Shared Worlds with Syzygy
assorted Shared World scripts running on a Phleet
Math 198

Andrew C Ofisher, Ryan T Mulligan
May 12, 2006

Abstract

By operating a Phleet among an arbitrary number of heterogeneous
physical machines, one can use Syzygy scripts to create and manipulate
a Shared World. Script demos explore different aspects of Scenegraph
sharing. Detailed documentation of Phleet setup for various configu-
rations is also provided. Included are the Phleet and Syzygy setups
for Windows, Linux 32 bit, Linux 64 bit, Mac OS X, and Mac OS X
x86 operating systems. Phleet and Syzygy instructions included for
running a Phleet of Virtual Computers on a single physical computer.

Contents

I Defnitions

[2

Outline for Creating a Shared World]|

3

Setting Up A Phleet|

3.1 Server Computer Instructions|
3.2 Peer Computer Instructions|
[3.3 Controller Computer Instructions|
3.4 Syzyey Config Files|.,
I;;,;[! lifllgll l ils:sl

4 Shared Worlds|

4 Ol e

..............................

B

Syzygy Setup and Configuration|

5.1 Compiling on Linux 64 bit and Mac OS X x86|

Conclusions and Future Improvements|

6.1 Conclusionsl

6.2 Future Improvements|.

Special Notes|

[7.1 Input Simulator vs. the Cave and Cube|

[References|

List of Figures

1 szg.cont file]o L Lo
12 Physical Computer Configuration part of a Batchfile]
13 Virtual Computer configuration partial Batchfile]

|4 Visualization of filtering|
|5 singlecomputer.txt|o
|6 Screenshot of feedbackpeerl.py|

12
12
13
14
16
16
16

17
17

17
17
17

18
18

22

[7 Screenshot of avatarpeerl.py| 20
8 buildworld.py running with three peers.| 21

1 Definitions

Virtual Environment The amalgamation of graphics, sound, and tactile
outputs that make up a coherent experience.

Syzygy Syzygy is a computer program that allows you to build Virtual
Environment computer applications.

Phleet Any number of Physical Computers and Virtual Computers being
serviced by a single Syzygy Server.

Virtual Computer A single entity which abstracts one or more Physical
Computers. A single Physical Computer can run an arbitrary number
of Virtual Computers within itself, and belong to an arbitrary number
of Virtual Computers spanning multiple Physical Computers.

Scenegraph A collection of information about how to execute a Virtual
Environment.

Shared World The result of sharing a Syzygy Scenegraph among multiple
Virtual Computers in the same Phleet

Dex D(istributed)ex(ecution). This command runs a Syzygy program on a
specific Virtual Computer.

EZSZG A unix shell that establishes many of the proper paths for running
Syzygy commands and applications on a Physical Computer.

Batchfile A batchfile is a plain text file that initializes all of the paths
and operating procedures of the Virtual Computers in a Phleet. Only
Controller Computers need batch files.

SZG Daemon A daemon program that maintains a local SZG Database,
and handles Dex requests.

Peer Computer A physical computer that is part of a Phleet and will be
running a SZG Daemon.

! Though not a requirement, a Shared World typically results in both Virtual Computers
displaying the same Virtual Environment.

Server Computer A physical computer that hosts a szgserver for a Phleet.
There must be one and only one Server Computer per Phleet.

Controller Computer The computer on which someone executes Dex com-
mands to the rest of the Phleet. An arbitrary number of Controller
Computers can exist in a Phleet.

2 Outline for Creating a Shared World

1. Setup a Phleet (See section

2. Create or acquire a shared—world enabled Syzygy script(s)(See section

4).

3. Dex the script(s) on each Virtual Computer in the Phleet

3 Setting Up A Phleet

Setting up a Phleet can be a complicated task, involving permissions, firewall
and network issues. For this section it is assumed that you have managed
to get all the physical computers in a state where they can communicate
with each other.These instructions also assume that reader knows how to
enter an EZSZG shell. None of the three Computer Instruction types are
mutually exclusive of one another, for instance a single Physical Computer
can be a Server, Peer, and Controller Computer.

