UIUC Math 198 Hypergraphics 2001 Class Notes 1

Bounce

This pocket program illustrates the principle of a popular screen saver. It serves
as a portal not only to ever more fanciful and artistic variations, but also as an
introduction to simulating colliding objects and particle systems. It depicts one
rectangle bouncing inside a larger rectangle, leaving a trace of its 10 most recent
positions.

10 REM BOUNCE
15 CLS: N=10

20 READ XM,YM,DX,DY,DU,DV

21 DATA 239,63,1,2,-2,-1

25 READ X(N),Y(N),U(N),V(N)

26 DATA 10, 42, 42, 54

40 LINE(QX(N),Y(N))-(U@),v(N)),1,
45 LINE(X(1),Y(1))-(U(1),v(1)),0,
50 FOR J = 2 TO N

52 X(J-1)=X(J) : Y(J-1)=Y(D)

54 U(J-1)=U(J) : V(J-1)=V(I)

55 NEXT J

60 X = X()+DX : Y = Y(N)+DY

62 IF(X<0)OR(X>XM)THEN (DX=-DX)ELSE (X (N)=X)
64 IF(Y<0)OR(Y>YM)THEN(DY=-DY)ELSE(Y(N)=Y)
70 U = U(N)+DU : V = V(N)+DV

72 IF(U<0)O0R(U>UM) THEN (DU=-DU) ELSE (U (N)=U)
74 IF(V<0)OR(V>VM) THEN (DV=-DV)ELSE (V(N)=V)
80 GOTO 40

B
B

Line 40 uses a rectangle drawing variant of the line command to draw the tenth
bozx specified by opposite corners, (X,Y), (U,V). Line 45 erases the first box, in a
sequence of ten boxes.! The inside loop, lines 50-55, moves each point one place
back in the queue, leaving the N-th point to be updated on line 60. Now, if the
new point is out of bounds in the horizontal or vertical directions, then, instead
of entering an illegal point in the queue, the displacement increment changes sign,
lines 62 and 64. The 70s do the same thing for dialects and not in others.

Exercise 17. A dynamical system which shows the effect of updating a very large number of
orbits is called a particle system. The above trick suggests a way of displaying a tracer extending
back from the current particle position, perhaps with color or gray-shade attenuation. Modify
the program first to a 2-particle system (omit the boxes but draw both corners), then to a many
particle system. Note that the reassignment in the 50s is inefficient. Rewrite the algorithm so
that an index keeps track of the current head of the queue. Instead of the Nth point, erase the
current point, update it, then draw it, and advance the index to the eldest place in the queue. In
modern graphics systems it is quicker to erase the entire screen and redraw the entire scene, at
animation speed, than to manipulate individual points. In that case, you can attenuate the color

of each tail as it is redrawn.

Julia Set

We chose 10 because BASIC does not require such short arrays to be specifically allocated. If
your BASIC can’t draw or erase boxes so conveniently, you’ll have to call appropriately written
subroutines here.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801

2 Hippocket Graphics Program Julia Sets

We complete our sampler of pocket programs with one that generates a Julia set.
There is a BASICGLUT version you should try before reading any further. Along
with the usual (W)ipe key, be sure to try the lower and upper case X and Y-keys as
well. Also, you should brush up on your complex number arithmetic to appreciate
Lou Kauffman’s algorithm for taking the complex square root. It is the heart of
this pocket program.

10 REM JULIA SET

11 CLS

15 READ X0,Y0,UX,UY
16 DATA 120,32,40,40
20 READ NX, NY, MX, MY
21 DATA 0, 0.5, -1, 0

100 X = NX - MX : Y = NY - MY
120 R = SQR(X*X+Y*Y)

130 NX = SGN(Y)*SQR((R+X)/2)
140 NY = SQR((R-X)/2)

150 IF(2*RND(1)<1)THEN NX=-NX:NY=-NY
160 PSET (X0+NX*UX, YO+NY*UY)

166 PSET (X0-NX*UX, YO-NY*UY)

180 GOTO 100

The most famous of all fractals, the Mandelbrot Set, is based on the same discrete
dynamical system as logistic chaos, but the function is iterated over the complex
numbers. Recall that complex numbers may be visualized as points in the coor-
dinate plane, except that we write (x,y) as the polynomial z + iy. Addition and
multiplication is polynomial, except that we may reduce higher powers of ¢ by the
identity i> = —1. Thus

(z +iy)? = (2? — y?) +i(2zy).

