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Abstract

Our project simulates, in a real-time interactive environment, the general
relativistic effect of the deflection of light by a massive object, in accordance
with the standard Einstein model. This provides a qualitatively accurate rep-
resentation, by way of a quantitatively reasonable approximation, of the phe-
nomenological properties of a massive object acting as a gravitational lens,
including distortion of the perceived environment, multiple imaging, and the
Einstein ring.

Our project provides a versatile platform for investigation of lensing phe-
nomena generally, and a timely research tool for the specifics of gravitational
lensing. Moreover, the unique characteristic of viewpoint-based calculation,
integral to this kind of simulation, offers a new class of benchmarks and diag-
nostics for multi-viewer virtual environments served by theDuoViewexten-
sions to the CAVE libraries, and the VPS cave-to-cave networking protocols.

Objectives

The objective of this project was to design and execute a series of mathematical
experiments on a variety of immersive virtual reality platforms at the University
of Illinois Electronic Visualization Laboratory (EVL), the National Center for Su-
percomputing Applications (NCSA), and the Imaging Technology Group (ITG) of
the Beckman Institute. The purpose of the experiments was to explore the cosmo-
logical phenomenon known as “gravitational lensing” with real-time, interactive
(CAVETM [5] and console) computer animation (RTICA). For this purpose, we



developed new approximations to the Schwarzschild solution of Einstein’s field
equations in general relativity for light bending around massive bodies. The com-
putational challenge here is that these solutions must be sufficiently efficient for
the virtual reality contexts, yet must also remain sufficiently accurate for scientific
purposes.

Figure 1: An invisible point mass distorts our view of the world by bending light
rays. As second image forms within the Einstein radius about the mass, which is
inside the red spiral ball. The rules of this CAVE-to-CAVE game, based on the Pris-
oner’s Dilemma and implemented on the DuoDesk, amused visitors of Alliance’98
and Supercomputing’98.

A prototype, which meets the first, but not the second of these requirements
was created by Fullbright exchange graduate student Birgit Bluemer in our illiView
team at the NCSA. A salient feature of Bluemer’s CAVE application,graviLens, is
“viewpoint-based calculations,” which make it necessary to recompute a deflected
position for very vertex making up the scene, for even the slightest motion of the
viewer’s head.

We incorporated Bluemer’s “toy-algorithm” in ourPartnerballdemo on EVL’s
DuoDeskvirtual environment, which premiered at theAlliance’98conference for
the industrial and scientific partners of the NCSA[7]. Here two observers experi-
ence their own, differing points of view on the same, simultaneous device, which is
an ImmersadeskTM fitted with the DuoViewTM libraries[13] and custom hardware
modifications[12]. An invisible “gravitational lens” moves about a scene com-
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posed of nearby and faraway objects (stars). Though competing to influence this
ball, players must cooperate in determining where it is because each can only de-
termine its direction, not its distance, from their individually perceived distortions
of the background. By our rules, player two scores if player one hits the ball with
his shooter. If both hit the lens simultaneously the game is prolonged, otherwise it
expires in a few seconds. This adaptation of the “Prisoner’s Dilemma” lent itself
well to the corporate spirit of the occasion.

A phenomenologically more accurate approximation was implemented for the
second, and last1 opportunity to demonstrate the DuoDesk. For Supercomput-
ing’98, ourSuperballRTICA ran simultaneously in the CAVE in Urbana, IL and
on the DuoDesk in Orlando[8]. Network communication was implemented us-
ing the Virtual Prototyping System(VPS) protocol [11], originally developed to
accomplish the needs of the Caterpillar Virtual Prototyping Group at the NCSA.
For development and test bed purposes, single-user console versions of our soft-
ware is available for Irix, Linux and Windows platforms. The Windows version,
PingBall, allows a panelized display of up to 6 simultaneous viewers. This fea-
ture helps to obtain a better understanding of the lensing effect. A mathematically
more accurate approximation, based on finite difference methods applied to the
Schwarzschild geodesic equation, was developed using MATLAB. Another solves
the pseudo-geodesic equation by novel methods from algebraic geometry. How-
ever, neither of these two could be implemented as real-time interactive CAVE
applications (RTICA).

In this paper we give a brief overview of the history of the subject of gravita-
tional lensing. The classic derivation of the geodesic equations for the deflection
of light by a mass, and Einstein’s approximation for the deflection angle is in [14].
A more modern, standard reference for the “lens equation” is in [16]. We hope that
our mathematical exposition will enable ambitious readers to develop their own
real-time interactive gravitational lensing animations.

Background

While working on the theory of general relativity, Einstein, in 1915, predicted the
phenomenon of the deflection of light by a massive body, and gave an approxima-
tion for the deflection angle. This was summarized again in 1936 in his well-known
Science article. It appears Einstein thought the result of little value, given that the
deflection of light grazing the Sun would be expected on the order of 1.75 seconds
of arc, and thus, he thought, imperceptible.