3.1 Server Computer Instructions

1. Place a szg.conf file in its appropriate location. (See section [3.4))

2. In an EZSZG shell type
szgserver ServerName Port &

where “ServerName” is the arbitrary name of your server, and “Port”
is the port number on which you want your server to communicate.
The “&” indicates that the szgserver should run as a background pro-
cess. Conventionally szgservers are named with the prefix “srv”.

Examples:

3.2

3.3

szgserver srvlab 4343 &
szgserver srvisl 4343 &
szgserver srvhome 4343 &

Your server is now set up.

Peer Computer Instructions

. Place a szg.conf file in its appropriate location. (See section [3.4))

In an EZSZG type

dlogin ServerName YourName

where “ServerName” is the what you called the server and “Your-
Name” is your real first name, or any arbitrary identifier. If your
server is not broadcasting its name properly you can alternatively dlo-
gin using the server’s IP Address by typing

dlogin ServerIPAddress Port YourName

Examples:

dlogin srvlab ryan
dlogin 111.111.111.111 4343 ryan

Run the SZG Daemon by typing
szgd&

in an EZSZG.

Controller Computer Instructions

. Place a szg.conf file in its appropriate location. (See section (3.4))

. In an EZSZG type

dlogin ServerName YourName

where “ServerName” is the what you called the server and “Your-
Name” is your real first name, or any arbitrary identifier. If your
server is not broadcasting it’s name properly you can alternatively
dlogin using the server’s IP Address by typing

dlogin ServerIPAddress Port YourName
Examples:

dlogin srvlab ryan
dlogin 111.111.111.111 4343 ryan

3. In an EZSZG shell type
dbatch BatchfileName

where BatchfileName the path to the plain text file which contains
your Batchfile. (See section

Examples:

dbatch debautch
dbatch winprofile
dbatch foo.txt

3.4 Syzygy Config Files

Syzygy Config files contain information specific to a Physical Computer.
The placement of these files on the local filesystem is crucial. The default
path locations can be found in Table[I} To override the default path location
you need to set the SZG_CONF environment variable on your systemﬂ By
default the SZG_CONF environment variable is NULL. If you set it to a
system path, Syzygy will look at that path for a szg.conf file.

A sample szg.conf file can be found in Figure Many of the changes
to this file are fairly self-explanatory. To edit them simply change the value
between the tags. The name tag is the name of the Physical Computer where
the file is located. The first interface should always have the name “internet”
and it’s address tag should be the ip address of the Physical Computer. The

20n Unix, the default szg.conf path is in owned by root, this means to change anything
with the command line szg.conf tools you need to use sudo, or define a non-default path
for the szg.conf file in a user owned area.

Operating System Path
Microsoft Windows C:\szg\szg.conf
Unix Based /etc/szg.conf

Table 1: default szg.conf paths
for various operating systems

mask should be the sub-net mask for this Physical Computer. The ports
configuration should be left alone as the default, but should be there so that
Syzygy knows what ports to use for communication.

The only tricky thing is the second interface listed in the file. This is
the interface corresponding to the other Physical Computer in the Phleet.
A szg.conf file needs to have an interface to every other Physical Computer
in the Phleet if the Phleet traverses multiple sub-nets, or communicating
across the internetP][]

3.5 Batch Files

A batch file is an XML document. It specifies the workings of a Phleet
in such a way that a Controller Computer can figure out what commands
to send to the Syzygy Daemons running on the Peer Computers. The file
begins with the

<szg_config>

tag and can include

<comment></comment> and <assign></assign>
tags. The file ends with the

</szg_config>

tag. The syntax for assign statements is the same as a when using the dset
command.

3This means that the Phleet described by this szg.conf file has two computers named
laptop and desktop. The laptop’s IP address was 192.168.4.1 and the desktop’s IP address
was 192.168.5.1. Both were being connected to one another in a Shared World.

