
BASIC∗Pocket†Graphics‡Programs§

George Francis

Orinial text 6jan97. Revised 6jan01

1. The Sierpinski Gasket

Pocket programs are simple programs that do non-simple things. They also contain
examples of useful programming techniques. Once upon a time, when everyone
had access to a computer that understood basic, and when everyone knew how to
speak such simple languages, this chapter also served as an introduction to pro-
gramming. Regrettably, this is no longer true. To work with the pocket programs
on a computer you will need additional resources.

We will use a basic dialect (originally for a Tandy TRS80 computer) as pseudo-
code because its simple syntax and mnemonic function names make it easy to guess
the meaning from the context. Besides, the line numbers make it easy to reference.
However, since this document is as much about what the programs do as how they
were written, you should implement the pocket programs in your currently favorite
computer language on your most accessible computer. In the current edition of
the notes are sections that refer to such an implementation in C/OpenGL/GLUT.1

We label such section by mnemonic basiCglut. Sections dealing specifically with
programming in basic will be labeled bf basicBASIC.

But the pocket programs do not need such an elaborate environment. Any lan-
guage that can plot points and lines in a rectangle will do. They translate very
nicely into java.

∗Kemeny and Kurtz invented this lingua franca of computing languages at Dartmouth, in the
mid sixties.

†Originally they were called “hip-pocket programs”, being small enough to carry them around
in your hip-pocket and program them from memory when convenient.

‡They produce moving pictures instead of text.
§And they are short enough to fit on a single computer screen or paper page, which simplifies

life.
1For such simple programs we prefer C over C++ for its brevity. We use OpenGL because it

is the standard way of doing 3-dimensional graphics. We use the Mark Kilgard’s GLUT library
because it greatly simplifies programming in OpenGL. Kilgard has written an excellent single
volume reference work on the subject: OpenGL: Programming for the X Window System, Addison-
Wesley, 1996.

1

2 Hippocket Graphics Program Sierpienski Gasket

10 REM SIERPINSKI GASKET

15 X=100 : Y=50

19 CLS : REM CLEAR SCREEN

20 DATA 0, 32, 100, 0, 100, 63

30 READ X(0),Y(0),X(1),Y(1),X(2),Y(2)

40 I = INT(3*RND(1)) : REM INTEGER PART

50 X=(X+X(I))/2 : Y=(Y+Y(I))/2

60 PSET(X,Y) : REM PLOT POINT

70 GOTO 40 : REM PICK I=0,1,2 RANDOMLY

This 8-line program draws a famous fractal, the Sierpinski Gasket. It does this by
means of a dynamical system.2 A dynamical system is a (usually multidimensional)
process which moves points to successive positions according to a rule. If this rule
determines the next position of a point strictly from its current position, the system
is said to be deterministic and autonomous.3 The rule here randomly chooses one
of three strategies to compute the next position. This makes it an iterated function
system (IFS).4 The Sierpinski Gasket is the attractor of this IFS. An attractor of a
dynamical system is an invariant subset of its configuration space. such that every
orbit converges to it. The set of successive positions of a point is called the orbit of
its initial point. A geometrical interpretation of the physical states of a dynamical
system is called its configuration space.5 A subset is invariant if the orbits of its
points stay in the set.

The Sierpinski Gasket looks like the remains of a triangle whose center quarter6

was recursively removed. That is to say, the center quarter of the remaining three
triangles is also removed, and so ad infinitum.

A geometric description of the algorithm goes like this. The configuration space
is a triangle. To compute an orbit of a point, choose one of the three vertices
randomly, move the point half-way towards that vertex, and choose again. Note
that this is a non-deterministic dynamical system, since the next time an orbit is
computed for the same initial position it will probably be different.

Here is the way you would write, test, debug, and modify the program in basic.7basicBASIC
You would start by writing line 50 because that is the essence of the program.

2Customarily, the first time a technical term appears it should be italicized so you can find
it again when you’re looking for its definition. Sometimes, however, it is useful to use a term
before defining it. This custom is called “prototyping” in modern computer languages and is
much encouraged.

3Non-autonomous dynamical systems also depend on time. Non-deterministic, or stochastic
dynamical systems contain an element of chance. Since a random-number generator on a computer
is itself a deterministic process, we don’t need to make the distinction here.

