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Python Programming in OpenGL/GLUT 
 

Chapter 1 Introduction 
 
 Before we begin our journey with Python and OpenGL, we first need to go back 
in time.  History serves many purposes, but one of its more important functions is to 
provide us with a reference point so that we may see how far we’ve traveled.  We’ll go 
back to about 1980 and the first computer programming class in our high school.  We 
were the proud “owners” of a single new Commodore VIC-20 and an old black and white 
TV that served as a monitor (almost).  There were about 5 or 6 students in the class and 
we began to learn to program in BASIC.1  There were no graphics worth mentioning and 
the only thing I remember is that we made such a fuss about getting the VIC to find the 
prime numbers from 2 to 997.  If memory serves, it took about 30 minutes for the VIC to 
run this “sophisticated”2 prime finding program.  We had no disk storage and the memory 
in the computer was 4K.3  I think the processor speed was about 1 Mhz and might have 
been much lower4, but we didn’t care because we were computing! 
 
 The next step occurred the following year when we purchased 10 TI 99/4a 
computers for $50 each.5  They were not much better than the VIC-20, but we at least 
were able to store programs using cassette tape recorders.  Cassette storage wasn’t 
much fun, extremely slow, and unreliable.  I remember some slow, crude rudimentary 
graphics, but nothing that stands out in my mind.  Finally, in 1982, things began to get 
exciting.  We were able to purchase several Apple II+ computers with disk drives.  We 
thought we were in heaven!  The Apples were neat looking, nearly indestructible6, and 
much faster than anything we had used previously.  Plus, they could actually produce 
usable GRAPHICS.  Not just crude blocky stuff (which you could choose if you wanted… 
but why?), but nice points and lines on the screen!  These Apples had 64K of memory 
(all you could ever use… or so we thought) and the disk storage was amazing.  We 
could store 140K of programs on one floppy disk!7  Our prime number generator took 
only 53 seconds on the Apple, which was over 30 times faster than the VIC- 20.  Had I 
been acquainted with my friend George Francis at that time, we would have been able to 
do even more with these dependable machines.8 
 
 Our final conversion was to the PC platform in 1987-88.  We now had a lab of 12 
true-blue IBM PC’s with color monitors and hard drives running Windows 3.0 (or was it 

                                            
1 BASIC is a computer language… Beginner’s All-Purpose Symbolic Instruction Code.  It has 
been much maligned over the years; unjustly in my opinion. 
2 Here, “sophisticated” means ‘brute strength and ignorance”.  But the program worked and we 
were thrilled! 
3 This is 4 thousand bytes of memory.  Compare this to my current laptop which has 2 BILLION 
(gigabytes) of memory. 
4 Again, my current laptop has a processor that runs at 2 Ghz, over 2000x faster! 
5 These were truly awful computers.  Texas Instruments introduced them at a price of over $1000 
and ended up selling them at Wal-Mart for $49.95.  I’m not certain they were worth that much. 
6 I personally saw one dropped on a concrete sidewalk.  It bounced once or twice and worked fine 
for several years afterward.  No, I wasn't the one who dropped it. 
7 Again, my trusty laptop has a 60 gigabyte hard drive.  That’s 60 billion bytes.  I also have a 
portable USB "diskless" drive that holds nearly 2000x the capacity of that Apple disk! 
8 UIUC Math Prof. George K. Francis had a lab of Apples then that did some amazing graphics 
with a 1983 Forth compiler written by one of his colleagues.  It would have been nice to have that! 



 7

3.1?).  By today’s standards, they were painfully slow, but at the time we thought that we 
were cutting edge.  Memory was now in the megabyte range and processor speed was 
over 10 Mhz.  I remember plotting Mandelbrot sets in less than 10 minutes, which was 
relatively fast for that era.  We have steadily improved to our present lab setup of PC 
machines running nearly at 1 Ghz (or faster) with at least 128 mb of RAM (or more) and 
dedicated video cards for graphics.9  The computers in our labs are supercomputers 
compared to where we started!  In fact, if we were to take the computer in front of you 
back to 1980, it would have been one of the fastest on the planet! 
 
 So this was a brief history of our high school computer lab.  The programming 
class curriculum followed the lab, as you might guess.  We would spend 3 quarters 
learning to program and then the 4th quarter was reserved for student projects.  
Invariably, once graphic capabilities were available, all 4th quarter projects would involve 
graphics.  The first graphics on the Apple were slow and rather crude by present 
standards.  They were barely interactive, if at all.  Even on our first PC’s it would take 
several minutes to display minimal fractal images.  Not so today.  With the computers we 
have in our lab we can create sophisticated graphics that can be manipulated in real-
time… something we didn’t even dream of back in 1980!  It only took me 20 years to 
realize that my students were trying to tell me something!  For the past 5 years we have 
concentrated on learning computer programming through computer graphics and that is 
what you will be doing this year.  Learning how to program is hard work, but at the same 
time, it is very rewarding and can be great fun! 
 
 So, if a picture is worth a thousand words, how much more valuable is a 
changeable, interactive, creative graphics scene?  You can graph mathematical 
functions in 2D, 3D, and even 4D.  You can create true stereo images!  You can design 
programs to simulate real-world events and you can manipulate the laws of physics and 
create your own worlds.  If you are an artist, the computer becomes your easel.  If you 
like games, you can program your own according to your own specifications.  The 
computer can become a window into your mind and your limitations are governed by 
your imagination.  What you can envision, you can create!  Now how cool is that? 
 
 Oh, I forgot to say that you can make a fantastic living doing this stuff… just ask 
the folks at PIXAR.10 

                                            
9 Previous computers used the cpu and onboard memory for graphics.  This made them slow.  A 
dedicated graphics board handles most of the work and has its own much speedier memory.  
This allows us to create some rather fancy graphics.  By comparison, my laptop has 256 mb of 
video memory alone… more than the system memory of many computers. 
10 You know, the people who made “The Incredibles” and other such movies. 



Chapter 2 Needs, Expectations, and Justifications 
 

Section 2.1 What preparation do you need? 
 
 In order to successfully complete this class, you will need to have some 
knowledge of computer operations as a prerequisite.  This class is NOT an introduction 
to computers or a computer concepts class.  This is a programming class and I expect 
that you already know something about computers.  You should already be able to use a 
computer to do tasks such as word processing, gaming, and internet searches.  You 
should know how to install programs and you should know how to follow directions.  You 
don’t need to know how to program, although it’s certainly OK if you have some 
programming experience. 
 
 In terms of knowledge, you should have some familiarity with algebra and 
geometry.  You don’t have to be an “A” student, but you should be comfortable with the 
concept of variables, equations, points, lines, angles, and coordinates in the x, y, and z 
axes.  Also, you should have some knowledge of physics and physical science, 
particularly the equations and concepts for location, distance, velocity, and acceleration.  
If you are uncomfortable at this point, take a deep breath, relax, and simply be prepared 
to work a bit harder and I think you’ll be fine. 
 

Section 2.2 What hardware and software do you need? 
 
 If you are physically in my computer science class, then your computer and 
software needs are already met by our lab computers.  If you are reading this on your 
own, then I should take some time to tell you what minimum hardware and software you 
will need to complete the examples in the text.  At a minimum, you should have a 
computer with at least 128 mb of RAM and a dedicated video card with at least 32 mb of 
video RAM.  Most current minimum computer systems should suffice.1  If your computer 
doesn’t quite meet the minimum requirements, then give the programs a try anyway.  
They’ll probably run fine, albeit more slowly. 
 

As far as software is concerned, we will be using a programming language called 
Python with the PyOpenGL module.2  We will also use an open source programming 
editor called DrPython, although other fine open source editors such as Scite are 
available.  Again, if you are in my class, these programs are already on the lab 
computers.  If you are studying on your own, the programs may be downloaded from the 
internet at no cost.3  I use both Windows and Linux without a real preference, although it 
is probably easier to use the Windows platform in terms of the necessary software 

                                            
1 More is better! 
2 You will need to have OpenGL and GLUT installed on your computer.  Windows machines 
already have OpenGL installed.  You may need to search online for GLUT and install the 
glut32.dll file in your system directory. 
3 Use your search engine.  DrPython needs another program called wxWindows, also freely 
available.  If you need help with the installations, seek advice from your teacher or friendly 
neighborhood computer geek.  These programs are “Open Source”, meaning that they are free. 
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installation.  All the program examples in this text will work on either platform as long as 
the proper software is installed.4  

 

Section 2.3 My Expectations 
 
 My expectations are simple.  I expect you to make an honest effort to learn the 
material.  If you feel that you are deficient in an area, then take some time and 
strengthen your knowledge.  I expect you to try the programs in this text, to modify the 
programs, and to create some programs of your own.  The exercises at the end of each 
section or chapter will help achieve fluency in programming and should be attempted 
with honest effort.5  If you have “bugs”6 in your program, try to find them yourself rather 
than immediately asking for help.  Even though I enjoy helping my students, it gets a bit 
tiresome when a student insists that “the program you gave us doesn’t work” after about 
10 seconds of effort.  At that point, the student will sit back and expect me to fix the 
problem.  You’ll learn much more if you spend the time to find and repair your own 
mistakes. 
 