4This seems to violate the purpose of a szg.conf file because you are storing stuff about
the Phleet in it when it seems that the original purpose of it was to store just information
about particular Physical Computers and never require changing. Unfortunately this
requirement has been verified by us when doing Syzygy experiments over the Internet.

<computer>
<name>laptop</name>
</computer>

<interface>
<type>IP</type>
<name>internet</name>
<address>192.168.4.1</address>
<mask>255.255.248.0</mask>
</interface>

<interface>
<type>IP</type>
<name>desktop</name>
<address>192.168.5.1</address>
<mask>255.255.248.0</mask>
</interface>

<ports>
<first>
4700
</first>
<size>
200
</size>

</ports>

Figure 1: szg.conf file

<comment>
Physical Computer Configuration
</comment>
<assign>
desktop SZG_EXEC path c:\Python24;c:\szg-1.0\bin
desktop SZG_PYTHON path c:\szg-1.0\doc\python
laptop SZG_PYTHON path /usr/local/szg-1.0/doc/python
laptop SZG_EXEC path /usr/bin;/usr/local/szg-1.0/bin
</assign>

Figure 2: Physical Computer Configuration part of a Batchfile
“desktop” is running Microsoft Windows and “laptop” is running Debian
Linux. (Note how linux paths still use ; as the seperator)

ComputerName SZG_VariableSpace variable value

where “ComputerName” is the Physical Computer name defined in a szg.conf
filg3.4] or a name you have picked for a Virtual Computer, and SZG_VariableSpace
is one of the variable spaces talked about below.

Physical Computer Configuration Statements Certain paths must
be set so that the Controller Computer can tell the Physical Computers of
the Phleet where to look for Syzygy files. These paths need to be set for every
Physical Computer in the Phleet. Below is a list of the SZG_VariableSpaces
applicable to Physical Computer Configurations.

SZG_EXEC This stores the path to any program that a Physical Com-
puter depends on to run Syzygy. Examples include: szgrender, input-
simulator, python. This path need not include the path to Python
based Syzygy scripts!

SZG_PYTHON This stores the path to any Python based Syzygy script
that you wish your controller computer to be able to run.

Virtual Computer Configuration Statements Below is a list of the
SZG_VariableSpaces applicable to Virtual Computer Configurations.

SZG_CONF This stores various configurations for the Virtual Computer.
Variables associated with this Variable Space are listed below.

virtual A value of true tells the Syzygy Database to treat the “Com-
puterName” as a virtual computer.

location This is a local identifier name for Scene Graph Data. Keep-
ing this the same as the Virtual Computer name makes sense in
almost all applications.

relaunch_all A value of true means the Syzygy Daemon associated
with the Virtual Computer will always restart all processes asso-
ciated with the Virtual Computer when starting a new applica-
tion. A value of false means the Syzygy Daemon will only restart
processes that are dependant on the application and not already
started.

SZG_TRIGGER This tells the Controller Computer which Physical Com-
puter should be sent szgd requests, when the Virtual Computer is
called to do something[[

map Needs a value of a Physical Computer name.

SZG_DISPLAY This stores the display configurations for this Virtual
Computer that are the same among all the displays.

number_screens Specifies the number of screens this Virtual Com-
puter renders

SZG_DISPLAY # This stores the display configurations for a certain screen.
map Specifies a physical computer and a screen name on which to
display part of the Virtual Environment.
networks Specifies the network on which the Controller Computer

should look for the Physical Computer specified in map.

SZG_INPUTH# This stores the input configurations for a certain input
device.
map Specifies a physical computer and an input device name

networks Specifies the network on which the Controller Computer
should look for the Physical Computer specified in map.

5In figure [3| the Virtual computer is only one computer, more complicated setups were
beyond the scope of this paper.

6 Additional information about more complicated trigger mappings can be found by
looking at the Cave and Cube batch files directly.

