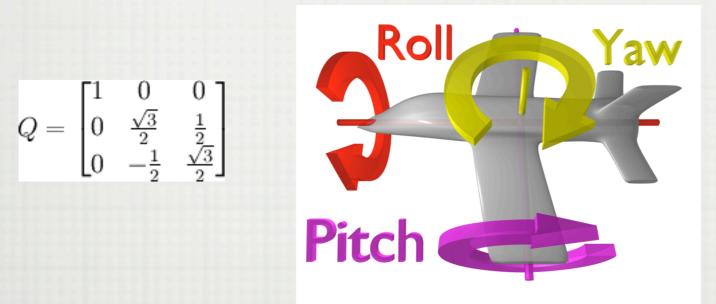
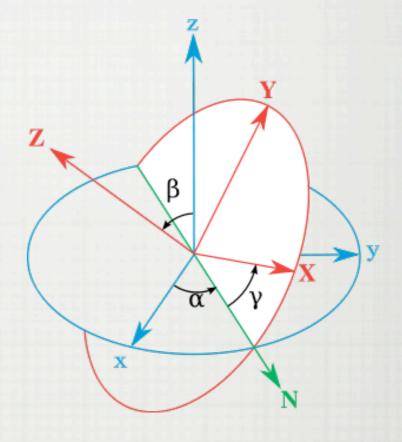
A FRIENDLY FORAY INTO FRUGAL FLYING

BYYOSTSMITH


OBJECTIVES OF THE PRESENTATION


- TO EXPLAIN THE BASICS OF CONTROL SYSTEMS
- TO EXPLAIN THE BASICS OF A ROTATION MATRIX
- TO EXPLAIN THE BASICS OF PFORTH
- ☐ TO WALK THOUGH A SAMPLE OF PFORTH CODE
- TO MAINTAIN ABOVE A 3/4 RATIO OF PEOPLE AWAKE TO PEOPLE ASLEEP (>75%)

CONTROL SYSTEMS

- ROLL, PITCH AND YAW
- DEFINED BY EULER ANGLES

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$Q_{\mathbf{z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad Q_{\mathbf{x}}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}, \quad Q_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix},$$

$$Q_{\mathbf{x}}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix},$$

$$Q_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix},$$

THE ROTATION MATRIX

- ☐ WHAT HAPPENS WHEN WE WANT MORE THAN ONE ROTATION?
- SIMPLY WHAT RESULTS FROM MULTIPLE ROTATIONS ONE AFTER ANOTHER
- CAN GET TO BE VERY VERY UGLY

NOW WHAT ABOUT TRANSLATION

TRANSLATION CAN BE ADDED TO THIS BY USING A 4X4
INSTEAD OF A 3X3. THE LAST COLUMN WILL BE OUR X, Y,
Z TRANSLATION.

1	0	0	ta ₀
0	1	0	ta ₁
0	0	1	ta ₂
0	0	0	1

	1	0	0	tb ₀
*	0	1	0	tb ₁
	0	0	1	tb ₂
	0	0	0	1

$1*1 + 0*0 + 0*0 + ta_0*0$	$1*0 + 0*1 + 0*0 + ta_0*0$	$1*0 + 0*0 + 0*1 + ta_0*0$	$1*tb_0 + 0*tb_1 + 0*tb_2 + ta_0*1$
$0*1 + 1*0 + 0*0 + ta_1*0$	$0*0 + 1*1 + 0*0 + ta_1*0$	$0*0 + 1*0 + 0*1 + ta_1*0$	$0*tb_0 + 1*tb_1 + 0*tb_2 + ta_1*1$
$0*1 + 0*0 + 1*0 + ta_2*0$	$0*0 + 0*1 + 1*0 + ta_2*0$	$0*0 + 0*0 + 1*1 + ta_2*0$	$0*tb_0 + 0*tb_1 + 1*tb_2 + ta_2*1$
0*1 + 0*0 + 0*0 + 1*0	0*0 + 0*1 + 0*0 + 1*0	0*0 + 0*0 + 0*1 + 1*0	$0*tb_0 + 0*tb_1 + 0*tb_2 + 1*1$

1	0	0	$tb_0 + ta_0$
0	1	0	$tb_1 + ta_1$
0	0	1	$tb_2 + ta_2$
0	0	0	1

PFORTH

- THESTACK
 - RPN (REVERSE POLISH NOTATION)
- MATRICES, VECTORS AND VARIABLES
- STANDARD VOCABULARY

PFORTH EXAMPLE: WIIMOTE_RAW

```
<pforth>
 matrix fixHeadMatrix
  0 5 0 fixHeadMatrix translationMatrix
 matrix fixWandMatrix
  0 3.5 -2 fixWandMatrix translationMatrix
 matrix headMatrix
 matrix wandMatrix
  define filter_matrix_0
headMatrix getCurrentEventMatrix
fixHeadMatrix headMatrix headMatrix matrixMultiply
headMatrix setCurrentEventMatrix
  enddef
  define filter_matrix_1
wandMatrix getCurrentEventMatrix
fixWandMatrix wandMatrix wandMatrix matrixMultiply
wandMatrix setCurrentEventMatrix
  enddef
</pforth>
```

DEMONSTRATION

ZNAIL USING THE WII!

CONCLUSION

- THANKS TO THOSE WHO DIDN'T FALL ASLEEP
- ☐ THANKS TO JIM, CAMILLE AND PROFESSOR FRANCIS