4The notion of an IFS is due to Michael Barnsley, who wrote about it in Fractals Everywhere,
Academic Press, 1988.

5This is also called state space, phase space, and even, iteration space by some.
6Connect the midpoints of the sides.
7Recall that basic is an interpreted language, a rarity nowadays. Most of its syntactically

correct phrases can be executed by entering them without the initial line number. That initial
line number serves the dual purpose of deferring execution until a whole program was written, in
any order. The order of execution, then, is determined by the order of the line numbers.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu

UIUC Math 198 Hypergraphics 2001 Class Notes 3

Here, the current position (X,Y), is replaced by a point halfway to the I-th vertex,
which was chosen randomly in line 40. Then we want to plot the new point (X,Y).
The exact command to use depends on the flavor of basic you’re using. After
this, we are ready to repeat.

Prior to moving the point, we must choose which vertex to move towards. For this
we use a pseudo-random number generator which is language/system dependent.
Here, the value of the expression RND(1) is a decimal fraction (a floating point
number between 0 inclusive and 1 exclusive.) Line 40 takes the integer part (also
called the floor) of a decimal between 0 and 3. Thus, I is 0,1, or 2 with roughly
equal probability.

That’s all we need each time through the iteration, so close the loop here with the
GOTO 40 statement. In different languages you would use another way of writing
an eternal loop.8

The loop itself still has some indeterminates. That is, some variables appearing on
the right side of the assigment symbol, =, are themselves not yet assigned. So, in
the preparatory part of the program (sometimes called the preamble of the loop)
assign some values.

In this program, the triangle data is a list, line 20, which is assigned to variables
listed on line 30 in the same order.9 In BASIC there is only one data buffer. The
BASIC interpreter fills this buffer, using all the DATA statements, such as on line
20, anywhere in the program, before executing the first line. Each READ advances
a pointer which points to the next datum to be read. If, for some reason, you wish
to restore the data pointer all the way to the beginning of the data buffer, while
the program is being executed, then use the RESTORE command. In many BASIC
dialects, writing and drawing is done on the same screen, hence clearing the screen
is desirable for drawing. In others, the graphics needs to be invoked first, and
sometimes elaborate initializations must be made before anything can be drawn
on the screen. This is always local, which means that it not only depends on the
language, but also on the particular hardware the language is running on.

We next look as the way this translates into C. The entire forty-six line program basiCglut
is at the back of this section. The stars separate the program into five sections.

In the top section we tell the compiler where to look for words we use but do
not explicitly define in the program. We include the appropriat header files. Lines
beginning with the pound-symbol, #, are messages to the compiler, called compiler
directives. They end at the end of the line, and are processed by pre-compiler.
Other lines are for the compiler to read and process. Text we don’t want the

8Be sure that you also know how to interrupt an eternal loop you’ve written before executing
it. Often CTL-C or CTL-D stops a runaway loop. Try closing the window. More drastic measures
may be needed.

9This is an example of a FIFO-buffer (first-in-first-out) being written and read. It is an
efficient and common way of passing data between and within computer programs. Friendlier
ways of doing this are are common, but not essential.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801

4 Hippocket Graphics Program Sierpienski Gasket

compiler to read, such as comments, are between /* and */. The only othere
compiler directive we use here is to define two macros. A macro is a single, short
expression (traditionally all in caps) standing for a longer expression. The compiler
substitutes the longer expression wherever it finds the macro in your code. So,
wherever RND appears later in the code, the pre-compiler substitutes the expression
((float)rand()/RAND_MAX). That is why there are so many parentheses around
it. Careless construction of macros leads to errors which are difficult to debug.10

In C, all globally meaningful variables should be defined at the top, before any
functions are defined. That way you are not likely to use a variable before it exists.
A variable foo is defined by first stating its type, then its name, and (optionally)
assigning is some values. Here we define the 3 vertices of the triangle to have two
floating point coordinates each, and then say what they are. Note that v[][] is
an array of 3 arrays of 2 floats each, just as vv[] is an array of just two floats, i.e.
it is a point.

Subroutines in C are called functions and always have () right after their names.11

Functions also have types, and the void type says that the function does not
return a value, even though it does other usefule things. Note that the main()
function is declared to return an integer value, and its last line tells you that it
shall be 0. There are no obviously good reasons for this, and C is full of such
mysterious conventions. Functions may or may not have arguments. Note that
neither display() nor idle() have arguments. Good C-style would require the
void in the former as it appears in the latter. Both keyboard() and main() do
have arguments, and in their definition we declare their type and a dummy name
to be used for them in the body of the function definition. The body of a function
definition is a block, a code fragment between braces.