10

<assign>
vc SZG_CONF virtual true
vc SZG_CONF location vc
vc SZG_CONF relaunch_all false
vc SZG_TRIGGER map desktop
vc SZG_DISPLAY number_screens 1
vc SZG_DISPLAYO map desktop/SZG_DISPLAYO
vc SZG_DISPLAYO networks internet
vc SZG_INPUTO map desktop/inputsimulator
vc SZG_INPUTO networks internet

vc2 SZG_CONF virtual true
vc2 SZG_CONF location wvc2
vc2 SZG_CONF relaunch_all false
vc2 SZG_TRIGGER map laptop
vc2 SZG_DISPLAY number_screens 1
vc2 SZG_DISPLAYO map laptop/SZG_DISPLAYO
vc2 SZG_DISPLAYO networks internet
vc2 SZG_INPUTO map laptop/inputsimulator
vc2 SZG_INPUTO networks internet
</assign>
</szg_config>

Figure 3: Virtual Computer configuration partial Batchfile

11

4 Shared Worlds

A Shared World in Syzygy is implemented through node sharing between two
or more different Scenegraphs. Shared Worlds allow a complete Scenegraph
tree or parts of a Sceengraph tree to be shared between Virtual Computers.
The sharing is accomplished by using the arGraphicsPeerc class. arGraphic-
sPeer allows for different sharing levels and also includes support for filtering
by node level. See section [4.1] and [£.2] respectively.

4.1 Sharing

Shared worlds can be created using three different types of sharing. The
types of sharing are defined by the type of peers that are used. There are
feedback, push, and pull peers. There is also another subset of these peers
in which geometry and transformations are not shared but tree structure is
shared[I].

The first type of sharing, “feedback”, is the simultaneous sharing of two
node trees. The node tree and updates to this tree are synchronized between
the two peers. Updates are defined as changes to nodes such as changes to a
transform matrix or color of a material. The second, “push”, is used when
one peer pushes its node tree and updates to another peer but the remote
peer does not send any of its own node tree nor any changes to its copy of
the originating peers node tree. The third, “pull”, is exactly the reverse. A
pull peer receives a node tree and updates from a remote peer but does not
send its own node tree or any changes it makes.

The sharing type is defined by the pullSerial and pushSerial methods
of the arGraphicsPeer class. Both functions take the following arguments:
remote node name, remote node id, local node id, send level, remote send
level, local send level. Remote node name is the name of the remote node
that the link is to be made with. Remote node id is the node id of the
remote node from which sharing should take place. Usually this is set to 0
to indicate the root node of the remote arGraphicsPeer. Local node id is
the node id of the local node from which sharing should take place. Again,
this is usually set to 0. Send level is the level at which nodes with a node
level of equal or lower value will be shared. Remote send level is the level at
which remote nodes with a node level of equal or lower value will be sent.
Local send level is the level at which local nodes with a nodel level of equal
to lower value will be sent. For a discussion on node levels see the section
on filtering (Section . pushSerial is used to push the current peers node
tree to another peer. pullSerial is used to pull a remote peers current node

12

tree. Some examples:

From peer2.py:

peer.pullSerial ("worldO", 0, O, AR_TRANSIENT_NODE, \
AR_TRANSIENT_NODE, AR_TRANSIENT_NODE)

This command copies the current node tree from world0. Updates from the
remote peer, world0, will be sent to this peer and updates this peer makes
to the node tree will be sent to worldO.

From buildworld.py:

pullSerial(sys.argv[i], O, 0, AR_TRANSIENT_NODE, \
AR_TRANSIENT_NODE, AR_IGNORE_NODE)

This command copies the current node tree from one of the worldpart
counterparts. (See the documentation on buildworld and worldpart for more
information.) Remote updates are sent to this peer but any changes that
this peer makes to the scene graph will not be sent back.

