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Abstract 
 
 The purpose of this exercise is to 
create a program that generates an 
aperiodic lattice of three-dimensional 
quasicrystals. This was accomplished using 
the DeBruijn dual method, which involves 
taking a star of vectors, each with 
direction normal to a face of a 
dodecahedron, and drawing planes normal 
to those vectors on unit intervals away 
from the origin. Then, at each point where 
three or more planes intersect, transport 
the original vectors and add them, and a 
quasicrystal is formed. By cycling through 
all points of intersection, an aperiodic 
lattice is formed. 
 
 
Background 
 
 In 1974, mathematician and 
physicist Robert Penrose discovered that 
he could tessellate a two dimensional 
space quasiperiodically with two figures, a 
fat rhombus and a skinny one. This 
tessellation is called quasiperiodic because 
the pattern has no translational symmetry, 
yet it has five-fold rotational symmetry, 
something which was previously not 
thought to exist for tessellations. Penrose 
soon discovered a challenge in creating 
these tessellations: describing a foolproof 
rule set which does just that. He 
attempted to do so, along with the 
reclusive mathematician Robert Ammann, 
by decorating the tiles with bars that form 

continuous lines when the pattern was 
properly assembled. However, this 
method was not perfect, as it can come to 
pass that legal moves produce an error 
and must be replaced. 
 Then, in 1980, Dutch 
mathematician Nicolas DeBruijn came up 
with two methods of repeated steps that 
generate these non-repeating patterns. 
The first of these is the projection 
method, in which the vertices of a higher 
dimensional lattice of cubes is put through 
a mathematical test and those that pass are 
projected into lower-dimensional space 
and become the nodes of the 
quasicrystals. DeBruijn’s second method, 
the dual method is the superior of the two 
and goes as follows. First, define a star of 
vectors that a perpendicular to the sides of 
a dodecahedron. Then, construct planes at 
unit intervals along the vectors. At each 
point where three planes intersect, 
transport the original vectors and perform 
the vector addition of the vectors, and 
either a fat or a skinny rhombohedron, 
analogous to the fat and skinny rhombi of 
Penrose’s two dimensional tessellation, is 
drawn. If this is performed at every 
location where three planes intersect, a 
quasiperiodic lattice is formed. 
 
 
Method 
 
 This program uses the DeBruijn 
dual method to generate the desired 
quasiperiodic lattice of rhombohedra. This 
method involves taking a star of vectors, 
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each with direction normal to a face of a 
dodecahedron, and drawing planes normal 
to those vectors on unit intervals away 
from the origin. Then, at each point where 
three or more planes intersect, transport 
the original vectors and add them, and a 
quasicrystal is formed. By cycling through 
all points of intersection, an aperiodic 
lattice is formed.  

This program makes use of the 
syzygy library and the distributed scene-
graph framework. This framework works 
by establishing a tree in which every node 
has the properties of its parent nodes and 
passes on its traits to its daughters; nodes 
correspond to things such as materials, 
indices, drawables, transforms, and other 
things necessary for computer graphics. 
What follows is a line-by-line explanation 
of how that method was implemented in 
quasi.py in order to draw that lattice.  
 Lines 1-5 import the syzygy 
library, as well as other libraries that are 
necessary for use in the program. Lines 6-
32 are the default navigator as defined by 
Ben Schaeffer in his Cosmos.py. These 
lines define how the user navigates within 
the program.  
 Lines 33-73 are where the 
drawQuasiCrystal method is defined.  
This method, as its name implies, draws a 
quasicrystal. It takes as arguments the 
three vectors that will define the generated 
solid, the x, y, and z coordinates of the 
“zero” vertex of the quasicrystal, and the 
material node that will become the parent 
of the quasicrystal. This method first 
creates a node to function as the set of 
points defining the vertices of the 
rhombohedron to be drawn as a daughter 
of the material node passed as an 
argument. Then it creates a series of index 
nodes as daughters of the points node 
which will tell their corresponding 
daughter drawable nodes the order in 
which to connect the vertices. The 
method then creates a drawable node for 
every index node and defines those 

drawable nodes to be line strips, drawing 
the quasicrystal.  
 Lines  74-149 define the 
calculatePosition method, given three 
vectors, calculates the positions of 
intersection of the planes defined by those 
vectors, which give the positions of the 
rhombohedra. This method takes three 
vectors and the material node that will be 
parent to the drawn rhombohedra as 
arguments. Because each vector defines 
several planes, each spaced Nτ away from 
the origin, where N is a non-zero integer 
and τ is the golden ratio, the first thing 
that this method does is create a set of 
nested while loops so that each 
permutation of planes can be accounted 
for. Then, for each plane, it generates its 
equation in the form: 

! 

Px +Qy + Rz = C  
where: 

! 

C = Px
0

+Qy
0

+ Rz
0
 

and P, Q, and R are the x, y, and z 
components of the vector normal to the 
plane. Then, Cramer’s rule is used to 
determine if and where the planes 
intersect. If the determinant of the 
coefficients matrix is equal to zero, then 
the planes do not intersect and the 
method moves on and calculates the 
position of the rhombohedron and draws 
it using the drawQuasiCrystal method 
defined above. 
 Lines 150-171 define the 
addLights method. This method takes the 
root node as an argument and creates two 
white lights as daughters to the root node.  
 Lines 172-179 set up the 
distributed scene-graph framework, set 
the root node, and set buffer swap to 
manual. Lines 180-197 translate 
everything so that it is in front of the 
viewer, set the navigation node, call the 
addLights method, and create a material 
node and set the material properties of the 
rhombohedra. Lines 198-207 define the 
star of vectors that will be used to 
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calculate the position of the 
rhombohedra. Lines 208-249 call the 
calculatePosition method for each 
possible combination of three vectors and 
output a countdown so that the user 
knows that the program has not stalled 
during the lengthy process of calculating 
the positions. Finally, lines 250-259 
establish the main loop of the program, 
swap the buffers, update the navigator, 
and set the viewer. 
 
 
Execution 
 
 To run the program, syzygy 
version 1.0, Python version 2.4, and a 
UNIX shell must be installed Then, 
complete the following steps: 

1. Open the UNIX shell. 
2. Navigate to the directory in which 

syzygy is installed. 
3. Start syzygy. 
4. Navigate to the directory in which 

quasi.py is located. 
5. Type python quasi.py into 

the UNIX shell 
 
 
Conclusion 
 
 The greatest challenge in writing 
quasi.py is the fine tuning of the 
mathematics to generate the 

rhombohedra. There are several upgrades 
planned for future versions of quasi.py 
First, a proper algorithm for selecting 
where to draw rhombohedra needs to be 
developed because the current one, where 
the only criterion to be met is that the 
determinant of the coefficients matrix 
cannot be equal to zero, is too permissive. 
Second, it would be nice to draw the 
rhombohedra one at a time so that the 
user can see the structure grow and 
evolve. Finally, it has been proposed to 
allow the user to select rhombohedra one 
at a time and toggle whether the selected 
rhombohedron is viewed as a wire frame, 
as a solid, or as a partial solid. 
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