2

We can even divide complex numbers, and take their square roots.” The JULIA

program uses the square roots in a creative way. Here is the story.

Suppose we consider the feedback loop w « w? + p, where p is a (complex)
parameter. From DeMoivre’s formula we can see that if u = 0 life is exceedingly
simple. Every point inside the unit circle converges to the origin, every point
outside the unit circle goes to oo, and points on the unit circle stay on it. The
unit circle is an invariant set that divides two basins of attraction for the attractor
0 and oc.

When p # 0 it’s more complicated, but oo is still an attractor. It takes some
arithmetic to demonstrate that applying the iteration to a complex number outside

2A cheap way to take roots of a complex number x + iy is to rewrite it in polar form. That is,
factor out the modulus r = y/x2 + y2,

r(% + z%) = r(cos(f) + isin(0)),

where 6 = arctan(y/z). By DeMoivre’s theorem, an n-th root of e, which is how this expression

1 .
was abbreviated by Euler, is r»e'=. But this is not the way we take square-roots in JULIA.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancisQuiuc.edu

UIUC Math 198 Hypergraphics 2001 Class Notes 3

the radius-2 circle always diverges to co. What happens if you apply the iteration
to a given starting point, say w = 0, depends on pu. The Mandelbrot set is by
definition the set of all i for which the orbit of the origin stays finite. Thus =0
is in the Mandelbrot set. To determine that a u is not in the Mandelbrot set, all
you need to do is to wait and see whether the sequence w,, where wy = 0 and
Wpt1 = w2 + p ever gets outside the circle of radius two.® The pretty pictures
you’ve seen of the crab-like Mandelbrot set are generated by assigning a color to
u depending on how long it took the corresponding sequence to escape the circle
of radius 2. The black pixels correspond to those p which did not escape before
the patience of the programmer ran out. The boundary of the Mandelbrot set was
thought to be a fractal. But there is some indication that its Hausdorff dimension
is, in fact, integral.

You will find much more exciting and satisfying accounts about this set elsewhere.*
here we are interested in a different set of points in the complex plane, one for each
. The Julia set of discrete dynamical system in the complex plane is defined to be
the set of points that separates the various basins of attraction. You could locate
the Julia set by reversing the dynamical system. This is somewhat like finding the
continental divide by forcing a drop of water from each ocean to flow backwards
in time, flipping a coin to decide which way to go at each fork in the watershed.

Now let’s see how the JULIA program reverses the flow w «+ w?+p by implementing
n < +/n — p. Lines 130 and 140 look like the place n is updated. Note that

2 _ 2 _ r+x _ r—x __

ny —ny, = = 7 = X
— 2 2 _ 2

2ngny = Ve —1° =y

from which it follows that x + iy = (ng + iny)>.

Exercise 18. Explain why the sign of y, written sgn(y), is needed on line 130 to insure that we
choose the squareroot correctly. Recall DeMoivre’s rule.

Exercise 19. On line 150 we choose one of the two square roots with equal probability. What
happens if you skip this, or choose them one with greater probability?

Exercise 20. What happens when the parameter p is varied? Implement this program on a
sufficiently fast computer so that the value of y can be varied in real time with the mouse. In the
BASICGLUT version of Julia, below, the position of u already can be moved by key-presses. Use
the techniques from the Sierpinski Gasket to mark a circle about this point. Later, attach this

point to the mouse and paint the orbits to help investigate the properties of this Julia set.

/* Julia Set in GLUT, gkf 3jan2K */
#include <stdlib.h>

#include <stdio.h>

#include <gl\glut.h>

3Note that wy = p, we = 2 + 4, ...
4B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, 1982.
H.-O. Peitgen and P.H. Richter, The Beauty of Fractals.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801