 I will start out by making a valiant effort to explain as much as possible in each 
chapter, section, and individual program.  But as we progress through the text, I plan to 
explain less and less (always difficult for a teacher… I should explain less?  Ask me the 
time and I’ll tell you how to make a watch!)  At some point you, the student, should 
become self-sufficient and research for yourself various topics of interest or concepts 
that you do not understand.  When you reach the point where you are an independent 
learner, then you have attained an elusive, but important goal.  Every individual should 
strive to become an independent learner and it should be the goal of every teacher to try 
to help students attain this coveted plateau.  Whether or not I am successful in this goal 
will depend on whether or not YOU are successful in becoming a self-sufficient 
programmer. 
 

Section 2.4 Your Expectations 
 
 You should have some realistic expectations for the class.  You will most likely 
NOT be recruited by Electronic Arts7 following the completion of this course.  You will be 
able to create some interesting interactive computer generated graphics, however.  You 
will also have a fairly solid background in basic programming and a platform for further 
learning, either independently or formally.  Since this course was started almost 30 years 
ago, over 40 former students have gone on to rewarding careers in the computer 
science field.  So if this type of work interests you, then you may have found the start to 
a great career opportunity!  I am not trying to toss out clichés, but you WILL get out of 
this course a level of expertise that will correlate highly with the effort you put into trying 
to understand and utilize the concepts. 
                                            
4 For Mac enthusiasts, as long as you have Python, PyOpenGL, and a programming editor you 
should also be able to run the example programs. 
5 In other words, as much as possible do your own work!  If you get help from someone or 
somewhere, and we all do, acknowledge the help.  Claiming original work in programs or problem 
solutions that are actually not your own is dishonest at best 
6 You should look up the history of how programming errors came to be called “bugs”. 
7 A company specializing in interactive sports games. 
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Section 2.5 Justifications 
 

Back in the early days of our computer science curriculum, graphics 
programming was synonymous with gaming and we didn't buy those computers so that 
students could play games.8  Gradually as time passed and the personal computer world 
became more graphically oriented thanks to the Mac and Windows operating systems, 
computer graphics became more mainstream.  We began to realize that being able to 
produce computer graphics meant that not only did you have to understand something 
about programming, you also had to understand something about mathematics and 
science if your computer graphics were to look and behave realistically.  I am stubborn, 
though, and it indeed took me two decades to realize that I could teach computer 
programming utilizing computer graphics.  My students seem to enjoy the experience 
and so do I.  I don't know and don't care whether or not this is acceptable practice in 
other schools… it works for us. 
 
 The choice of Python from dozens of other languages is a personal preference.  
Python is a relatively simple language, but it is easily expanded through external 
modules such as the PyOpenGL module.  Python is object-oriented9 and is a very 
popular language.  Plus, Python is freely available!  The downside is that program 
execution is somewhat slow10, but I believe the advantages outweigh the loss of speed.  
Finally, once you learn Python, it is relatively easy to go on to other languages if you 
desire (and you may not... Python is a very powerful language!).  See section 2.6 below 
for instructions on how to obtain a copy of Python for your computer. 
 

The choice of which graphics environment to implement was a bit easier.  There 
are two major graphic API’s11 available today, DirectX and OpenGL.  DirectX is a 
windows specific graphics API and OpenGL12 is available on all platforms.  Both are free 
for programmers to download and use.  I personally like OpenGL13 and think it’s a bit 
better at creating and displaying graphics than DirectX, but I could be wrong. 
 
 DrPython is my current Python programming editor.  It is freely available and 
allows interactive access to the Python console.  The only minor drawback is that 
DrPython needs the wxWindows library to function properly, but that is also a free 
download.  DrPython is actually written in Python!  However, Scite, or any other 
programming IDE that supports Python (and most of them do) will suffice.  If you use 
another editor, the only difference you will see is that the images in the initial chapters 
                                            
8 I remember that one school board member didn't think that we were ready for computers in 
1980.  I translated that to mean that HE wasn't ready for them.  When we purchased the 
computers, we were expected to compute… whatever that meant, and not "play". 
9 Object-oriented programming is a mainstay of modern computer languages. 
10 Python is an interpreted language (for the most part) rather than optimized and compiled like C.  
This isn't all bad, because it allows us to use Python interactively from a command prompt.  Look 
up interpreted languages for further information. 
11 Computer jargon for a set of commands specific to a particular task, such as graphics. 
12 Originally created by Jim Clark and available on Silicon Graphics (SGI) workstations as GL 
(graphics language).  It used to be a commercial package, but was eventually made available as 
Open Source software, hence OpenGL. 
13 Prof. Francis was strong influence on my preference.  He uses OpenGL/GLUT in his illiMath 
classes. 
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display the DrPython editor rather than the one you chose.  All Python compatible 
editors will have syntax highlighting.  What this means is that all valid Python commands 
will appear in color, as opposed to simple black on white text.  This will allow you to 
check to see if you’ve spelled the command correctly!  The program listings in this text 
are in black type, so don’t be surprised to see blue, green, or red text (depending on the 
editor) in your editor window.  As in the art and science of programming, the choice of a 
programming IDE or editor is yours. 
 
 There may be other modules or programs that we will use as the course 
progresses.  I will introduce these when the need arises. 
 

Section 2.6 Python Installation 
 
 If you are working in the Microsoft Windows environment, I would recommend 
that you visit http://www.python.org in order to download the latest stable version of 
Python.14  You will also need to visit http://pyopengl.sourceforge.net/ to download the 
PyOpenGL module.  In addition, if you wish to install DrPython (recommended), you 
should go to http://drpython.sourceforge.net/ to download this program editor.  There is 
link on this website to download wxWindows if needed. 
 

As another option for Windows environment, I would recommend that you take a 
close look at the Enthought Python distribution (http://www.enthought.com).  Enthought 
provides a complete Python package with an enormous number of libraries available, 
including the Scite programming editor at no charge for individuals and academic users.  
The only drawback to the Enthought distribution is that the installation file over 200 
megabytes in size, so you would need a fast internet connection to download the entire 
package.   

 
If you are working on a linux platform, check the online package repositories for 

Python, DrPython and/or Scite, and the PyOpenGL library.  Ubuntu linux and its apt 
repositories allow for easy installation of everything you need.  I would also recommend 
the Python Psyco compiler for Windows and/or Linux.  If you are unsure about how to 
proceed, do some research online.  There are many pages devoted to installing and 
using Python and its multitude of libraries. 
 
 The examples I use in this text are based on a Windows environment, but I also 
have a linux system (Ubuntu Linux) on the same computer in order to make certain the 
programs run properly in both environments.  My current students work entirely in 
Ubuntu Linux, so I make certain that the programming examples are compatible with 
both operating systems.  Linux has a few minor quirks (features?) in certain programs, 
but there are no major problems. 
 
 That’s enough for the preliminary information.  Let’s get ready to program! 
 

                                            
14 I used Python 2.5 and PyOpenGL 3.0.0a under Windows for these program examples.  I know 
that earlier versions of both packages also work properly under both Windows and Linux. 
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Exercises 
 

1. Go to the www.python.org website and spend some time looking at the resources 
that are available there.  You'll find various tutorials and answers to your Python 
questions.  You should bookmark this site in your browser! 

 
2. Go the www.opengl.org website and see what OpenGL is all about. 

 
3. Visit Professor Francis' home page www.new.math.uiuc.edu/~gfrancis and 

http://new.math.uiuc.edu/ to see how he uses OpenGL in his mathematics 
classes at U of I. 

 
4. Visit http://pyopengl.sourceforge.net for the PyOpenGL home page.  You'll find 

documentation and the latest Python OpenGL modules here. 
 

5. Visit http://nehe.gamedev.net for an interesting website containing information 
and tutorials on programming OpenGL using various languages, including 
Python.  The orientation is mostly C/C++, but the Python OpenGL syntax 
(language grammar) is nearly the same. 

 
6. Visit http://vpython.org for a very nice module for Python.  VPython was designed 

for math and physics instruction and can be used to program the 3D Geowall.  
Highly recommended! 

 
7. Visit www.pygame.org to see how Python may be used to program games. 

 
8. Finally, use Google or your favorite search engine and look for “OpenGL 

RedBook”.  The RedBook is a standard reference for OpenGL and older versions 
of this fine text can be found online.  You can usually download a copy and have 
it available on your computer desktop for easy referral.  I have not provided a link 
for the RedBook because the links have a tendency to change over time.  If you 
can also find a copy of the OpenGL BlueBook, so much the better.  The “Blue 
Book” is a reference for specific OpenGL commands and it may be possible to 
find an older version online. 

 
Note:  Throughout this text you will be asked to type in programs from the chapter 
sections as well as create some programs of your own.  A few comments are in order.  
First, all program code listings in this text will be written using the Courier New 
(bold) font.  Second, some program lines may be placed in quotes such as “for t 
in arange(0.0, 3.14, 0.01)”  Do NOT type the quotes in the program unless 
specifically requested to do so.  Quotes are usually used only in print statements.  
Finally, I suggest that you type the programs in each section of text exactly as written as 
a starting point.  Once the program is running properly and it is saved for future 
reference, then you should feel free to experiment with the code according to the 
demands of the exercises at the end of each section or according to your personal 
tastes and creativity.  Make certain that you save any modifications to the original code 
under a NEW name so that you can preserve the original for use in future exercises. 
 
Enjoy!   