Because braces are easy to lose track of, C-programmers regularly close a brace,
bracket, or parenthesis the moment they open one, preferring to insert-edit the
content later. Every C-program has one last function, invariably named ”main”
which is executed first. The main() of a program using the GLUT-library is quite
difficult to understand even if you already know how to program in C. So we will
discuss this (much) later. What you need to know about it now is that when you
press any key, the keyboard() function is called and executed. Otherwise, the
display() function is called and executed as often as the graphics system on your
computer can handle it. The idle() function is also executed ”all the time”.12

Next, the subsidiary functions.
10In a customary overreaction, the architects of object-oriented languages, such as C and Java,

frown on or forbid compiler macros. A similar reaction to abusing the GOTO command in BASIC
and Fortran led the authors of structured programming languages, like Pascal and C, to all but
eradicate its use.

11In these notes we also adopt a convention referring to a function by its name decorated with
(). Sort of like the title ”Prof.”

12That GLUT has two functions like that is a great help learning to program multi-processor
multi-display systems like the CAVE.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu

UIUC Math 198 Hypergraphics 2001 Class Notes 5

display() uses a local integer variable, ii, as an index.13 It also assign it a new
random value each time around. Then comes the midpoint formula calculating the
new position, followed by the actual graphics. Note how the graphics portion is
bracketed betwen commands glBegin() and glEnd(). In C, ”every” commmand
function, in that it has zero or more arguments, and returns something some value,
which you generally ignore. The prefix ”gl” tells you these are OpenGL functions.
There are many graphics routines you will begin. Here it’s GL_POINTS.14

keyboard() is called whenever you press a key. In the body of this function (and
nowhere else!) the variable key holds the identity of the key you pressed, and x,y
hold the location of the mouse at that moment.15 Instead of the ”if-then-else”
syntax we use a ”switch-case” statement here so you will learn that too. But it is
easier to note how these are written and do likewise, than to follow a description.
If you press the (ESC)ape key the infinite glutMainLoop() the GLUT-library is
stuck in is broken and everything stops. If you press the (W)-key, the gl-library
does ... well, why don’t you see what it does! You can experimentally see what
glutPostRedisplay() does leaving it out, or putting it somewhere else in the
program. But the latter is not recommended.

We close this section with a brief demonstration why the gasket is a fractal.16 As
defined in Exercise 4, A∞ is a planar Cantor set, obtained by recursively removing
the central quarter of a triangle. Connecting the midpoints of the sides of a
triangle decomposes the area into four congruent triangles, each similar to the
parent triangle by a scale facter of 2. This self-similarity shows that doubling the
side-size of the Gasket triples the measurable content of the figure.17 If, by analogy
to lines, squares, cubes and tesseracts, dimension is defined to be that power d of
2 the content of a figure must be multiplied by in order for it to equal the content

13The custom of using ”ii” instead of a single letter ”i” is well established. It helps distinguish
between mathematical notation and its computer code. In mathematics we use fancy symbols
and strange alphabets to keep the names of objects as short as possible. In computing we replace
the elaborate symbols with longish nonsense words which are unlikely to already mean something
to the compiler. That is why we would not try to name an integer variable ”int” nor a pseudo-real
number ”float”.

14This is a macro which the pre-compiler replaces by a number you need never know what it
is.

15This assignment was performed by the GLUT-library. The GLUT-library ”knows” the name
of your keyboard function because you told it with the glutKeyboardFunc() in main. You could
have named this function Tastatur() and the first variable clef, just as long as you’re consistent.
The GLUT library is pretty smart, and this sort of anthropomorphism is customary in computing.

16There is no agreement on the best definition of a fractal. The originally it is is a set with a
fractional dimension, as defined by Haussdorff. Because it is sometimes impossible, and usually
impractical to compute this dimension less demanding definitions are in common use.

17Again, we leave this measuring to the analysts.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801

6 Hippocket Graphics Program Sierpienski Gasket

of a similar figure obtained by doubling its linear scale,18 then

d =
log2(3)
log2(2)

.

