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Summary. We describe a collaboration between mathematicians interested in vi-
sualizing curved three-dimensional spaces and researchers building next-generation
virtual-reality environments such as ALICE, a six-sided, rigid-walled virtual-reality
chamber. This environment integrates active-stereo imaging, wireless motion-tracking
and wireless-headphone sound. To reduce cost, the display is driven by a cluster of
commodity computers instead of a traditional graphics supercomputer. The math-
ematical application tested in this environment is an implementation of Thurston’s
eight-fold way; these eight three-dimensional geometries are conjectured to suffice
for describing all possible three-dimensional manifolds or universes.

1 Introduction

Successful visualization projects involve two pieces, scientists with interesting
content and facilities that provide the services needed to realize that content.
In this paper we explore a collaboration between mathematicians interested
in visualizing curved three-dimensional spaces and researchers building next-
generation virtual reality environments. In many ways, the ultimate test of
new visualization technology is putting it into the hands of scientists and
making it useful for their projects.

The Integrated Systems Laboratory (ISL) at the University of Illinois
(UIUC) provides hardware and software tools to researchers in a variety of
disciplines. This particular collaboration involves a six-sided, rigid-walled vir-
tual reality (VR) chamber, the Adaptive Laboratory for Immersive Collabo-
rative Experiments (ALICE), which has been built by the ISL over the last
year. This is a traditional VR environment, integrating active stereo, wireless
tracking of a user’s position and orientation, and wireless-headphone sound.
To reduce cost, the display is driven by a cluster of commodity computers
instead of a traditional graphics supercomputer. To meet the software chal-
lenges of the cluster environment, the lab has a toolkit for cluster-based VR,
called Syzygy, under active development. A preliminary version of Syzygy
was provided to the mathematicians to aid in porting their software to the
cluster.
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We describe several aspects of the project, starting with the challenges
of constructing the physical facility. Our collaboration was a case study in
porting code from a shared-memory architecture (SGI Onyx) to a cluster
architecture (Syzygy). Finally, we describe the tangible benefits of a fully
enclosed environment for visualizing curved three-dimensional spaces; this
project could not work as well in a less immersive environment.

We gratefully acknowledge the programming assistance of Ben Bernard
and Matt Woodruff, without whose work this project would not have been
possible.

Fig. 1. A fisheye view of the ALICE VR theater, highlighting five of the six mirrors
and projectors. The view is from near the sixth projector, which aims at the sliding
door (halfway open in this photograph).

2 Other fully enclosed virtual reality theaters

The fully enclosed systems built so far are cubes about 3 meters on a side.
Binocular images are rendered via “active stereo”, which rapidly alternates
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left-eye and right-eye projected images which are then directed to each eye
by similarly flickering LCD shutter glasses.

ALICE is driven by a cluster of commodity desktop computers instead of
a large Silicon Graphics Onyx computer. ALICE has rigid walls instead of
fabric, which is prone to flutter and sag when made this large.

Similar theaters we know of include the following:

– The C6 at Iowa State University’s Virtual Reality Applications Center [1]
uses wireless motion tracking.

– The VR-CUBE at KTH Royal Institute of Technology’s Center for Parallel
Computers (Stockholm) [2] uses tethered motion tracking.

– The HyPI-6 system is located in the Virtual Reality Laboratory of the
Fraunhofer Institute for Industrial Engineering [3]. In one configuration it
uses a cluster of PC’s, two per wall, to draw images with passive stereo.

– The COSMOS system at the VR Techno Center in Gifu (Japan) [4] has a
motorized sliding rear wall. Motion tracking is tethered (cables go through
a small hole at one of the corners of the floor). Dual CRT projectors on
each face of the cube double the brightness of the images viewed.

3 Cluster architecture

A PC cluster architecture provides a cost effective means of driving multi-
ple graphics pipes but has disadvantages over a shared-memory SMP archi-
tecture. With SMP, shared memory is an efficient means of communication
between the rendering processes, the single instance of the operating system
can be used to easily manage the software, and time-tested software libraries,
such as the CAVELib [5, 6], exist to aid the applications programmer. Many
of these substantial advantages disappear when considering a PC cluster ar-
chitecture. Communication between rendering processes can now become a
bottleneck because it occurs over a network instead of a memory bus. Man-
aging the different application components spread across the network can be
a challenge, especially if they are running under different operating systems.
Finally, there is no standard library for writing VR software for the cluster
architecture.