Chapter 3 Your First Python Program 
 

Section 3.1 Super-3 Numbers 
 
 We are going to start programming by using a numerical example.  This is the 
only program in this text that will not generate graphics, so please don't panic.  I’m going 
to use this program to illustrate some basic programming concepts and hopefully to 
show you how powerful computers can be. 
 
 Super-3 numbers are numbers that when first cubed and then multiplied by 3, 
result in a value that contains three “3’s” in succession.1  For example, the first Super-3 
number is 261, because when we multiply the cube of 261 by 3, we get 53338743.  How 
many other Super-3 numbers are there less than 1000?  How about less than 10000?  
Do you want to try to find these numbers by hand?  I didn’t think so.  Let’s see if Python 
can help. 
 
 First, start DrPython (or your programming editor).  You should see a screen 
similar to Figure 3.1 below. 
 

 
     Figure 3.1 
 

                                            
1 See Pickover, C. A. (1995) "Keys to Infinity", New York: Wiley  p. 7 
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 If a blinking cursor isn't visible in the white workspace area in next to the "1", 
simply click in the workspace area and the cursor should then appear.  
 
 Now type the following program exactly as it is listed below.2  Make certain that 
you indent each line as shown in the program listing! 
 
# Super-3 Numbers 
 
import string 
 
i = input(“Please enter the upper bound: “) 
for n in range(i): 
 x = 3*n**3 
 if string.find(str(x), “333”) <> -1: 
  print n, x 
 
# End of program 
 

Notice that DrPython automatically numbers lines for us.  This feature is very 
handy when we are trying to trace program errors. 
 
Your screen should look similar to Figure 3.2: 
 

 
     Figure 3.2 
 

                                            
2 Program listings will use the Courier New font throughout the text. 
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 Once you have typed in this short program and have checked it twice3 for 
accuracy, save it to your program folder by clicking on “File” and “Save As”.  In the 
dialog box that appears, type “super3.py”4 for the name of the program (do not use 
quotes) as shown in Figure 3.3.  Click “Ok” when you have finished.  Note that your 
directory and the saved programs that appear will be different from mine. 
 

 
     Figure 3.3 
 
 When the program has been saved, let’s run it and see what happens!  Click on 
the white “Play” triangle in the menu area.  You should see something similar to Figure 
3.4 if your program contains no errors.  Notice that there is a new area below your 
program listing.  This is the console area and all error messages and results of program 
calculations will be found here.  If everything is OK and you have a blinking cursor in the 
console, you should be able to type in a value, press enter, and the program will run.  
Type in 1000 and press enter.  You should see the Super-3 numbers less than 1000 
displayed in the console as shown in Figure 3.5. 
 

                                            
3 OK, three times.  I'm not kidding. 
4 The ".py" ending (suffix) tells the Python interpreter that this program is a Python program and 
should be treated as such.  Failure to add the ".py" suffix will probably cause either unpredictable 
results or the program will not run at all. 
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     Figure 3.4 
 

 
     Figure 3.5 
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 Try running the program again.  This time enter 10000 or 100000.  What do you 
see?  If you want to stop a calculation at any time, press the white square “Stop” button 
to the right of the green Python icon.5 
 

If an error occurs, carefully read the message(s) displayed in the console.  The 
message or messages will usually give you some indication of the problem.6  Look at 
Figure 3.6 for an example of an error message.  Notice that Python is telling us that in 
line 6, the name “rnge” is not defined.  Try it!  Change the spelling of range in line 6 to 
rnge, save, and then run the program again.  What happens?  If you change the 
spelling back to range, the program should work properly once more.  Many program 
errors are simple spelling errors and are easily remedied.  We call such spelling errors 
syntax errors.  Computer languages such as Python require a very precise usage of 
commands.  Make certain that you type all commands correctly!  However, don't feel too 
badly when errors occur.  Even the best programmers make mistakes.  Just be prepared 
to hunt down programming errors (bugs) and fix them! 
 

 
     Figure 3.6 

                                            
5 The white (or red in newer versions) stop button can be used to halt a program while it is 
running.  If DrPython doesn’t behave as it should or a program fails to run, check to see if this 
button is “available” (white).  If so, press it to stop whatever is in progress and hopefully return 
everything back to normal. 
6 NOTE**** Sometimes an error message will be generated and the line that is "flagged" appears 
to be OK.  If this is the case, look at the first unremarked line ABOVE the indicated line and see if 
there is an error with that line.  You may have forgotten to close a parenthesis?  Also, indentation 
is extremely important in Python as we will soon see.  If you do NOT indent properly, your 
program will either not run at all or will run in unexpected ways. 
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Let’s go over our program word for word and see if we can understand it.  I’ll type 
the program lines in bold and in Courier New font for emphasis.  Here's the first line: 
 
# Super-3 Numbers 
 
 Any line beginning with a “#” sign is a remark statement.  Remarks are ignored 
by Python, but serve as valuable comments and reminders, particularly in long 
programs.  Do NOT skimp on remark statements.  Use them wherever and whenever 
you need to make a note to yourself (or others) about what your program is doing7, the 
meaning of the variables you are using, and/or your intentions at that point in the 
program.  Now the next line: 
 
import string 
 
 "import" statements bring in new commands that you can use to extend the 
Python language.  They are almost always placed at the beginning of the program.  The 
import string command adds some neat string handling commands for our 
programming pleasure.  In Python, a string is any chain of letters or a mixture of letters 
and numbers.8  
 
i = input("Please enter the upper bound:  ") 
 
 When Python encounters an input() statement, it stops and waits for the user 
to type something.  Here, whatever the user types is stored in the variable i for later use 
when the Enter key is pressed.9  The "=" sign acts as an assignment statement in this 
line of code.  Note that whatever you type between the " " is printed on the console 
screen. 
 
for n in range(i): 
 
 Computers are excellent at repetitive tasks.  They never get tired!  A for 
statement is a loop.  A loop is a repetitive process a bit like a Ferris wheel… it goes 
around and around as many times as we specify.  In Python, the indented statements 
below the for statement will be looped or iterated.10  In this case, we will loop through 
those indented statements as many times as the value we entered for i.  If we entered 
1000 for i in the input statement, the variable n will take on ALL the values from 0 to 
99911 and we’ll instruct the computer to examine every number in this range to see if it’s 
a Super-3 number.  How does the computer examine the numbers?  Look at the next 
line of Python code: 
 
 x = 3*n**3 
 

                                            
7 You skip using remarks at your own peril.  If you program anything of any complexity and try to 
figure out later what you’ve written, the program may as well have been written by someone else! 
8 "Hello" is a string.  1234 is a number.  "R2D2" is a string.  3.1415 is a number. 
9 We can use any variable we wish as long as we don’t use a word that Python already knows. 
10 The word "iteration" is synonymous with repetition or looping. 
11 Those crazy computer scientists.  They begin counting with 0.  Go figure. 
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 This statement takes the values we generate for n (0 to 999) and one at a time 
will cube each of those values and then multiply each cubed value by 3.  The n**3 is 
the cubing process, so you can infer that the double asterisk (**) raises a number to a 
power.  The single asterisk (*) is the multiplication sign.  Just as in algebra, the power is 
applied first, followed by the multiplication.12  The results of the calculation 3*n**3 is 
then stored in the variable x.  As mentioned in the footnote, there is nothing sacred 
about the use of the variable n in this program.  We could just have easily used 
testnumber or super3candidate13 as variables instead of x and n.  Usually you choose 
variables with meaningful names and if needed, use remark statements to remind 
everyone how the variables are being used.  For example, I might use the word endit 
to store a variable associated with terminating a program or function.  Anyway… at this 
point, x contains the value of our calculation. 
 
 At this point, we need to see if n, whatever it is, is a Super-3 number.  How do 
we do this?  We know that a Super-3 number is an integer that when cubed and 
multiplied by 3 results in a value with a "333" somewhere in the number.  We could look 
at every number visually and decide for ourselves whether or not it fits the Super-3 
conditions, but that would be tedious (and silly).  We'll let the computer make the 
decision for us.  Computers are excellent at making decisions, but we must first 
formulate the decision statement properly.  Look at the next line: 
 
 if string.find(str(x), "333") <> -1: 
 
 Decision or conditional statements usually start with if and every indented line 
under the if statement is included in the conditional statement or block.  Look at the 
following pseudo-code example: 
 
 if statement_true: 
  do something remarkable 
 
Generally the meaning is as follows:  "if the statement is true, do something.  if it’s false, 
ignore me".  An if block of code makes decisions!  You may have been warned as a 
child to "Look both ways before you cross the street!".  Well, that is certainly an 
important instruction, but that alone is not enough to insure our safety.  Somewhere in 
our brain we must have an if block of code such as: 
 
 if car_is_approaching: 
  stay on the sidewalk 
 
Think about this!  How important are such decisions in our own life?  Really, computers 
are nothing more than machines with the capability of looping endlessly through code, 
making as many decisions as we care to write. 
 