Exercise 1. To show that you have understood the concept of bufferering data, write pseudo-
code fragment19 that reads the j-th member of a data buffer of length n, n ≥ j. Of course, you
can write it in a real language you know provided you can demonstrate that it really works.

Exercise 2. You may wish to convince yourself that the initial position has no visible effect on
the outcome. Do this by assigning the initial position of (X,Y) by some other means, for example,
randomly, or with an INPUT statement in basicBASIC or the mouse in basiCglut.

Exercise 3. The algorithm can be interpreted in terms of three affine transformations.20 What
are they in this case? Morever, each of these is a contraction. This means that the distance
between the images of two points is less than it was before their transformation. In other words,
linear contractions map line segments into shorter line segments. Show geometrically that the
contraction factor is 1

2
. Write a program using another set of three linear contractions. Be careful

that you write the matrix multiplication so as not to stall21 basic.

Exercise 4. We can give the Sierpinski Gasket following precise definition. Let A0 denote the
original triangle, including its boundary. Let A1 denote A0 minus the interior of the middle
quarter triangle. We do not remove the points on its boundary. And so forth. Then

A0 ⊃ A1 ⊃ A2 ⊃ ... ⊃ A∞

where A∞ = ∩∞n=0An is the Sierpinski Gasket. The existence and properties of this intersection
of infinitely many sets is a matter of real-number theory. But can you prove that An ⊃ An+1 ?
Sure you can.

Exercise 5. Now number the three original points of the triangle V0, V1, V2, and let Tj denote
the Barnsley generator which takes any point P half way to Vj

Tj(P) =
P + Vj

2
.

Now prove that
Tj(An) ⊂ An+1.

Exercise 6. How does the previous fact demonstrate that A∞ is an attractor?

Exercise 7. Can you locate an argument, perhaps in Barnsley’s book, proving that the Sierpinski
Gasket is an invariant set?

Exercise 8. On a color computer choose three colors, one for each J . What difference does it
make to set the color of the point on line 75 as opposed to 85.

18Aren’t you glad you learned algebra. We can translate this mouthful as follows. Let A(2)
denote a figure similar to A(1) constructed on the basis of a linear element twice as large as that
for A(1). Then dimension is defined by

|A(2)| = 2d|A(1)|,

where the absolute value means the mysterious content we take for granted. Note that for lines,
d = 1, and for cubes, d = 3 because a cube divides into 8 cubes which are half the linear scale.
But for the Gasket,

|A(2)| = 3|A(1)|.
Why?

19A set of lines which could be grafted into another program.
20This exercise is for people who know some linear algebra.
21Well, perhaps not stall, but reduce to a crawl.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu

UIUC Math 198 Hypergraphics 2001 Class Notes 7

/* Sierpinski Gasket in GLUT, for VC98, gkf jan01 */
#include <stdlib.h>
#include <stdio.h>
#include <gl/glut.h>
#include <math.h>
float v[3][2] = {{1.,0.},{0.,1.},{0.,0.}}; /* a triangle */
float vv[2]={.2,.9}; /* initial pos’n */
#define RND ((float)rand()/RAND_MAX) /* random fraction */
#define INT(X) ((int)floor(X)) /* integer part */
/***/
void display(){

int ii = INT(3*(RND)); /* pick random ii = 0,1,2 */
vv[0]= (vv[0] + v[ii][0])/2; /* move half-way toward that vertex */
vv[1]= (vv[1] + v[ii][1])/2;

glBegin(GL_POINTS); /* draw a */
glColor3f(1.0,1.0,1.0); /* white */
glVertex2fv(vv); /* point */

glEnd();
}
/***/
void keyboard(unsigned char key, int x, int y){

switch(key){
case 27: exit(0); break; /* escape with the (ESC) key */
case ’w’: glClear(GL_COLOR_BUFFER_BIT); break; /* (W)ipe screen */

}
}
/***/
void idle(void){ glutPostRedisplay(); }
/***/
int main(int argc, char **argv){ /* pure GLUTtery here */

glutInitWindowSize(400, 400);
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB);
glutCreateWindow("<< Sierpinski in GLUT >>");
glutDisplayFunc(display);
glutKeyboardFunc(keyboard);
glutIdleFunc(idle);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-2.0,2.0,-2.0,2.0,-2.0,2.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glutMainLoop();
return 0; /* ANSI C requires main to return int. */ }

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801