4.2 Filtering

Filtering allows for a peer to select which node updates to send. For
this to occur, nodes are assigned different levels: AR TRANSIENT_NODE,
AR_OPTIONAL_NODE, AR_STABLE_NODE, AR_.STRUCTURE_NODE,
AR_IGNORE_NODE. By default, new node is given the level AR_STRUCTURE_NODE.
Filtering starts off by taking a node and transversing its tree. Any node be-
low the given node with a node level less than or equal to the filtering
level will still send updates. For a better example, see Figure In the
diagram, two peers are setup for feedback sharing via the nodes indicated
by the arrows. Peer 2, however, is filtering from the root node at level 1,
AR _STABLE_NODE. This means, the red node, if updated on Peer 2, will
not change in Peer 1. The node below the red node, however, will have its
updates sent from Peer 2 to Peer 1 and vis versa. Sharing is accomplished
by the remoteFilterDataBelow and localFilterDataBelow methods of the ar-
GraphicsPeer class. Both functions take three arguments: peer name, node
id, node level. Peer name is the name of the remote peer. Node id is the
id of the node from which filtering will take place. Node level is the level
where node updates will be cut off. A node level of AR_LOPTIONAL_NODE
will only block nodes of level AR_.TRANSIENT_NODE since it is the only
level of greater value. For an example of filtering, see |4.4

13

4.3 Running a Shared World on One Computer

In a typical Shared World setup with Syzygy, one or more Physical Com-
puters are used for each Virtual Computer. For example, peer.py |Z| is setup
to run on two or more Virtual Computers, each of which make a sphere and
share it with the others. In the course of testing and development Shared
World scripts, multiple Physical Computer set ups are not always feasible.
Fortunately, Syzygy supports multiple Virtual Computers on a single Phys-
ical Computer. This set up can be used to test Shared World scriptsﬁ

Initial Setup Before attempting to run any of the examples included
using one Physical Computer, Syzygy must be configured and setup properly
to run multiple Virtual Computers. The Physical Computer must be set up
to be a Server, Peer, and Controller Computerﬂ See section [3| for more
details. The steps to doing so are briefly outlined belowIEI:

1. Configure a working szg.conf file
2. Start a szgserver

3. dlogin to the server

4. Run a szgd

5. dbatch singlecomputer.txt (Figure |5)

Running The next step is to load two copies of szgrender and inputsim-
ulator, one for each Virtual Computer. In this example foo and bar will
be used as the Virtual Computer names. From the EZSZG shell, enter the
following;:

dex szgrender -szg virtual=foo -szg mode/graphics=SZG_DISPLAYO
dex inputsimulator -szg virtual=foo

"peer.py is distributed with Syzygy in doc/python

8Tt has been observed that moving from one Physical Computer to an arbitrary number
of them is trivial, given the Physical Computers are a properly set up Phleet

9The Controller Computer portion of the setup is done partly on the fly with use of
the -szg flag. Your batchfile only needs to define paths, and not Virtual Computers. You
can define the Virtual Computers in the batchfile if you want though, and thus not have
to use the -szg flag.

Othe steps are to all be performed on the same Physical Computer

14

dex szgrender -szg virtual=bar -szg mode/graphics=SZG_DISPLAY1
dex inputsimulator -szg virtual=bar

The dex commands use the -szg arguments to determine the Virtual
Computer to run the component with respect to. The second -szg argument
for the szgrenders is used to make sure each szgrender uses a different dis-
play window. If the display window name is not set Syzygy will issue an
error stating that the current display slot is already in use. After these com-
mands are issued, two szgrender windows should be displayed along with
two inputsimulator windowg!1]

Now we can dex scripts on the Virtual Computers. Here is the example
syntax for the feedbackpeer. From the EZSZG shell, issue the following
commands:

dex feedbackpeerl.py -szg virtual=foo
dex feedbackpeer2.py -szg virtual=bar

If all has gone well you will now see a sphere and cube in each of the
szgrender windows (See section [4.4).

The dex commands use the -szg arguments to determine the Virtual
Computer to run the component with respect to. The second -szg argument
for the szgrenders is used to make sure each szgrender uses a different dis-
play window. If the display window name is not set Syzygy will issue an
error stating that the current display slot is already in use. After these com-
mands are issued, two szgrender windows should be displayed along with
two inputsimulator windowg!?]