                                            
12 The order of arithmetic is the same in algebraic programming as in your math class.  Please 
Excuse My Dear Aunt Sally…  parentheses, exponentiation, multiplication, division, addition, 
subtraction. 
13 Python distinguishes between upper and lower case variables.  The variable 'Cat' is different 
from the variable 'cat'.  Be careful with your spelling! 
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Now back to our super3.py program.  Let’s take this if string statement apart 
piece by piece.  The string.find command is one of the neat string commands we 
can use after the import string statement.  It allows us to search strings for patterns 
of letters, symbols, or numbers.  In parentheses, we see str(x), which temporarily 
converts the number stored in x (calculated from the previous line of code) to a string so 
we can search it.  “333” is the pattern we are trying to match.  If a “333” pattern is 
NOT found in x, the string.find command returns (or equals) –1.  So, in English, this 
statement says:  if in str(x) we find a “333” pattern then string.find will NOT 
equal –1 (“<>” means NOT equal... we could also use "!=".  Try it!) and that would make 
the statement TRUE (string.find is indeed NOT equal to -1).  If in str(x) we 
DON’T find a “333”, that means that string.find equals –1 and the statement is 
FALSE.14  Remember that a FALSE statement means that we will ignore any indented 
code in if block.  The colon symbol “:” finishes the “if” statement. 
 
 You may be wondering what happens if the string.find function actually does 
find the search string "333"?  Does the function return a value other than -1?  Well, 
obviously it does or our program would not work!  But what value does the 
string.find function return if it finds a match and why can't we use THAT value in our 
if statement (if string.find(str(x), "333") == value:)?  It turns out that 
the string.find function does not return the same value every time the search string 
is matched.  The value the function returns is the location or index in the string (or 
number converted to a string in this case) of the first character in the search string.  For 
example, the first Super-3 number is 261.  This translates to a Super-3 value of 
53338743.  The first "3" of the "333" search string in this number is located in the "1" 
location... remember that we start counting from 0 in computer science; the first number 
is in position 0!  So, string.find would return a value of 1 for the number 53338743.  
The second Super-3 number is 462, which has a Super-3 value of 295833384.  For this 
value, string.find would return a 4, indicating the position or index of the first 
character of the search string, again starting from 0.  So we can't simply check for a 
single value for string.find in the if statement to indicate that a match has been 
found.  We'll explore this concept further in the exercises at the end of this section. 
 
 If the statement in the if line is TRUE, then any indented15 lines immediately 
below it are executed (not shot… but implemented by the Python interpreter).  The 
single indented line is: 
 
 print n, x 
 
 This line prints both the Super-3 number n and it’s value x after cubing and 
multiplying by 3 (so you can see for yourself the “333” in the number).  Remember, this 
line is only “executed” in the event that that if statement above it is TRUE. 
 

                                            
14 Think about this!  It is easy to become confused with conditional if statements. 
15 Indented lines are crucial in Python.  Most other languages ignore indents and they are used to 
make code easier to read.  In Python, indents are part of the language and MUST be used 
appropriately.  Note the indented lines after the for statement.  All those lines are in the for 
loop.  Likewise, the indented lines immediately after the if statement are part of the if 
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 Well, that’s all for the first program.  In the next chapter we’ll being working with 
graphics.  First, though, we are going to try some exercises.  These problems will require 
you to modify the program we’ve just discussed.  If you want to save your original code, 
you’ll need to name your newly modified program something different.  Suggestions for 
names might be ch3ex1.py for Chapter 3 Exercise 1… but you are free to name the 
modified programs anything you or your instructor wish.16 
 

Section 3.2 Conclusion 
 Computers are great at handling input, doing repetitive tasks, producing 
calculations, making decisions, and displaying output.  The simple Super-3 program we 
used as an example in this chapter demonstrated the power of a computer in performing 
all of these operations in just a few lines of code.  How long do you think it would take 
you to find all the Super-3 numbers less than 10000 by hand?   
 

Exercises 
 
1) Super-d numbers are a more general case of Super-3 numbers.17  With Super-d 

numbers, you replace d with the number of your choice.  For example, Super-4 
numbers would be those numbers when raised to the 4th power and multiplied by 4, 
contain “4444” somewhere in the calculated value.  How would you modify the 
Super-3 program to find Super-4 numbers?  What is the smallest Super-4 number? 

 
2) Are there any Super-5 numbers less than 10000?  What is the smallest Super-5 

number?  Remember to search for “55555” in the “if” statement! 
 
3) Can you modify the program to search for other patterns?  How about the pattern 

“1234”? 
 
4) What happens if you change the formula in line 7 to something other than the Super-

d format?  You won’t be searching for Super-d numbers, but perhaps you will find 
something interesting?  Feel free to explore a bit!  Search for strange patterns!  For 
example, search for “314159”. 

 
5) This is a thought question.  How many Super-3 numbers are there?  Could you use a 

computer to find them all? 
 
6) Rewrite the Super-3 program to check for a match using the ">" operator or the ">=" 

operator. 
 
7) Add some statements to the program to print the values returned by string.find 

when the function actually finds a match. 
 
 
The following exercise is a bit more difficult.   
 

                                            
16 But please don’t forget the “.py” suffix!  I know, I already told you this but it’s really important. 
17 http://mathworld.wolfram.com/Super-dNumber.html 
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8) Python has other methods of looping such as the statement while.  Research other 
looping methods for Python and see if you can rewrite the program using a different 
looping structure.  Remember that indentation is important!  Also, you will probably 
discover that you need to be able to find a way to count or increment the value of the 
variable you are using to construct Super-3 numbers.  How can you do this?  Do you 
need to tell Python that the variable is going to store a number rather than a string?  
How would you do this?  

 
 
 



Chapter 4 Your First OpenGL Program 
 

Section 4.1 The Interactive Python Interpreter 
 
 Before we begin with OpenGL, I think it’s appropriate to show you a feature of 
Python that we haven’t yet discussed.  Start DrPython (if it isn’t already open) and press 
the “green Python” button to the right of the program start icon.  Your screen should look 
something like Figure 4.1. 
 

 
     Figure 4.1 
 
 Note the “>>>” in the console area.  This prompt tells you that you are in the 
interactive Python mode.  You can type Python commands at this prompt and they will 
be immediately executed.  For example, type 3+7 and press enter.  It seems Python 
knows a little arithmetic!  Now type 10/5 and press enter.  Of course, Python tells you 
the answer is 2.  Now type 10/4 and press enter.  What gives?  Python still answers 
with 2!  The reason for this behavior is that Python will perform arithmetic according to 
the numbers we give it.  If we supply only integers in our problem, the results of Python 
arithmetic will be an integer.  Try 10/4.0 or simply 10/4. and see if you get the answer 
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you expect.  As long as one of the numbers we use in the calculation is a floating point 
or decimal value, then Python will respond with floating point calculations.1 
 
 Python arithmetic may seem quirky, but once you have some programming 
experience, it isn’t difficult.  Just remember the integer vs. floating point format to avoid 
program calculation errors.  You might try multiplying, adding, subtracting, and raising 
some numbers to a power to see if you get the results you expect. 
 
 Before we close the interactive session, type print ‘hello’ and press enter.  
No surprise, right?  Now type name = ‘Dubbya’ and press enter.  Nothing happened!  
Well, actually something DID happen… what was it?  Type print name, press enter 
and see if you were correct.  Yes, the string ‘Dubbya’ was stored in the variable name 
and we can view the variable contents by using print.   
 

The interactive mode can be useful to perform quick calculations or to check 
simple program structures.  Before we exit, notice in the message in the lower right 
corner of the DrPython window.  It should say “Running Python Interpreter”.  This tells us 
that we are in the interactive mode.  Exit the interactive mode by clicking the red 
(square) stop button and then clicking on the green monitor button to the left of the 
program start icon.2 

 

Section 4.2 Introducing Python OpenGL 
 
 We are ready for our first Python OpenGL program.  Start DrPython3 and type in 
the following lines in the upper programming area, starting with line 1: 
 
#  First Python OpenGL Program 
#  ogl1.py 
 

What do these lines do?  Remember, they are remark or comment statements, 
so they really don’t DO anything other than provide notes or reminders for you and 
anyone else who might read your code.  I can't emphasize enough the importance of 
using comment statements in your code, particularly as the complexity and length of 
your programs increase. 
 

Now, save the work in your directory as you have done previously (using “File" 
and "Save As”) and giving it a name such as ogl1.py.  It’s a great idea to save your work 
every few lines or so.4  Once you have named and saved the program the first time, you 
can simply push the “diskette” button next to the printer icon to save any new code.  You 
                                            
1 You should look up floating point, integer, double precision, and single precision numbers.  
Better yet, visit www.Python.org and search in the online documentation for Python data types. 
2 The green monitor button is useful for closing the console and displaying full screen editing 
mode.  You must click the white stop button to stop the Python interpreter. 
3 You do NOT have to use DrPython as a programming editor.  There are others, such as Scite 
that are free and also work well.  Python comes with its own editor called Idle.  You can use that.  
You can even write Python code in a text processor and run the code from the command prompt 
by typing:  C:>\python prog.py  where prog.py is the name of your saved program. 
4 I once worked for nearly 6 hours on a program and the power went off.  I lost everything.  I 
learned to save my work early and often after that. 
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can see whether or not you need to save your work by looking at the caption bar at the 
top of the DrPython window.  If the words “untitled” or “[Modified]” appear, then save 
your work! 
 
