5 foot radius near-
field, and irrelevant in the vista-space at ”infinity”. We confirmed the conjecture that, in the
arena-size action space (5 to 100 feet), binocular vision is less important than other depth-cues
such as motion parallax, occlusion, and perspective.

Figure 6: Stonehenge scene from Mark Flider’s special relativity CAVE animation,
”Schprel”[16]. To simulate the experience of an observer steering her way through the land-
scape, ideally, every point at each instant is displaced depending non-linearly on the position
and velocity of the observer now, and for all time in the past. For an approximation of this
illusion only a few past positions of each vertex are cached. Then, the next position of the
observer elicits a computation of the historical place of each vertex whose light reaches the
observer now.