1The hardware difficulties of the DuoDesk could not be solved, and the technology did not survive
its prototype.
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It is interesting to note that as early as 1704, Newton, in the first edition of
his Opticks, suggested the possibility that gravity acted upon light. This idea was
subsequently pursued in the context of a corpuscular theory of light using New-
ton’s law of gravitation by Cavendish (1784), Laplace(1796), and Soldner(1801),
resulting in the derivation of a deflection angle exactly half of what Einstein was
to later predict.

In 1919, Eddington and collaborators [6], using photographs of a stellar field
taken during a solar eclipse in May and again six months later, confirmed Einstein’s
prediction within a 20–30% uncertainty, small enough to discount the Newtonian
result in favor of Einstein’s. Subsequent radio-interferometric methods have veri-
fied Einstein’s result to within 1% [10, 15].

The derivation of the approximate angle of deflection (the ”Einstein angle”) of
light by a massive body is now a standard inclusion in treatises on general relativity
[1, 9, 18]. We shall review the argument below.

In the 20’s and 30’s, various people, including Eddington, Chwolson, and Ein-
stein suggested the possibility of “lensing” phenomena resulting from gravitational
deflection of light. In 1937, Zwicky [19, 20] suggested the possibility of galaxies
acting as lensing agents. Gravitational lensing was confirmed in 1979 with the
discovery [17] of double images of Source 0957+561.

Geodesic Equation

The theory of gravitational lensing begins with consideration of a single massive
body; this both informs the study of more general lensing systems [16, p. 29] and is
the case with which we shall be most concerned. Therefore, as appropriate for the
consideration of a single massive body, we begin with theSchwarzschild Solution.
Recall, sections 32 and 36 of [14] for example, that this is the solution obtained
from the Einstein free-space field equations by imposing the conditions of spher-
ical symmetry and time independence on the metric. That the second imposition
is superfluous follows fromBirkhoff ’s Theorem[2]. For the discussion below, it
is important to recall that the Schwarzschild solution is sensical only outside the
spherical shell,rs = 2Gm/c2, whereG is the universal gravitational constant,m
the mass of the lens, andc the speed of light.. This defines theSchwarzschild ra-
dius, which shall be presumed small compared to the radius of the massive body
in what follows. (For the Sun this radius is about 3km, well within its interior.)
It is customary in the subject of gravitational lensing to refer to a spherical (non-
rotating) mass that has radius sufficiently larger than its Schwarzschild radius as a
point mass.

The path of light moving in the gravitational field of a massive body lies
along the null geodesics of the metric. By spherical symmetry, this path must
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lie in a 2-dimensional plane (for to move off this plane would privilege one of the
plane’s half-spaces, contradicting spherical symmetry; this is an example of the
pre-socraticPrinciple of Sufficient Reason.)

From the Schwarzschild solution, one obtains the following differential equa-
tion for the null geodesics of the metric in polar coordinates(r, θ):

d2u

dθ2
+ u = 3Mu2 (1)

whereu := 1
r , andM := Gm

c2
is half the Schwarzschild radius.

We may obtain an approximate solution to this equation by observing that the
right hand side of (1) is small compared tou, for

3Mu2

u
= 3Mu =

3M

r
=

3
2

rs

r
,

and we have presumedrs/r small.
This justifies considering3Mu2 as a small perturbation term in the above dif-

ferential equation.
Settingε := 3M , we thereof consider the equation

u′′ + u = εu2 (2)

for which we seek a solution of the form

u = u0 + εv + O(ε2).

Substituting into equation (2) gives

u′′0 + u0 + εv′′ + εv = εu2
0 + O(ε2).

Equating the terms of zeroth order inε, yield the harmonic equation,u′′0 + u0 = 0,
and its solution

u0 =
1
R

cos(θ) (3)

whereR is the distance to the closest approach of the geodesic to the mass, andθ
measured from that line. Note that,1/u0 = r0 = R sec(θ), is the motion along a
straight line a distanceR from the mass, as we would expect of a gravitationally
unperturbed solution.

Considering now the terms of first order inε , and using (3), we have

v′′ + v =
1

R2
cos2(θ) =

1
2R3

(1 + cos(2θ))
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for which a solution is easily found to be

v =
1

2R2
(1− 1

3
cos(2θ)) =

1
3R2

(2− cos2(θ)).

Collecting these solutions, we find that, to first order inε ,

u =
1
R

cos(θ) +
M

R2
(2− cos2(θ)). (4)

We shall refer to this as thepseudo-geodesic equation. It should be noted[18, p.
188] that a more careful analysis of the Schwarzschild solution obtains the equation
of null geodesics in terms of elliptic integrals, which may then be evaluated to
arbitrary order in the parameterMu.

Einstein’s approximation

From the pseudo-geodesic equation, one may easily obtain an approximation to the
angle of deflection of light by a massive body, for small deflections, as follows.

Figure 2: At syzygy the source of light, the deflecting mass, and the observer are
(nearly) in a line. The relativistic observer sees the light as Einstein’s ring at a
deflection angleφ.