Fortunately, there are several interesting software projects that may ad-
dress this in the near future. Of particular note for the VR community is
the NetJuggler [7] extension to VR Juggler [8]. This allows multiple copies
of a VR Juggler program (satisfying certain conditions) to run synchronized
across a cluster. Another set of tools to run multiple synchronized copies of
an application comes from the Princeton Omnimedia group [9]. While their
focus is not on VR, their software could be easily adapted. Similarly, the
WireGL effort [10], which replaces the OpenGL shared library with a stub
that sends data over a network for rendering, is a distributed graphics library
with potential for VR applications.
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The projects just described take one of two paths: distributing the appli-
cation, as in the case of NetJuggler, or distributing the data, as in the case of
WireGL. Distributing the application, namely running synchronized copies
of an application on multiple nodes, can use far less network bandwidth than
a data distribution strategy. This advantage is balanced, however, by the re-
strictions that typical synchronization schemes place on application design.
For instance, multithreading might not be allowed, or the programmer might
be constrained to change application state only in certain ways, for instance
through interfaces to input devices like trackers or mouse/keyboard.

The Integrated Systems Lab is conducting ongoing research into creating
a software toolkit for virtual reality on PC clusters. A very early version of the
library was used to drive a head-mounted display in an human-factors study
at ISL [11]. The toolkit’s current incarnation is called Syzygy, is licensed
under the GNU LGPL, and can be freely downloaded from the web [12].
While the software is still changing and many architectural decisions are
as yet unmade, the lab has made a prototype available to help researchers
port their visualizations to the PC cluster environment. This is the software
backbone supporting the visualization of curved three-dimensional spaces
described in this paper.

In order to produce graphics for ALICE, the six-sided VR theater at ISL,
Syzygy controls six PCs running Windows NT with Wildcat 4210 graphics
cards. Each PC produces an active stereo image which is viewed using stan-
dard shutter glasses. It is important that all the video images be produced
in complete synchrony, with their vertical refresh locked together by means
of an external genlock signal. The Wildcat card’s ability to do this is critical
for us, since active stereo across multiple displays will not work without such
a feature.

Instead of trying to wrap existing libraries and hide the parallelism inher-
ent in the PC cluster, Syzygy attempts to expose the parallelism and provide
the programmer with tools to manage it. Since distributing the application
tends to require fewer network resources than distributing data, the lab fo-
cused on building tools to help programmers write applications that can run
synchronized across a network. As such, Syzygy does not address questions
of load-balancing. The same application runs on each rendering node, with
the only differences being the different point-of-view for each screen and the
division of the nodes into a master and slaves. The master node is in charge
of I/O and managing the synchronization of the group.

The application distribution framework for Syzygy assumes that a pro-
gram can be conceptualized as a infinte loop with four phases: precomputa-
tion, data exchange between the master application instance and the slaves,
post-computation, and synchronization. A simple API lets the programmer
place the data-exchange and synchronization points wherever desired. The
API also provides ways to determine which node is the master, to interface
with a tracker, to configure the different nodes for rendering the different
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walls of a cube, and to compute different viewing frustums based on head
position.

To use the data-exchange API, the programmer first defines the format
of the packet that will be broadcast from the master to the slaves. For some
applications, this can be extremely simple, possibly even a single navigation
matrix, as is the case with the visualization of three-dimensional geometries
described in this paper. At the data-exchange point, the master application
packs this data packet and sends it to each slave. At this point, the slave
applications, conversely, receive the data packet and unpack it into local
storage. The data-exchange API is built on a lower layer of software that
handles the details of the network connection, the data format conversion
between different machine architectures, and other chores.

The underlying synchronization infrastructure needs to accomplish two
goals. The computers doing the rendering not only need to produce a sequence
of frames in lockstep but also need to make sure that they are drawing a
consistent world at each point in time. The Syzygy synchronization primitive
is used to guarantee that the data sent by the master at a given data exchange
step is used by all rendering nodes to draw the next frame; this ensures
consistency. The same synchronization call is used to control graphics buffer
swaps. Without external genlock, the control would be imperfect. Out-of-
phase vertical refreshes on the displays would mean that buffer swaps occur
in a slightly staggered fashion. However, external genlock of the display video
cards eliminates this problem.

Synchronization in Syzygy is accomplished by a single API call, sync().
When a slave calls sync(), it sends the master a packet via UDP and then
blocks while waiting for a response. When the master calls sync(), it waits
until all slaves have requested release from the barrier and then broadcasts a
UDP packet to them. The master now continues, as do the slaves when they
receive the broadcast packet. In GLUT-based programs, like the mathemat-
ical visualizations described here, it makes sense to put the sync() call just
before the call to glutSwapBuffers(). In practice, this synchronization method
yields very good coherence even on graphics hardware without genlock ca-
pabilities. Experiments with highly animated scenes on a 2 × 2 video wall
run by non-genlocked PCs show extremely small amounts of jitter. Indeed,
the jitter is only perceptible to viewers within 3m of a 2 m × 1.5 m image.
When graphics hardware with genlock capabilities is used, as in ALICE, the
synchronization is perfect. No jitter whatsoever can be perceived. One should
note that this level of quality is achieved using 100Mbps Ethernet and not
some more exotic networking technology.