4 Hippocket Graphics Program Julia Sets

#include <math.h>

#define RND ((float)rand()/RAND_MAX) /* random fraction */
#define SGN(x) ((x)<07-1:1) /* signum function */
#define PIXEL 2 /* fat dots x/
#define NAP 1000 /* microseconds */
#define SLEEP(u) usleep(u)

float red = 1., green = 1., blue = 1. ; /* default colors */
float nx = 0., ny = 0.5, mx = -1, my = 0; /* julia data */

float x, y, r;
[koo ok sk sk ok ok ok skok ok ok ok sk ok ok ok o sk sk sk ok ok sk sk ok ok ok sk sk sk ok ok ok sk sk sk ok sk ok sk skokok ko k ok /
void usleep(int nap){int ii; for(ii=0;ii< nap; ii++);}
/4o ok sk sk sk sk sk sk sk sk sk sk oo ok o o ok ok sk sk sk sk s e ke ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk ok ok sk ok ok ok ok /
void dotit(float xx, float yy){

glPointSize(PIXEL);

glColor3f (red,green,blue);

glBegin(GL_POINTS); glVertex2f(xx,yy); glEnd();
}
/oo sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok o o o o o o ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok k /
void wipeit(){

glClear (GL_COLOR_BUFFER_BIT); glClearColor(0.,0.,0.,0.);

nx = RND; ny = RND; /* also start from a random place */

¥

/KR Kok Kk ok ok ok Kok ok o Kok ook ok oK ok Kk ok K ok Kok K sk ok oK ok Kk ok ok Kok sk ok Kok Kok ok Kok ok
void zapit(O{mx = -1; my = 0; wipeit(;}
/KK Kok Kk ok ok ok Kok ok o oK ok ook ok ok ok Kok ok K ok Kok o sk ok ok ok sk ok ok Kok sk ok Kok sk ok ok Kok ok
void display(){

float x, y, r;

X =nx - mx ; y = ny - my; /* z = nz - m *x/

T = sqrt(x*x + y*y); /¥ r = lz| *x/

nx = SGN(y)*sqrt((r+x)/2); /* nz = sqrt(z) */

ny = sqrt ((r-x)/2);

if (2*RND < 1){ nx = -nx; ny = -ny;} /* choose one */
dotit(nx, ny); /* but plot both */
dotit(-nx, -ny);

SLEEP (NAP) ;

}

[F KA KK KK KoK KoK o oK o oK o oK ok oK ok oK ok oK ok oK ok oK ok oK ok oK ok K ok K ok K ok K ok K ok K ok K ok o ok ok K ok ok K ok K ok /
void keyboard(unsigned char key, int x, int y){
switch(key){

case 27: fprintf(stderr," Thanks for using GLUT ! \n"); exit(0); break;

case ’x’: mx += .1; break; /* move modulus x-ward */

case ’X’: mx —-= .1; break;
case ’y’: my += .1; break; /* move modulus y-ward */
case ’Y’: my -= .1; break;

case ’w’: wipeit(); break; case ’z’: zapit(); break;

Math 198 Hypergraphics, draft 6 January 2001, write gfrancisQuiuc.edu

UIUC Math 198 Hypergraphics 2001 Class Notes 5

¥

[KKKk Kk ok ok ok Kok K sk o oK ok o ok ok oK ok ok ok K ok Kok ok ok ok ok Kk ok K ok Kok ok ok Kok ok ok ok Kok ok
void idle(void){ glutPostRedisplay(); }
[KKk ok K sk ok ok ok ok ok K ok o Kok ook ok ok ok ook ok K ok Kok o sk ok ok ok sk ok ok Kok ok ok ok ok ok ok Kok ok
int main(int argc, char **argv){
glutInitWindowSize (400, 400); glutInitDisplayMode (GLUT_RGB);
glutCreateWindow("<< Julia Set in GLUT >>");
glutDisplayFunc(display); glutKeyboardFunc(keyboard); glutIdleFunc(idle);
glMatrixMode (GL_PROJECTION); glLoadIdentity();
gl0rtho(-2.0,2.0,-2.0,2.0,-2.0,2.0) ;
glMatrixMode (GL_MODELVIEW); glLoadIdentity();
glutMainLoop();
return O;

Conclusion

Here is a table of the the pocket programs we have discussed so far.

S|F
I|U
NN
G/ L|/EC|C|B|J
AIO|W| T H|O0|U
SIR/H/IA|UL
K E|E/F|O|NI
E|INJE|I|S|C|A
T|Z|L|C E
Draws straight line X X
Graphs a function X XX
Uses a figure macro X X
Pseudo-random nrs X X
Give 3-D illusion X
Continuous dyn sys X X
Iterated function sys|X X X
Attractor XX X X
World/screen coords X X XX
IF/THEN structure X|X|X|X
Subroutines X
FOR/NEXT loops X X|X X
Trigonometry X
Complex numbers X
Auto-scaling X
Fractal geometry X X X
Strange attractor X X X

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801