Consider the path of a photon arriving from infinity and passing a massive
object (see Fig 2); we seek an expression for this deflection angle by the angle
between the asymptotes. Since the Schwarzschild metric is asymptotically flat,
the path of light is asymptotically straight, and we may approximate the deflection
angle by differenceφ ≈ θ(t−∞)− θ(t∞). At infinity, u = 0, andθ = ±(π

2 + φ
2 );

sinceφ is presumed small, thecos2(θ) term in the pseudo-geodesic equation (4) is
negligible. Therefore, in the limit (r →∞) equation (4) becomes

0 =
1
R

cos(
π

2
+

φ

2
) +

2M

R2
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i.e.,
2M

R
= − cos(

π

2
+

φ

2
) = sin(

φ

2
) ≈ φ

2
,

whence Einstein’s approximation to the deflection angle

φ ≈ 4M

R
. (5)

As mentioned above, this is exactly twice the deflection predicted by Newtonian
mechanics under the assumption that light is affected by gravity as would be a
material body.

Lens Equation

In studies of gravitational lensing, it is common practice to begin with the Einstein
approximation for a point mass and adapt it to the finitistic case by way of theLens
Equation. This refers to an interpretation of the approximate deflection angle,φ, in
terms of the configuration of observer (earth), geodesic deflector (massive galaxy),
and light source (distant star), in that order.2

Consider the 3 displacement vectors from the observer to the deflector,Dd,
from the deflector to the source,Dds, and from the observer to the source,Ds.3

ThusDd + Dds = Ds. Astronomers can measure the angleϑ between the deflec-
tor and the apparent source (alongDa, the tangent to the light path from source
to observer.) But we must rapidly compute an approximation toϑ just from the
relative locations.

Figure 3: Far from syzygy, classical approximations become inaccurate, as this
figure illustrates. To displace a light-source from its true locationS to its apparent
locationA we must find the angleϑ by fitting a geodesic curve that bends about
the mass.

2“She could almost pass for thirty-five in the dusk with light behind her.” Gilbert and Sullivan.
3We use traditional notation for easier recognition.
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For sources very far away and almost directly behind the deflector physicists
use the approximationR ≈ ϑDd. Our figure exaggerates the error risked by this
and subsequent approximations where vectors are replaced by their magnitudes
and small angles equal their sines.

Substituting Einstein’s approximation (5) we obtain

φ ≈ 4M

ϑDd
. (6)

We derive another relation forφ in terms ofβ, the angle fromDs to Da (from true
to apparent direction of the source.) Applying the law-of-sines to the triangle, but
assuming that the6 (Dd, Dds) ≈ φ,

sin(ϑ− β)
Dds

≈ sin(π − φ)
Ds

=
sin(φ)

Ds

and dropping sines we obtain a quadratic equation inβ:

ϑ− β ≈ φDds

Ds
≈ 4MDds

DsDd

1
ϑ

,

which produces two values

ϑ± =
1
2
β ± 1

2

√
4α2

0 + β2

where

α0 :=

√
4MDds

DsDd
.

The two solutions obtained suggest that the source has two images, one on
either side of the lens. The angular separation between the two images is then

ϑ+ − ϑ− =
√

4α2
0 + β2 ≥ 2α0 .

Note that at syzygy, when the observer, mass and source are collinear and so
β = 0, the two observed images lie at±α0. It follows from the spherical symmetry
of the problem that the whole ring of radiusα0 is the image of the source in this
case. Ring-shaped images produced in this manner are known asEinstein Rings;
the first full Einstein ring has been discovered recently.[3, 4]

The foregoing gives one a clear qualitative picture of gravitational lensing by a
point mass. It is equally clear that this approach is unsuitable for the purposes of
simulation, as it involves the severe restriction that all angles be small (and makes
no statement, even inaccurate, for other angles.)
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Toy Lenses

In the development of our lensing code, we have had appeal to several toy lenses;
these lenses deform the perceived scene in a manner that is qualitatively similar
to that of a gravitational lens. This approach enabled us to display an impressive
second image on the DuoDesk and in the CAVE.

Figure 4: Screenshot negative fromPartnerballat Supercomputing’98. The avatar
for each player consisted of a wire mask (eyes, nose, mouth) tied to the head-
tracker, and a wire hand (tied to the wand), with which to launch balls towards the
invisible lens. The inner image is visible lower right. Easily recognized distortions
of Boticelli’s Venus attracted considerable attention.

However, as the above discussion reveals, one really needs a new approach
to construct a real-time interactive gravitational lens which avoids accumulating
approximations inherent in the Lens Equation formalism.

In a subsequent approach, we worked directly with the pseudo-geodesic equa-
tion (4). This equation is related to a family of quartic algebraic curves parameter-
ized by the constantR. Algebro-geometric considerations reveal a solution for the
deflection angle in terms of the viewer–source–mass syzygy; standard algorithmic
methods in algebraic geometry may be brought to bear upon the problem of find-
ing a practicable expression for the existentially known solution. Implementing
such solutions in a fully immersive real-time interactive virtual environment is the
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subject of our future investigations.
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