Another challenge met by the Syzygy toolkit is in management of the dis-
tributed system. Our PC cluster is heterogeneous, with the rendering nodes
running Windows NT, some nodes controlling interface devices running Linux
and some running Windows, and additional support nodes running Linux.
Syzygy provides a remote-execution daemon that works on either Windows
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or Unix. It also provides an interface to send messages to running processes,
which is used to provide a kill signal and also to make running applications
reload their parameters. This simple interface provides a way to start, stop,
and generally manage distributed applications on the PC cluster. To aid in
running visualizations while enclosed in a VR theater, the lab has developed
a Java interface to these functions that can run on a wireless handheld device.
In this way, one can cycle through visualizations without leaving the CAVE
and moving to a console; this is very convenient.

Recently, the ISL conducted an open house of its VR facility ALICE.
Our visualization of three-dimensional hyperbolic space was one of the demos
shown. The lab hosted almost 400 visitors over a two-day period. Eleven PC’s
were part of the distributed system, and that system stayed running the entire
time. At any particular time, about 20 software components were running,
dispersed across the system but cooperating in producing a visualization.
Over the two-day period, over 10 000 seperate software components were
started, connected to the system, and terminated once their work was over.

We now briefly describe the specific implementation in Syzygy of the
mathematical visualizations described below. The only communication needed
between the nodes is a description of the viewer’s position and orientation.
For the simplest geometries this is encoded as a 4 × 4 matrix expressing
a projection from a representation of the curved space into ordinary Eu-
clidean space (technically, into the observer’s tangent space) [13]. (For the
more complicated geometries slightly more information, perhaps a pair of
matrices, will be needed [14].) During the pre-computation phase, the master
node retrieves information from a wireless joystick and uses this to change
the 4× 4 matrix. The data-exchange phase distributes this matrix to all the
slave nodes. In the post-computation phase, each rendering node applies the
given projection and then applies the camera transformation appropriate for
the point-of-view of the wall it controls. Finally, synchronization occurs and
the loop repeats.

4 Mathematical Visualization
of Three-dimensional Geometries

Topology is the study of deformable shapes. Topologically, a surface is any-
thing that locally looks like a patch of the Euclidean plane. The surfaces
of a round ball, a cylindrical can or a rectangular box are all topologically
equivalent, since one could be deformed into another. This topological space
is called the two-sphere and its most symmetric geometric realization is as a
round sphere S2, with constant (positive) curvature.

The most interesting topological surfaces are those which, like the sphere,
are compact (not infinite) but complete (with no edges). Topologically, the
surfaces of a donut, an inner-tube, or a mug with a handle are also equivalent;
this compact, complete space is called the two-torus. One might think that
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the round inner-tube gives the nicest geometry for a torus, but, in fact, by
going outside the realm of geometries obtained from surfaces embedded in
our ordinary three-dimensional world, we can find a much more symmetric
geometry for the torus.

From video-games, we are all familiar with the notion of a wrap-around
screen. When a game token flies off the top or left edge of the screen, it
reappears at the bottom or right edge and proceeds at the appropriate angle.
The rectangular screen, with these identifications of opposite sides, becomes
topologically a torus. And it clearly has (from the original rectangle) a flat
geometry, that of the Euclidean plane E2.

Let us ignore non-orientable surfaces, like the Möbius band, where a left-
handed object can become right-handed merely by traveling around some
loop on the surface. It is then a classical result [15] that any orientable,
compact, complete surface other than the sphere and torus must be a multiple
torus. A multiple torus is a surface with more than one handle, obtained by
connecting tori together.

We have seen that the sphere and the torus each admit nice geometries
(round and flat, respectively). To put an equally symmetric geometry on a
multiple torus requires the use of hyperbolic geometry, H2, the non-Euclidean
geometry discovered in the 1800s by Lobachevskii, Bolyai and Gauss. It is
not hard to explicitly write down a hyperbolic geometry (with constant nega-
tive curvature) for each multiple torus. (A deep result of Poincaré and Klein,
called the uniformization theorem, says that any geometric shape for a sur-
face is in fact conformally equivalent to one of the symmetric ones we have
described.)