 Let’s add more lines to our program: 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
import sys 
 
 Remember that Python comes with a basic set of commands that you can 
immediately use.  The import statements add extra functions to this basic set of 
commands.  With the exception of import sys, these are import statements with a 
somewhat different format than the one used in the first program (import string).  In 
the first program, we had to preface the “find” command with the word “string” in 
order for it to use the string module commands (string.find).  In this new 
from... import * format, we can use OpenGL module commands directly without 
having to use the OpenGL.GL, OpenGL.GLU, or OpenGL.GLUT preface in a similar 
fashion as string in the Super-3 program.  If we simply used import OpenGL.GL, 
then every time we used an OpenGL.GL command, we would need to write (for 
example):  OpenGL.GL.glVertex2f(x, y).  With the from... import *  format, 
we can simply write:  glVertex2f(x, y).  Much simpler, don't you think?5  The final 
import sys statement provides some housekeeping tools we will need to create the 
graphics display.  We will usually only need a couple of commands from this module, so 
we do not need to use the from... import * method here.  Likewise, in the Super-3 
program we only needed one string function (string.find).  In contrast, we would like 
ALL the OpenGL GL, GLU, and GLUT commands available to us when we program.  
Having all the OpenGL commands available will save time! 
 
 To summarize, each of the from OpenGL statements adds new commands to 
Python.  There are OpenGL commands (.GL), GLU commands (.GLU), and GLUT 
commands (.GLUT).  You will know when you are using commands from each specific 
OpenGL module by looking at the first few letters of the OpenGL command.  For 
example, glClear() is a command from the main OpenGL (GL) module.  
gluPerspective() would be from GLU and glutWireTeapot() is from GLUT.  You 
will see and use MANY examples of these commands (usually prefaced by gl, glu, or 
GLUT) throughout this text.  Let's continue: 
 
def draw(): 
 glutWireTeapot(0.5) 
 glFlush() 
 
 This is new.  The def keyword marks the beginning of a function block of code in 
Python.  Functions are segments of code that act as a group or family of commands.6  

                                            
5 You may have guessed by now that the * in the from... import statement imports ALL 
commands available to that particular module.  Good guess! 
6 See the "Odds, Ends, and Terminology" section in this chapter. 
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The name of this function is "draw" and we can call this function from within our Python 
program by using this name.  Note the two indented lines after def draw():.  The 
indents mark these lines as belonging to this particular function.7  The def draw() 
function does two things.  First, it uses a GLUT command to draw a wire teapot with a 
size of 0.5.  Second, the glFlush() statement "flushes"8 the drawing to the screen so 
we can see it.  Save your work. 
 
 Finally add these lines, making certain to line them up even with the left-hand 
margin.9 
 
glutInit(sys.argv) 
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) 
glutCreateWindow("My First OGL Program") 
glutDisplayFunc(draw) 
glutMainLoop() 
 
 Save your work!  The first line, glutInit(sys.argv) tells Python we are 
going to be displaying GLUT style graphics.  GLUT stands for "GL Utilities Toolkit" and 
provides cross-platform (linux-windows-mac) background calculations making the job of 
doing graphics MUCH easier than if we had to write this code ourselves.  In other words, 
a LOT is going on "behind the scenes" here and GLUT takes care of the gory details.  
The (sys.argv)10 argument allows us to enter a command line instruction if we wish 
(we don't in this program).  The next line, glutInitDisplayMode(GLUT_SINGLE | 
GLUT_RGB), tells the graphics "wizard" that we are going to be using a single display 
screen (buffer) and that we'll be using the RGB (red, green, blue) color scheme.  The 
vertical line between GLUT_SINGLE and GLUT_RGB means "and" and is typed using the 
"shift+\" key (above "Enter" on most keyboards). 
 
 The glutCreateWindow("My First OGL Program") 
command uses GLUT to create a graphics window and places "My First OGL 
Program" in the new window's caption bar.  The glutDisplayFunc(draw)statement 
tells GLUT where to find the function that creates the graphics scene.  In this program, 
the display function is def draw().11  Finally, the glutMainLoop() statement starts 
the program running.  This is another example of "gluttery" and keeps our program in an 
eternal loop, allowing GLUT to check continually for things like mouse and keyboard 
input/control. 
 

                                            
7 A common error in Python is to forget to add a ":" after the def statement.  Ditto for if 
statements and for loops. 
8 Yes, I know... like a toilet.  Later we will learn how to avoid glFlush() by using something 
called buffering. 
9 Improper indentation can cause major headaches in Python.  If you indent these commands, 
Python will think they belong in the def draw(): function and the program will not work 
properly. 
10 Remember import sys? 
11 We could have named it anything as long as we are consistent.  We could have created a def 
picasso(): function that draws the teapot and as long as we used 
glutDisplayFunc(picasso), everything would be OK. 
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 If you haven't already, run the program!  You should see something that looks 
similar to Figure 4.2 depending on what is in the background on your desktop: 
 

       Figure 4.2 
 
 Well, at least you can see something that looks like a teapot.  What happened?  
When we created the graphics window, we did not specify anything about the 
background, so GLUT simply copied everything from the screen location into the window 
and then drew the teapot on top of the whole mess.  Move the window around with your 
mouse (left-click on the caption bar, hold the mouse button down, and move the 
window).  You'll see that the background moves with the window! 
 
 We can easily fix this by adding one line of code.  Place the statement  
glClear(GL_COLOR_BUFFER_BIT)12 after the def draw(): line.  Remember to 
indent at the same level as the other two lines in this function!  Save the program and 
run it again.  You should now see something like Figure 4.3 on the next page.  Move this 
window around with the mouse and everything works as expected.  Finally, we are going 
to add two more lines to our first program.  Click on the line that contains the 
glutInitDisplayMode command.  Press the "End" key on the keyboard or click at 
the end of this line.  Press "Enter" twice to make room for the following two lines of code. 
 
glutInitWindowSize(250,250) 
glutInitWindowPosition(100,100) 
 
 Save your work.  These lines allow us to specify the size of the graphics window 
(250x250 pixels on a side) and the initial location of the window (100, 100), which is 100 

                                            
12 This statement obviously clears the screen.  The default color is black. 
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pixels to the right and 100 pixels down from the screen origin.13  If you run the program, 
you should see a graphics window in slightly different location.   
   

                            Figure 4.3 
 
Here is the complete listing of our modified first program. 
 
# First Python OpenGL program 
# ogl1.py 
 
from OpenGL.GLUT import * 
from OpenGL.GL import * 
from OpenGL.GLU import * 
 
def draw(): 
       glClear(GL_COLOR_BUFFER_BIT) 
       glutWireTeapot(0.5) 
       glFlush() 
 
glutInit(sys.argv) 
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) 
glutInitWindowSize(250, 250) 
glutInitWindowPosition(100, 100) 
glutCreateWindow("My Second OGL Program") 
glutDisplayFunc(draw) 
glutMainLoop() 
 
# End of program 

                                            
13 In computer graphics, the origin is by default in the upper left corner of the display screen and 
uses positive numbers down the y-axis and across the x-axis.  You can change this to Cartesian 
coordinates easily in OpenGL with the origin in the center of the screen.  We'll do that a bit later. 
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Section 4.3 Odds, Ends, and Terminology 
 
 Programming can be very frustrating.  Computers (at least the ones we use now) 
are not intelligent.  They will do exactly what we tell them to do, but not necessarily what 
we want them to do… and that's assuming that we have not made any errors in 
programming syntax or grammar.   

 
There are two major sources of errors in programming.  The first concerns visible 

errors in the spelling of key words, punctuation, and/or grammar.  These errors are 
placed in the category of "syntax" errors.  The program simply won't run until all syntax 
errors are corrected.  Fortunately, we are often given information by our programming 
editor or the Python interpreter about the nature of the syntax error and we can usually 
fix these errors rather easily.  If the syntax error is not found in the line of code specified 
by the interpreter, it will usually be found in the line immediately preceding the "flagged" 
line.  Often several lines will be listed as having errors.  Such a complex listing is called 
a "traceback" and will include a detailed history of how, where, and in which modules the 
error occurred.  In such instances, look at the very last line in the list of errors.  This line 
will usually contain the offending code and fixing this line may repair the damage. 

 
The second source of errors is more insidious and far more frustrating.  Your 

program seems to run and will not generate error messages, but you don't get the 
results you expect.  This may mean that the program IS running correctly, but you need 
to rethink your expectations.  You should remember that computers will not always do 
what you want them to do, but they WILL always do what you tell them to do.  Such 
errors are found in the logic of your program and can be very difficult to trace.  If you are 
typing a program from a code listing that is known to work,14 then you have forgotten to 
type something correctly.  When you find and correct the error, the program will run 
properly and it may be something as simple as forgetting a line of code or forgetting to 
use a closing brace in a function.  If you are creating your own program from "scratch" or 
from the PySkel.py template we'll be using later, then you may have to look more 
closely.  Common problems in Python include improper usage of if conditional 
statements, incorrect structure in loops, incorrect indentations in loops, functions, and if 
statements, and improper usage of OpenGL commands. Fixing these errors may involve 
rethinking the problem.  Often, using a print statement to display the values of 
variables at appropriate times will help immensely.  The best weapons against 
programming errors of any kind are patience, clear thinking, and experience!15 

 
Terminology is important in any field, not just in computer science.  Sometimes 

fields (such as education!) are unnecessarily burdened with terminology, but for the most 
part, a properly defined vocabulary unique to a subject area is the most efficient way to 
teach, learn, and communicate with others in that discipline.  Much of the terminology in 
computer science has become mainstream since the proliferation of computers into 
nearly every home.  There are some vocabulary terms that we need to define, though, to 
avoid confusion in this course.  Teachers tend to repeat themselves (more often as we 
age…), so I may define some of these terms again (and again) throughout the text.  If 
so, simply nod your head and remember the word(s) and meaning(s)! 