Now we can dex scripts on the Virtual Computers. Here is the example
syntax for the feedbackpeer. From the EZSZG shell, issue the following
commands:

dex feedbackpeerl.py -szg virtual=foo
dex feedbackpeer2.py -szg virtual=bar

If all has gone well you will now see two spheres in each of the szgrender
windows (See section [4.4)).

"YWarning: the second inputsimulator window will be in the exact location of the first
making it seem like only one inputsimulator was launched.

!2Warning: the second inputsimulator window will be in the exact location of the first
making it seem like only one inputsimulator was launched.

15

4.4 Feedback Peers

feedbackpeerl.py and feedbackpeer2.py are very simple examples showing
two peers which establish a feedback sharing mode and support filtering.
feedbackpeerl creats a sphere while feedbackpeer2 creates a cube. The but-
ton 1 changes the color of its object. Button 2 starts and stops bouncing
of the local sphere. Button 3 enables filtering of the translation node for
the opposite peer. Eg. if feedbackpeerl enables filtering while the sphere
created by feedbackpeer2 is bouncing, the sphere will freeze in its current
location on feedbackpeerl even though it remains bouncing on feedback-
peer2. While filtering is enabled, color changes to the sphere are still sent
to feedbackpeerl. If filtering is then disabled, the sphere will once again
resume bouncing on feedbackpeerl. See figure [6] for a screenshot.

4.5 Avatar Peers

avatarpeerl.py and avatarpeer2.py use feedback sharing one twist. avatarpeerl’s
Scenegraph contains a sphere and floor. The sphere changes colors via but-
ton 0 and will bounce via button 1 similar to feedbackpeerl. feedbackpeer2,
however, is a little different. avatarpeer2 creates a blobbyMan avatar which
follows the navigator. In other words, the blobbyMan follows the user as
the user navigates around the environment. This movement is shared be-
tween the two peers so that movement in avatarpeer2 moves the avatar in
avatarpeerl. This is behavior emulates the behavior in first person shooter
games in which an avatar or characters movement is a function of the users
location in the world. Figure [7|shows a screenshot.

4.6 Build World and World Part

buildworld.py and worldpart.py show how a shared world can be built up
using parts from many independent peers who do not see or interact with
each other. worldpart.py can be run on an arbitrary number of virtual
computers. Each worldpart is completely independent and does not share
or recieve any nodes from any other peer. buildworld.py assembles the
contents of all the worldpart peers it is told about, and places them in
one shared world. Running buildworld and worldpart is different than the
other two examples. worldpart takes two arguments. The first is the name
given to identify itself. The second is one of hexahedron, sphere, or plane.
buildworld is passed the name of all the worldparts that it should assemble.
Here is an example of 3 worldparts and 1 buildworld. The worldparts are
assembled on virtual computers vcl, ve2, and ve3. buildworld is run on the

16

virtual computer ve4. In each of the worldparts, navigation is tied to the
object just like avatarpeer. Therefore, when an object is moved in any one
of its worldpart environments, the movement can be seen in the buildworld
environment.

dex vcl worldpart.py partl sphere

dex vc2 worldpart.py part2 hexahedron
dex vc3 worldpart.py part3 plane

dex vc4 buildworld.py partl part2 part3

Figure [§] shows the resulting image on vcd after some navigation and color
change.

5 Syzygy Setup and Configuration

5.1 Compiling on Linux 64 bit and Mac OS X x86

64bit linux and Mac OS X on Intel require changes to the Syzygy source code
in order to compile and run. These changes are mainly due to assumptions
about pointers being 32bits and changes in GCC. The altered source code
with the exact changes can be found at http://new.math.uiuc.edu/ ivan-
hoe/mulligan/src/syzygy/index.html

6 Conclusions and Future Improvements

6.1 Conclusions

Shared Worlds with Syzygy provides the basics for starting a Shared World
project in a Virtual Environment.