What about three-dimensional worlds, called three-manifolds? Locally, a
3-manifold looks like a block of Euclidean three-space. Our own world is part
of some 3-manifold, though we don’t know which one [16]. We know from
Einstein’s theory of relativity that our world is curved, albeit very gently.
If we could explore our universe geometrically, unconstrained by physical
limitations such as the speed of light, we might find that it closes on itself
like a sphere, or a torus, or some more complicated possibility. Although
the classification of surfaces is relatively easy, the classification of possible 3-
manifolds remains an active area of mathematical research. Many interesting
open problems remain, including the Poincaré conjecture. This says there are
no “fake” three-spheres, and carries a million-dollar prize for its solution [17].

Again, the three-dimensional sphere admits a nice round geometry, called
S3, obtained when it bounds a round ball in four-dimensional space. And a
three-dimensional torus admits a flat geometry modeled on E3, obtained by
identifying opposite faces of a cubical room. Again, “most” 3-manifolds have
a hyperbolic geometry, H3.

But some three-manifolds admit no nice geometry. In general, one must
first perform a decomposition (along two-spheres and two-tori) into so-called
irreducible and atoroidal pieces. The famous Geometrization Conjecture of
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Fig. 2. The view of a sample
hyperbolic manifold, with
geometry H3, as seen on
one wall of ALICE. This
hyperbolic space is tiled by
right-angled dodecahedra,
meeting 8-to-a-vertex, just as
Euclidean space can be tiled
with cubes.

Bill Thurston says that each such piece should carry a nice geometry; it has
been proved for many classes of manifolds, and seems likely to be true.

Thurston’s list of possible geometries [18, 19], however, is an eight-fold
one. Some manifolds admit one of the isotropic geometries S3, E3 or H3

mentioned above. Although hyperbolic geometry is in some sense again the
generic case, for 3-manifolds (unlike for surfaces) even spherical geometry
can be used for infinitely many different manifolds [20], and there are several
Euclidean possibilities.

Fig. 3. The view of a sample
spherical manifold, with ge-
ometry S3, as seen on one wall
of ALICE. This space, formed
by identifying opposite faces
of a dodecahedron, is almost
a counter-example to the
Poincaré conjecture. An in-
habitant of this space would
see 120 repeating images of
each object in the space, as
in this regular tiling of the
sphere by 120 dodecahedra.
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For certain other 3-manifolds, however, the nicest geometry they can carry
is nonisotropic, though still homogenous. There are two product geometries,
S2×E1 and H2×E1, which are relatively easy to understand. The remaining
three geometries on Thurston’s list are the twisted geometries of the three-
dimensional Lie groups Nil, Sol and S̃L2R. These Lie groups arise in many
other areas of mathematics and physics, especially Nil, also known as the
Heisenberg group.

It turns out that the isotropic geometries can all be modeled by the 4× 4
projection matrices built into graphics systems like OpenGL, even though
these systems were built only for E3. This fact was investigated by Char-
lie Gunn and Mark Phillips at the Geometry Center [21, 13, 22], and we
demonstrated it in the four-sided CAVEs at SIGGRAPH’94 [23]. Jeff Weeks
has written an exposition for computer graphics programmers, describing the
surprisingly simple mathematics underlying these models of the isotropic ge-
ometries [24] and his software for exploring spherical, flat, and hyperbolic
spaces at home on an ordinary PC is freely available [25].

The anisotropic product geometries can be implemented without too
much more difficulty, using 5 × 5 matrices. The three twisted geometries
do have matrix representations [14], but these are not necessarily efficient.
Real-time exploration of these fascinating worlds presents a challenge of con-
siderable mathematical importance.

Our ten-year experience from frequent public demonstrations of hyper-
bolic and spherical geometry in a conventional (4-walled) CAVE suggests
that the illusion presented in that CAVE is not adequate to truly experience
non-Euclidean geometry. Too much has to be explained to visitors, and too
few questions are asked. Out of the corners of their eyes, people see the empty
space above, and the dimly lit room to the rear of the convential CAVE.

The exotic geometries, being anisotropic, are more subtle. Physical or
geometric laws there do depend on orientation, or, to misquote George Orwell,
some directions are more equal than others. We look forward to implementing
these in ALICE, since the sensation of navigating these anisotropic worlds
will be totally different from any previous experience.

Our experience in the conventional CAVE has, however, proved that the
gravity-based sense of an absolute “down” can be fleetingly overcome by the
visual suggestion to the contrary. In an illusion without “above” and “rear”
to confirm the gravitational “down” we expect to overcome the Euclidean
reference frame, and truly immerse visitors in the exotic three-dimensional
geometries.
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