 

                                            
14 Hopefully ALL programs in this text fall under this category! 
15 These are outstanding attributes to have in ANY walk of life. 
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First, we need to discuss the distinction between functions in computer science 
and functions in mathematics.  In computer science, sections of code that are "set aside" 
to perform a specific task are called functions (or archaically, subroutines).  A function is 
a code segment that is designed to calculate a value and "return" that value to the main 
program.  Buttons such as sin() or tan() on a calculator are an example of a function.  In 
Python, we might have something like this: 
 
def sqr(x): 
 n = x*x 
 return n 
 
print sqr(5) 
 
# End Program Listing 
 
 This small piece of code will actually run!16  We define a function sqr using def 
sqr(x):.  This function takes an argument (a number we send it through code) and 
stores it in the variable x, which is then used in the function by the line n = x*x.  The 
return n command does exactly that: it returns the value of n to the program.  In this 
example, we have defined a squaring function and all we have to do to use this new 
function is to issue a sqr(j) command, where j is a number we want to square.  So, a 
function in Python returns a value.  A function can also be a code segment that is 
designed to perform a task, but it does not necessarily perform a calculation (again, 
archaically called a subroutine).  The def draw(): function in the program in this 
chapter is such an example.  In modern terminology, all blocks of code that are set aside 
to perform a task are called functions. 
 
 Functions in mathematics are analogous to functions in programming.  A function 
in mathematics is an operation, action, or process that converts one or more numbers 
into another (probably different) number.17  The key to a mathematical function is that 
when we supply a number or numbers as input, we will get only one unique output.18  
You might think that this definition is restrictive and that we will be unable to produce 
plots of 2D curves such as circles (which fail the vertical line test) and 3D objects such 
as spheres (ditto).  The short answer is that we won’t use a single function for these 
objects.  We will use combinations of equations in parametric or polar form to produce 
any plot we choose. 

 
Another important term is the concept of iteration.  Iteration is the process of 

repeating the same calculation(s) a specified or perhaps indeterminate number of times 
using a loop structure.  Usually the repeated calculations are performed on a 
mathematical function or set of functions.  One key to iteration is that the result of the 
previous computation is used as the input for the next computation.  This is analogous to 
starting with a value and repeatedly pressing the "sqrt()" or "sin()" button on a calculator. 

 

                                            
16 Use "File|Save As" and name the program something like "sqr.py". 
17 Devaney, Robert L. (1990).  "Chaos, Fractals, and Dynamics: Computer Experiments in 
Mathematics."  Addison-Wesley Publishing Co. 
18 Hence the vertical line test used on graphs in algebra. 
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You may encounter these and other terms again as we journey through this text.  
If it sounds as if I’m defining for the first time a previously defined term or phrase, simply 
bear with me.  The more times you read a term and perform a task, the more likely you 
are to remember the term and learn the task.  Also, I’m a teacher (and I’m old) and I tend 
to repeat things repeat things.   

 

Section 4.4 Conclusion 
 
 In this chapter we introduced both the Python interactive interpreter and our first 
OpenGL based program.  We also briefly discussed programming errors.  Always 
remember that you MUST be careful when programming.  As I stated earlier, a Python 
program, or any program in any language, will not always do what you want it to do, but 
it WILL always do what you TELL it to do.  Pay strict attention to both syntax errors and 
logical errors!  Be prepared to exercise patience and thought when attempting to fix 
programs that are not running correctly or perhaps not running at all! 
 
   We also introduced some terminology that we'll be using throughout the text.  
This terminology should not be considered final or complete.  We will probably add to 
your vocabulary as we progress in knowledge and no doubt many of the terms will be 
visited more than once! 
 
 The following exercises are designed to allow you to explore the code in our first 
OpenGL program.  You probably want to keep your original program intact, so open it 
again (if it isn't open) and use "File" and "Save As" to save it under a new name (ending 
in ".py").  You can then experiment with the new program.  Also, you'll notice that most 
programming editors such as DrPython can have several programs loaded at once.  
Under the menu labels or icons, you should see a tab or tabs which contain the names 
of the program or programs currently open.  You can click on any of the tabs to make 
that particular program active and ready to edit/run. 
 

Exercises 
 

1) Change the caption to display your name instead of "My First OGL 
Program". 

 
2) Change the initial window location to something other than (100, 100).  Can you 

predict where the window will appear based on the ordered pair of numbers? 
 

3) Change the initial window size to (400, 400).  Try various values and see what 
happens.  The numbers do not have to be equal, although you should probably 
try to avoid negative numbers and/or zero.  Try a tall narrow window or a short 
wide display.  Which number controls the width and which the height? 

 
4) Change the size of the teapot from (0.5) to larger and smaller values.  What 

happens? 
 

5) Comment the glutWireTeapot command to disable it (How?).  Create a blank 
line below it and add this line: glutWireSphere(0.5, 10, 10) 
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a)  Change the 0.5 to 0.75 and see what happens.  What does this value do? 
b)  Change the line to:  glutWireSphere(0.75, 25, 25) 
c)  What do the last two values do? 
d)  Change the line to:  glutWireCube(1.0) 
e)  Change the line to:  glutWireTetrahedron() 
f)  Change the word Wire to Solid in each of the commands above. 

 
 There are additional GLUT geometric shapes that we’ll explore later. 
 

6) Research “iteration”.  How is it used in computer science?  Are there particular 
problems that can be more easily solved by iteration than by other means?  Also 
research “recursion”.  Are iteration and recursion the same?  If not, how are they 
different? 

 
7) Research “function” and “subroutine”.  Compare the definitions you find with the 

definitions given in this text. 
 
8) You’ll need a calculator for the next few exercises.  Type in a number larger than 

1 (such as 5).  Repeatedly press the sqrt() button.  Do you eventually reach a 
value that doesn’t change?  What is this value?  Do you think this is correct?  Try 
another value > 1 and see if you get the same result. 

 
9) Now type in a positive19 value less than 1.  Repeatedly press the sqrt() button.  

Do you eventually reach a value that doesn’t change?  What is this value?  
Again, do you think this is correct?  Try another positive value less than 1 and 
see if you get the same result. 

 
10) Type in another value and repeatedly press the cos() button.  Do you eventually 

reach a value that doesn’t change?  What is this value?  This value is the 
solution to what function?  Try another number and see if you get the same 
result. 

 
11) Try the sin() and tan() buttons in the same manner.  Do you get the same 

results?  Why or why not? 
 
12) Try running the program from this chapter again, but this time, use (.5) instead of 

(0.5) for the size of the teapot.  What happens?  Do we need to include the 
leading zero to the left of the decimal?  Some languages require a leading zero in 
front of decimal values between -1.0 and 1.0. 

 
 

                                            
19 Why a positive value? 



Chapter 5 2 Dimensional Graphics 
 
 When you stop and think about it, all computer graphics are 2 dimensional.1  We 
can create the illusion of 3D (and beyond) by the proper placement of pixels, objects, 
and the use of visual cues to “trick” your mind into seeing depth, but essentially we are 
still plotting points on a 2D screen.  With this concept in mind, it makes sense to start 
with “true” 2D graphics and we’ll begin by plotting points. 
 

Section 5.1 Plotting Points 
 
 One of the basic functions of any graphics language is to manipulate individual 
points or pixels within the graphics window.  We need to have complete control over 
where the points are plotted, the point size, and the point color.  If we can control the 
plotting and characteristics2 of individual points, then there is nothing we can’t draw! 
 
 Our first program in this chapter will be a simple exercise in setting up the 
graphics window so that it behaves much like the coordinate system you learned in 
algebra class.  As stated in an earlier chapter, the origin in a graphics window is usually 
in the upper left hand corner.  We would like to move the origin to the center of the 
graphics display window.  Once we have established the origin, it should be simple to 
plot points where we please. 
 
 Start DrPython or your Python editor and enter the following program.  Make 
certain that you save the program in your directory with a “.py” suffix or ending.  I’ll 
suggest a name for each program in the first remark3 statement, but feel free to choose 
your own name if you wish.  Remember to pay strict attention to indenting! 
 
#  PyPoints.py 
#  Setting a coordinate system with central origin 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
import sys 
 
def init(): 
 glClearColor(0.0, 0.0, 0.0, 1.0) 
 gluOrtho2D(-1.0, 1.0, -1.0, 1.0) 
 
def plotpoints(): 
 glClear(GL_COLOR_BUFFER_BIT) 
 glColor3f(1.0, 0.0, 0.0) 
  
 glBegin(GL_POINTS) 
 glVertex2f(0.0, 0.0) 

                                            
1 Unless you have a holographic display?  Do you?  Guess what I want for Christmas? 
2 Sometimes called attributes 
3 Since I am explaining the first programs in great detail, I’ll keep remark statements out of the 
program listing at this point in the text in order to avoid clutter. 