6.2 Future Improvements

Syzygy has a great potential for building interesting Shared World applica-
tions. People should be able to use Shared Worlds with Syzygy as a stepping
stone to projects of more great significance. A few notable examples would
be video conferencing between Virtual Environments, psychological experi-
ments with two subjects interacting with each other, and dynamical system
viewers with each user being able to point at locations of interest.

It does seem as though it might be possible to teach a course in com-
puter graphics/virtual environments using a Shared World where students

17

and teachers use a client to connect to the world and then use python in-
teractive bound to helpful methods to learn about transformations, light-
ing, and animation. It may make sense to use VPython as part of such a
system as a starting place for placing objects into the shared world, and
use python methods bound to Threading objects to facilitate animations
through Python interactive without using an infinite loop. For instance the
program would start by connecting to the Shared World, then it would start
a Thread for the display and navigation devices of the client. After the
program would drop into a Python Interactive session, where the user could
type things like

>>>s = sphere(pos=(0,0,0), color=color.red)
and then call another Threading Object called Bounce something like
>>>b = Bounce(s) \ b.start()

If setup properly Bounce would cause the sphere to animate in some way in
the Virtual Environment. Of course, the Teacher could then just look around
inside the Virtual Environment from his computer and see the student’s
avatars and the sphere’s that they had created and watch them bounce.

7 Special Notes

7.1 Input Simulator vs. the Cave and Cube

The inputsimulator and the actual wand in the Cave and Cube are two
completely different ways to generate input to a Syzygy application. When
using the inputsimulator, buttons will only work in mode 4 (Translate Wand
+ Buttons). There are now 4 different sections of buttons, 01, 23, 45, and
67. Different modes are selected by hiting the space bar and ar indicated by
the white dot next to the red buttons in the inputsimulator. When in any
mode, the left mouse button activates the first button (button 0 in mode
01) and the right mouse button (Apple + Left Click on Macintosh) activates
the second button (button 1 in mode 01). In the Cave or Cube, buttons 0,
1, and 2 are the buttons on the bottom right of the controller in that order.
These were previously known is left, middle, and right.

18

Peer 1 Fitter of updates that Pear 2
Peer 2 sends

O Filttering from root

shared node.
Filter level = 1

S ®
©® @
O o

Figure 4: Visualization of filtering

<szg_config>
<assign>
YourComputerName SZG_EXEC path c:\Python24;c:\szg-1.0\bin
YourComputerName SZG_PYTHON path c:\szg-1.0\doc\python
</assign>
</szg_config

Figure 5: singlecomputer.txt
while the example shows the setup is for Windows, a similiar one can
easily be made for Unix

19

Figure 6: Screenshot of feedbackpeerl.py.

Figure 7: Screenshot of avatarpeerl.py.

20

Figure 8: buildworld.py running with three peers.

21

References

[1] Ben Schaeffer, et. al.: Myriad:scalable VR wvia peer-to-peer
connectivity, PC clustering, and transient inconsistency,
http://www.isl.uiuc.edu/ schaeffr/vrst31-schaeffer.pdf

[2] Integrated Systems Lab: Syzygy 1.0 Documentation
http://www.isl.uiuc.edu/szg/doc/index.html

22

http://www.isl.uiuc.edu/~schaeffr/vrst31-schaeffer.pdf
http://www.isl.uiuc.edu/szg/doc/index.html

	Definitions
	Outline for Creating a Shared World
	Setting Up A Phleet
	Server Computer Instructions
	Peer Computer Instructions
	Controller Computer Instructions
	Syzygy Config Files
	Batch Files

	Shared Worlds
	Sharing
	Filtering
	Running a Shared World on One Computer
	Feedback Peers
	Avatar Peers
	Build World and World Part

	Syzygy Setup and Configuration
	Compiling on Linux 64 bit and Mac OS X x86

	Conclusions and Future Improvements
	Conclusions
	Future Improvements

	Special Notes
	Input Simulator vs. the Cave and Cube

	References

