

 1

Quasi.py: An Investigation into Tessellating
Three-Space with Quasicrystals

Michael J. Mangialardi

Math 198: Hypergraphics 2006
University of Illinois at Urbana-Champaign

Abstract

 The purpose of this exercise is to
create a program that generates an
aperiodic lattice of three-dimensional
quasicrystals. This was accomplished using
the DeBruijn dual method, which involves
taking a star of vectors, each with
direction normal to a face of a
dodecahedron, and drawing planes normal
to those vectors on unit intervals away
from the origin. Then, at each point where
three or more planes intersect, transport
the original vectors and add them, and a
quasicrystal is formed. By cycling through
all points of intersection, an aperiodic
lattice is formed.

Background

 In 1974, mathematician and
physicist Robert Penrose discovered that
he could tessellate a two dimensional
space quasiperiodically with two figures, a
fat rhombus and a skinny one. This
tessellation is called quasiperiodic because
the pattern has no translational symmetry,
yet it has five-fold rotational symmetry,
something which was previously not
thought to exist for tessellations. Penrose
soon discovered a challenge in creating
these tessellations: describing a foolproof
rule set which does just that. He
attempted to do so, along with the
reclusive mathematician Robert Ammann,
by decorating the tiles with bars that form

continuous lines when the pattern was
properly assembled. However, this
method was not perfect, as it can come to
pass that legal moves produce an error
and must be replaced.
 Then, in 1980, Dutch
mathematician Nicolas DeBruijn came up
with two methods of repeated steps that
generate these non-repeating patterns.
The first of these is the projection
method, in which the vertices of a higher
dimensional lattice of cubes is put through
a mathematical test and those that pass are
projected into lower-dimensional space
and become the nodes of the
quasicrystals. DeBruijn’s second method,
the dual method is the superior of the two
and goes as follows. First, define a star of
vectors that a perpendicular to the sides of
a dodecahedron. Then, construct planes at
unit intervals along the vectors. At each
point where three planes intersect,
transport the original vectors and perform
the vector addition of the vectors, and
either a fat or a skinny rhombohedron,
analogous to the fat and skinny rhombi of
Penrose’s two dimensional tessellation, is
drawn. If this is performed at every
location where three planes intersect, a
quasiperiodic lattice is formed.

Method

 This program uses the DeBruijn
dual method to generate the desired
quasiperiodic lattice of rhombohedra. This
method involves taking a star of vectors,

 2

each with direction normal to a face of a
dodecahedron, and drawing planes normal
to those vectors on unit intervals away
from the origin. Then, at each point where
three or more planes intersect, transport
the original vectors and add them, and a
quasicrystal is formed. By cycling through
all points of intersection, an aperiodic
lattice is formed.

This program makes use of the
syzygy library and the distributed scene-
graph framework. This framework works
by establishing a tree in which every node
has the properties of its parent nodes and
passes on its traits to its daughters; nodes
correspond to things such as materials,
indices, drawables, transforms, and other
things necessary for computer graphics.
What follows is a line-by-line explanation
of how that method was implemented in
quasi.py in order to draw that lattice.
 Lines 1-5 import the syzygy
library, as well as other libraries that are
necessary for use in the program. Lines 6-
32 are the default navigator as defined by
Ben Schaeffer in his Cosmos.py. These
lines define how the user navigates within
the program.
 Lines 33-73 are where the
drawQuasiCrystal method is defined.
This method, as its name implies, draws a
quasicrystal. It takes as arguments the
three vectors that will define the generated
solid, the x, y, and z coordinates of the
“zero” vertex of the quasicrystal, and the
material node that will become the parent
of the quasicrystal. This method first
creates a node to function as the set of
points defining the vertices of the
rhombohedron to be drawn as a daughter
of the material node passed as an
argument. Then it creates a series of index
nodes as daughters of the points node
which will tell their corresponding
daughter drawable nodes the order in
which to connect the vertices. The
method then creates a drawable node for
every index node and defines those

drawable nodes to be line strips, drawing
the quasicrystal.
 Lines 74-149 define the
calculatePosition method, given three
vectors, calculates the positions of
intersection of the planes defined by those
vectors, which give the positions of the
rhombohedra. This method takes three
vectors and the material node that will be
parent to the drawn rhombohedra as
arguments. Because each vector defines
several planes, each spaced Nτ away from
the origin, where N is a non-zero integer
and τ is the golden ratio, the first thing
that this method does is create a set of
nested while loops so that each
permutation of planes can be accounted
for. Then, for each plane, it generates its
equation in the form:

!

Px +Qy + Rz = C
where:

!

C = Px
0

+Qy
0

+ Rz
0

and P, Q, and R are the x, y, and z
components of the vector normal to the
plane. Then, Cramer’s rule is used to
determine if and where the planes
intersect. If the determinant of the
coefficients matrix is equal to zero, then
the planes do not intersect and the
method moves on and calculates the
position of the rhombohedron and draws
it using the drawQuasiCrystal method
defined above.
 Lines 150-171 define the
addLights method. This method takes the
root node as an argument and creates two
white lights as daughters to the root node.
 Lines 172-179 set up the
distributed scene-graph framework, set
the root node, and set buffer swap to
manual. Lines 180-197 translate
everything so that it is in front of the
viewer, set the navigation node, call the
addLights method, and create a material
node and set the material properties of the
rhombohedra. Lines 198-207 define the
star of vectors that will be used to

 3

calculate the position of the
rhombohedra. Lines 208-249 call the
calculatePosition method for each
possible combination of three vectors and
output a countdown so that the user
knows that the program has not stalled
during the lengthy process of calculating
the positions. Finally, lines 250-259
establish the main loop of the program,
swap the buffers, update the navigator,
and set the viewer.

Execution

 To run the program, syzygy
version 1.0, Python version 2.4, and a
UNIX shell must be installed Then,
complete the following steps:

1. Open the UNIX shell.
2. Navigate to the directory in which

syzygy is installed.
3. Start syzygy.
4. Navigate to the directory in which

quasi.py is located.
5. Type python quasi.py into

the UNIX shell

Conclusion

 The greatest challenge in writing
quasi.py is the fine tuning of the
mathematics to generate the

rhombohedra. There are several upgrades
planned for future versions of quasi.py
First, a proper algorithm for selecting
where to draw rhombohedra needs to be
developed because the current one, where
the only criterion to be met is that the
determinant of the coefficients matrix
cannot be equal to zero, is too permissive.
Second, it would be nice to draw the
rhombohedra one at a time so that the
user can see the structure grow and
evolve. Finally, it has been proposed to
allow the user to select rhombohedra one
at a time and toggle whether the selected
rhombohedron is viewed as a wire frame,
as a solid, or as a partial solid.
 I would like to thank George
Francis and Tony Robbin for their help in
developing the algorithm to calculate the
position of the rhombohedra. I would also
like to thank Ryan Mulligan and Kyle
Wilkinson for helping to debug the code.

Sources

1. Robbin, Tony. Shadows of Reality. New

Haven, Connecticut: Yale University
Press, 2006.

2. Levine, Dov et al. “Quasicrystals with
Arbitrary Orientational Symmetry,”
Physical Review. 32(8):5547-50, October
1985.