 34

 glEnd() 
  
 glFlush() 
 
def main(): 
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB) 
 glutInitWindowSize(500,500) 
 glutInitWindowPosition(50,50) 
 glutCreateWindow(“Plot Points”) 
 glutDisplayFunc(plotpoints) 
  
 init() 
 glutMainLoop() 
 
main() 
 
# End of Program 
 
 When you run the program, assuming you have no errors, you should see a 
graphics window with a single tiny red dot in the center (at the origin!).  Not very exciting 
(yet), but it’s an important “point”.4 
 
 Let’s look at the listing in detail.  The first few lines we’ve seen: 
 
#  PyPoints.py 
#  Setting a coordinate system with central origin 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
import sys 
 
 As explained previously, the lines following the remark statements add OpenGL 
commands to Python for our use.  Now let’s explore the program listing. 
 
def init(): 
 glClearColor(0.0, 0.0, 0.0, 1.0) 
 gluOrtho2D(-1.0, 1.0, -1.0, 1.0) 
 
 The first program section is an initialization function.5  We set the background 
color to black using the glClearColor command.  This command does not DO 
anything other than inform OpenGL that when we clear the graphics screen, we are 
going to use “black” as our background color.6  The numbers in the parentheses 
following this command dictate the color and they are, respectively, (red, green, 
blue, alpha).  Each color position accepts a value from 0.0 to 1.0 inclusive.  You can 

                                            
4 Pun intended. 
5 It makes sense to choose variable and function names that describe their purpose.  This is a 
function that sets some initial values, hence the name init(). 
6 glClearColor sets the GL_COLOR_BUFFER_BIT to the color of your choosing. 



 35

mix and match colors if you wish and use various intensities.7  The “alpha” setting deals 
with the opacity or transparency of the colors.  It isn’t used as much as the RGB (red, 
green, and blue) color values and is generally set at 1.0.  For example, a purple or 
magenta background color would be:  glClearColor(1.0, 0.0, 1.0, 1.0).  Note 
that the mixture of red (1.0) and blue (1.0) will result in a purple/magenta background 
color.8  The absence of color (all RGB settings excluding alpha at 0.0) results in black.  
Setting 1.0 for each color will provide a white background. 
 
 The gluOrtho2D command allows us to set the coordinate system ranges.  The 
command is used this way:   
 
 gluOrtho2D(x-left, x-right, y-bottom, y-top)   
 
In this particular instance, we are setting a coordinate system that ranges from -1.0 to 
1.0 in both the x and y axes which places the origin (0,0) in the center of the screen. 
 
 Let’s look at the plotpoints() function: 
 
def plotpoints(): 
 glClear(GL_COLOR_BUFFER_BIT) 
 glColor3f(1.0, 0.0, 0.0) 
  
 The plotpoints() function contains the drawing procedure.  Again, the exact 
function name, plotpoints(), is not crucial, but should be descriptive of the function’s 
behavior (if possible).  The glClear(GL_COLOR_BUFFER_BIT) command does what 
you think it should do.  It clears the screen (the color buffer bit) and sets the background 
color to the choice you made in the init() function.  The next line,  
glColor3f(1.0, 0.0, 0.0), sets the plotting color to red.  The “3f” in the 
glColor3f command reminds us that we need to use 3 floating point (decimal between 
0.0 and 1.0 inclusive) values for the RGB settings.9  Placing a 1.0 in the red position and 
0.0 in the green and blue positions insures that we will be drawing or plotting using pure 
red.  The glColor3f command MUST be placed before the plotting or drawing 
command in order for it to work properly.  Take special care that you do not confuse the 
two OpenGL color commands.  glClearColor is designed specifically to set the 
background color of the graphics window after it has been cleared.  glColor3f and 
glColor3ub are designed to set the color of the plotting pen. 
 
 The actual plotting of points occurs in the next program section. 
 
 glBegin(GL_POINTS) 
 glVertex2f(0.0, 0.0) 
 glEnd() 
 
 glFlush() 
 

                                            
7 Example:  glClearColor(0.5, 0.8, 0.3, 1.0) for an interesting shade of green. 
8 Try it!  If the color is too intense, try 0.7 for both red and blue values. 
9 There are other possibilities such as:  glColor3ub(red, green, blue) where “ub” stands 
for “unsigned byte”.  In this case, the color values range from 0-255. 
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 When we draw or plot in OpenGL, we must inform the graphics system of our 
intentions.  The glBegin(GL_POINTS) command serves this purpose.  It basically 
says that we are ready to begin drawing and that we are going to plot points.10  
glVertex2f(0.0, 0.0) locates the single point (red, remember?) on the screen 
using the coordinates (0.0, 0.0), which should represent the origin at the screen’s center.  
The 2f portion of the glVertex2f(0.0, 0.0) command indicates that we are going 
to use 2 floating point values with glVertex, the first to represent the x coordinate and 
the second to represent the y coordinate.11  When we are done plotting, we “pick up our 
pen” by issuing a glEnd() command.  Finally, we “flush” our drawing to the screen with 
glFlush().12 
 
 In this and subsequent programs we will use a def main(): function to initiate 
OpenGL and call any setup routines (such as init()) needed by our program.  
Technically, a separate main() function is not required by Python, but the OpenGL 
tradition is based on the C programming language, which requires a main() function.  
We’ll keep with tradition. 
 
def main(): 
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB) 
 glutInitWindowSize(500,500) 
 glutInitWindowPosition(50,50) 
 glutCreateWindow(“Plot Points”) 
 glutDisplayFunc(plotpoints) 
  
 init() 
 glutMainLoop() 
 
main() 
 
 We have seen most of these lines in our first OpenGL program.  Note that the 
graphics window size in glutInitWindowSize was set to provide a square drawing 
surface 600 pixels on a side.  The plotpoints display function must be properly 
named and spelled in the glutDisplayFunc command.13  We “call” the init() 
function to set everything up and then put OpenGL/GLUT into an eternal loop to run the 
program.  The final command, main(), calls the main() function.  Without this final 
command, the program will not run.  Try it!  Put a # in front of main() and then run the 
program. 
 
 Now it's time to explore this program further in the exercises! 

                                            
10 GL_POINTS specifies point plotting.  We can draw lines by using GL_LINES and triangles by 
GL_TRIANGLES.  There are other possibilities for glBegin that we will research later. 
11 An ordered pair, just like in algebra! 
12 To this point, the drawing exists only in the computer’s memory.  We must transfer the drawing 
from memory to the screen.  I’m not certain where “flush” originated in this usage… but we “flush” 
the memory to the screen using glFlush(). 
13 Proper spelling includes making certain that you pay attention to upper and lower case letters!  
“plotpoints” is NOT the same as “plotpoints”. 
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Exercises 
 
 To avoid overwriting previous exercises, remember to save each new problem as 
a different program name (such as ch5ex1.py) 
 

1) Experiment with the background color settings in glClearColor.  See if you 
can find both a pleasing and a putrid color.  You might want to jot down the 
settings in your notes or journal for later reference. 

 
2) Change the color of the pixel(s) in the glColor3f statement.  Try plotting a 

white pixel using (1.0, 1.0, 1.0).  Remember to place this command above the 
glVertex2f command or it will not work properly!  

 
3) Add the line glPointSize(2.0) directly above the glBegin(GL_POINTS) 

using the same indentation level and see what happens.14  Experiment with this 
command by increasing and decreasing the number in parentheses. 

 
4) Plot several points in several sizes and colors.  You may insert as many 

glVertex2f command as you need between the glBegin(GL_POINTS) and 
glEnd() commands.  What happens if you plot a point that is beyond the x and 
y axis ranges set in the gluOrtho2D command?  Try it! 

 
5) Change the gluOrtho2D command so that the x and y axis ranges are from -

10.0 to +10.0.  Plot some points in those ranges.  Can you predict where the 
points will appear before you run the program? 

 
6) Experiment:  Comment out15 the glPointSize(2.0) command introduced in 

exercise 3.  Change the glBegin(GL_POINTS) to glBegin(GL_LINES) and 
plot two different points.  What happens?  See if you can draw a triangle.  
Uncomment the glPointSize line.  Does anything change?  Comment this line 
again. 

 
7) Experiment:  Replace GL_LINES with GL_LINE_STRIP and plot the points (0.0, 

0.0), (1.0, 1.0), and (-1.0, 1.0).  What happens?  Now try GL_LINE_LOOP with 
the same three points.  Was the result the same? 

 
8) Place the command glLineWidth(3.0) just below the commented 

glPointSize(2.0) command.  Run the program using any of the GL_LINES, 
GL_LINE_STRIP, or GL_LINE_LOOP commands. 

 
9) Experiment:  Try to draw an equilateral triangle using three different colors, one 

for each side. 
 

10) Experiment:  Try to draw a set of coordinate x and y axes using GL_LINES. 

