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Motivation from Algebra (there are other motivations).

In algebra, to solve ma =y for z we merely divide z = y/m. And if asked,
what is this m, we again divide: m = y/x.!

For Hamilton, x and y were forces applied to two different points in space,
think of steering a bicycle. In computer graphics, it might be two different
places for the camera in space. For the two divisions to make sense in this
context, we need to give a meaning to two inverses. (I have used m for
“move”.) The first one, x = y/m = (/m)y, is a no-brainer: /m is the
inverse operation, if there is one, for the operation of applying m to . The
second, m = y/x, is deeper: what is the reciprocal of a (bound) vector?

Solution by generalizing Complex Numbers.

For 2d-physics (or graphics) the answer resides in the complex numbers
which were invented for different purposes long before Hamilton. Complex
addition (and scalar multiplication) embodied the “vector” qualities (e.g.
translation, as in the parallelogram rule) and complex multiplication took
care of rotations.

Hamilton found that if he went to 4D, his generalized complex numbers, the
quaternions, had (almost) the same properties. The “almost” included the
unexpected wrinkle that multiplication was no longer commutative, ab! = ba
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in general. In particular, if p and ¢ are quaternions, the “action” of ¢ on p,
namely p — gp/q, is no longer “trivial”, the ¢’s don’t cancel out.

Even better, Hamilton noticed that if you split 4D into 1D+3D (i.e. ¢ =
x 4 uy, where z and y are real, and u is a 3Dvector unit vector) two things
fall into place. First, a unit quaternion (has length 1) can now be written
as cost + usint, where u is the direction of ¢ (a unit vector in 3D) and t
is its “declination” angle from the north pole of the 3-sphere S® (populated
by the unit quaternions) towards u (which lies in the “equatorial” 3D space
of our experience.)

Secondly, if p is a “pure” quaternion, i.e. it lies in our (equatorial) 3space
(algebraically, if p = 0+ w) then ¢ acts on p by rotating it exatly 2t degrees
around the direction (axis) u. (And vice versa, and much more. Besides, all
of these assertions deserve to be demonstrated as being really so.)

In other words, rotations in 3D are now subject to algebra. Where, you
might ask, do matrices come in? (Well, Hamilton didn’t use them.) Strictly
speaking, they come in only at the computational end of things, because
nobody can keep 16 numbers in their head. But, since most computer
graphicists barely learned linear algebra, and no geometry beyond advanced
calculus, it’s no wonder that they like matrices. They keep rediscovering
(and patenting !) the matricial form of the operation p — ¢gp/q. (Half the
time they get it wrong as on the website “Gamasutra”.)

So here is the mystery in a single sentence: The unit sphere S%in R* is
a Lie group under quaternionic multiplication, which acts on our R? by
the operation p — ¢p/q as a rotation. The group of 3D rotations, SO(3),
is “doubly covered” i.e. S® — SO(3) is 2:1 , which, among other things,
explains the “plate trick”.

Before we solve the harder of Hamilton’s riddles, let’s demythologize the
rotation matrix. First, you need to recall that quaternions multiply by using
every vector product you learned in calculus, namely numerical product, dot
product, scalar product (twice) and cross product.

pg=(r+v)(s+w)=(rs—vw)+rw+uvs+v X w.

To express qu/q as Mv all you need to remember is that the columns of the
orthogonal matrix M are nothing other than M = [qi/q,qj/q, qk/q] where
i, j, k are the usual unit vectors. If you need to convince yourself of this fact,
recall that the action of a matrix M = [M;, Ms, M3] on a vector v = (z,y, z)
is just the linear combination,



Mv = xM; + yMs + zMs. Now apply ¢ and /q to v = xi + yj + zk.

Exercise. Given the matrix M of a rotation, find (one of the two) of its
quaternions.

Geometrical Motivation and Solution.

Recall that vectors are abstractions that have magnitude and direction. But
vectors have two geometrical interpretations. Learning how not to get them
confused separates the A’s from the C’s in Calculus.

A socalled location vector is associated with a position in space (the arrow
comes out of the origin and points to the position). A vector also specifies
a point transformation, called a translation, which shoves every point along
the vector applied to it.

For applied forces as for camera positions, we need a single concept for
the pair: location and heading, just as we invented “vector” for the pair
magnitude and direction. I propose the word place. Thus a place is a
position m and a heading H. It isn’t enough to think of H as just one unit
vector (a direction), because the camera can tilt while pointing in the same
direction. So we bite the bullet and think of H as a triplet of mutually
perpendicular unit vectors (this mouthful is called an orthogonal frame, and
one drops the orthogonal thereby causing confusion among the acolytes in
computer graphics.)

(What’s even worse, H = [H,, Hy, H.] in OpenGL coordinates makes —H,
the direction the camera faces, then H, is to the right, and H, is up. But one
can get used to that too. The alternative makes Hx forward, Hy rightward,
makes Hz downwards to keep a right handed orientationl.)

The (H,m) is also interpreted as a displacement (transformation) of places
in space thus: (H,m)(K,n) = (HK,m+ Hn), where addition and multipli-
cation is from vector algebra. So we can now answer the question of what
the fraction of two places might be (here K’ means the inverse of K for
typographical reasons.)

(H,m)/(K,n) = (HK',m — HK'n)
Check: (HK',m — K'n)(K,n) = (HK'K,(m — HK'n) + HK'n) = (H, m).
Note that only if the heading is the same, H = K, is the Hamilton quotient
a pure translation, (I, m—n). Note also how the location vector m in (H,m)

acts as a translation vector. Such a pair is called an affine transformation
in geometry, and in OpenGl it is called a modelling matriz, or just Matrix.



Note that for orthogonal transformations (orthonormal matrices) the inverse
is just the transpose. In OpenGL one permits also non-uniform but still
orthogonal scaling. This operation is also easily reversed, and H’ is not hard
to keep track of computationally for more general Matrices.

Notes for next time:

To steer an illliView real-time interactive computer animation (RTICA)? we
multiply, A, (the affine matrix “aff” in the illiView RTICAs) on the right
by small displacements (as polled from the mouse or wand.) Why do we
displace A on the right and not on the left?

illiView OpenGL answer:

We want to displace all the objects we can see in the camera uniformly
the same way. Since every object is displaced on the left by A, instead of
applying a series of small displacements to the left of each of the objects,
we do it once and for all on the right of A.

Conventional OpenGl answer:

Here everything has a place in the world, including the kamera, kall its place
k = (Hy,my). To see the world through this camera, you need to premultiply
every object matrix by &, i.e. A = k’. Now notice how a displacement dk
of the camera, takes k — dkk, hence, A — (dkk) = K'dk’ = AdA.

This (finally) reconciles the two approaches (almost.)

24lli View is the identifier for a large number of RTICAs written by and for my students.