                                            
14 To insert a blank line, you can place the cursor at the end of the line prior to glBegin and 
press Enter.  You can also place the cursor at the beginning of glBegin and press Enter. 
15 Using a # at the beginning of a line is a great way to temporarily disable a command. 
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11) Using the coordinate axes from Exercise 10 as a reference, see if you can plot 

“mirror” image points simply by changing the signs of your ordered pairs.  Here is 
an example def plotpoints(): function that can serve as a model.  Note the 
use of variables to “store” the value of the ordered pairs.  Make certain that you 
set a background color other than black.  Why and where would you do this? 

 
 def plotpoints(): 
  glClear(GL_COLOR_BUFFER_BIT) 
  
  # First draw x and y axes 
  # Using black as a color 
  glColor3f(0.0, 0.0, 0.0) 
  glBegin(GL_LINES) 
  glVertex2f(-1.0, 0.0) 
  glVertex2f(1.0,0.0) 
  glVertex2f(0.0, 1.0) 
  glVertex2f(0.0, -1.0) 
  glEnd() 
  
  # Store an ordered pair in variables 
  x = 0.5 
  y = 0.5 
  
  # Plot points in bright red 
  glColor3f(1.0, 0.0, 0.0) 
 
  # Increase the point size 
  glPointSize(3.0) 
  glBegin(GL_POINTS) 
  
  # Plot the point 
  glVertex2f(x, y) 
 
  # Plot the mirror image or reflection of the point 
  # in the x axis.  Note the sign change! 
  glVertex2f(x, -y) 
  
  glEnd() 
  glFlush() 
 
 # End of plotFunc() 
 

 Figure 5.1 illustrates the simple symmetry from the above code.  Note how the 
points at (0.5, 0.5) and (0.5, -0.5) are reflections of each other across the x axis. 
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              Figure 5.1 
 

 Can you reflect across the y axis?  How would the signs in the ordered pairs 
change for a y axis reflection?  Can you find a way to reflect across the y = x 
diagonal line?  You can add a y = x diagonal by adding the following lines of code 
within the glBegin(GL_LINES) section in def plotpoints():  

  
 glVertex2f(-1.0,-1.0) 
 glVertex2f(1.0, 1.0) 
  
 Here is an example of a symmetry or reflection across the y = x diagonal. 
 

  
                Figure 5.2 

 
Can you reproduce Figure 5.2 yourself? 
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Now for the challenge.  How many other symmetries or mirror images can you 
create using this idea?   Try to predict the outcome before you run the program.  
Symmetry is an interesting and valuable concept in math, science, and computer 
graphics.  
 

12) Expand the concept of point symmetry and see if you can produce a plot illustrating 
the reflection of a triangle (using GL_LINES) across the x axis.  If you are 
successful, try the y axis as well.  Finally, for a challenge, reflect the triangle across 
the y = x axis. 

 
13) Create something on your own by plotting various lines and points in different sizes 

and colors.  You may actually create a work of art!  Make certain that you THINK 
about and PREDICT the results before you run the program.  This is a scientific 
method.  You establish a thoughtful (theory) prediction (hypothesis) and you test the 
prediction by running the program (experiment).  If the program doesn't behave as 
you expect, then your hypothesis was incorrect and you think about the problem 
some more.  Eventually, through thought, prediction, and testing, your program will 
work (probably). 

 
 
Note:  You may have realized this by now, but the most common errors in programming 
(thus far) involve spelling, capitalization, forgetting to close parentheses.  If you generate 
an error in your program and you can't figure out where the error is in the program 
statement, look at the line(s) ABOVE the error.  It may be that you have forgotten a 
closing parenthesis somewhere in the line or lines preceding the error.



Section 5.2 Plotting 2D Functions 
 
 Let's make Python and OpenGL do something a bit more useful.  One of the 
tasks that most algebra students dislike is graphing functions.1  With some minor 
modifications, we can use the program in the last section to create our own function 
plotter.  We'll start with this code: 
 
# PyFunc.py 
# Plotting functions 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
def init(): 
 glClearColor(1.0, 1.0, 1.0, 1.0) 
 gluOrtho2D(-5.0, 5.0, -5.0, 5.0) 
 
def plotfunc(): 
 glClear(GL_COLOR_BUFFER_BIT) 
 glColor3f(0.0, 0.0, 0.0) 
 glPointSize(3.0) 
 
 for x in arange(-5.0, 5.0, 0.1): 
  y = x*x 
  glBegin(GL_POINTS) 
  glVertex2f(x, y) 
  glEnd() 
  glFlush() 
 
def main(): 
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB) 
 glutInitWindowPosition(50,50) 
 glutInitWindowSize(400,400) 
 glutCreateWindow("Function Plotter") 
 glutDisplayFunc(plotfunc) 
  
 init() 
 glutMainLoop() 
 
main() 
 
# End of program 
 

                                            
1 I didn't like it either!  I wish I had Python and OpenGL… or even a computer, "way back then". 
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 Save your program and try running it.  You should see something like Figure 5.3.  
We are obviously trying to plot a parabola, but how is our program managing such a 
feat?  First, you should notice that we've added a "from numpy import *" to our 
import statements.2  This command adds some additional important math statements to 
Python for our use, as we'll see in a moment.  In our program listing, we've changed the 
gluOrtho2D command so that the x and y ranges are from -5.0 to +5.0 to enlarge the 
domain and range of the "canvas" on which we are plotting.  You may change these 
values as needed for specific plots.3  For example, we may need a range of -50.0 to 50.0 
to see large scale details in a function or we may need a range of -0.25 to 0.25 to view 
intricate details of a complex graph near the origin.  gluOrtho2D allows us to employ 
such domain and range options with great flexibility! 

      Figure 5.3 
       

The major changes in this program are in the display function plotfunc().  The 
background color is white, the plot color is set to black (where and how?), and the size of 
the points has been increased to 3.0 (what line does this?).  The "meat" of the program 
is found in the following section: 

 
 for x in arange(-5.0, 5.0, 0.1): 
  y = x*x 

 glBegin(GL_POINTS) 
  glVertex2f(x, y) 
  glEnd() 
 
 After glBegin(GL_POINTS), we see a for loop similar to the one used in the 
“Super-3” program.  Instead of using range, though, we use arange which allows us 
some freedom to choose how our x axis values are chosen.  The range command we 
used previously works only with a list of integers.  We need to be able to use decimal 
numbers in order to create smoother plots.  Remember the from numpy import * 
statement?  That particular module provides us with the arange command used in this 
section of code.  The for x in arange(-5.0, 5.0, 0.1): statement translates to 

                                            
2 The newest Python Numeric module is called numpy, so from numpy import * may be 
necessary instead of Numeric.  In either case, you may have to install the library before you can 
run this program. 
3 Several exercises will require changes in the domain and range in gluOrtho2D 
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“let x take on all values from -5.0 to +5.0, stepping by 0.1”.4  The next line, y = x*x 
takes each value for x in the specified range, squares that value, and stores the result in 
the variable y.5  As expected, the glVertex2f(x,y) command plots both the x and y 
points for us.6  As in the previous program, we close glBegin() with glEnd() and 
glFlush() causes the graphics (heretofore stored only in the computer's memory) to 
be “flushed” to the screen.  The def main() function containing the GLUT statements 
is very similar to those in the program in the previous chapter. 
 
 Before we do some exercises based on this program example, let's add some 
coordinate axes for visual reference.7  Directly below the glPointSize(3.0) 
command, add the following lines: 
 
 glBegin(GL_LINES) 
 glVertex2f(-5.0, 0.0) 
 glVertex2f(5.0, 0.0) 
 glVertex2f(0.0, 5.0) 
 glVertex2f(0.0, -5.0) 
 glEnd() 
 
 Now when the program is executed, we see the graph of the function y = x2 in a 
more familiar setting as shown in Figure 5.4. 
 

   Figure 5.4 
 

The GL_LINES parameter in the new glBegin() statement takes pairs of points 
in glVertex2f(x,y) format and draws a straight line between those points.  In this 
example, the x-axis is drawn first from glVertex2f(-5.0,0.0) to 
glVertex2f(5.0,0.0) and the y-axis is drawn from glVertex2f(0.0,5.0) to 
glVertex2f(0.0,-5.0).  You might try plotting the function using a different color for 
contrast. 
 
                                            
4 Actually, both the range and arange commands stop one step less than the higher number.  
In this case, 4.9 is the last value for x.  You might try replacing the "0.1" step with "0.01"? 
5 You could also type “y = x**2”.  Recall how we cubed a number in the “Super-3” program? 
6 Remember that all indented lines after the for statement are included in the loop. 
7 As in Exercise 10 in the previous section. 
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 Here are some comments on representing functions using computer statements.  
If we want to graph the function f(x) = 2x3 - 3x2 + x - 5, we simply can't type the equation 
into Python as it appears in our textbook.  We must translate the function into a form that 
is understood by Python.  Unless you are using a computer algebra system such as 
Mathematica, all such equations require translation regardless of the computer language 
you are using.  In this case, we translate f(x) = 2x3 - 3x2 + x - 5 as follows: 
 
 y = 2*x**3 - 3*x**2 + x - 5 
 
 This isn't too difficult.  Notice that we must specifically tell Python to multiply and 
raise x to a power.  We can't type 2x and expect Python to understand that this means 
"2 times x".  In Python, 2x is written 2*x.  As long as you keep in mind that every 
operation must be specifically typed and that the order of arithmetic must be strictly 
obeyed, then you shouldn't have too many problems.   
 

One final note:  In Python (or in most languages), the "=" sign has a couple of 
meanings.  First, the "=" sign may act as an assignment statement.  The equation x = 
x + 1 has a nonsensical meaning in algebra.  How can x equal itself plus one?  In 
Python, this statement is translated:  Add one to x and then assign, store, or place the 
new value back into x.  In other words, the new value of x will be the old value of x plus 
one.  This creates a counting device!  So, anytime Python encounters an "=" sign, it will 
evaluate the right hand side of the "=" sign first and then assign that value to the variable 
on the left side of the "=" sign.  The second use of an "=" sign is in comparisons such as 
an if statement.  In this usage, we employ a "==" sign to distinguish it from a simple 
assignment statement.  As an example, we might say:  if x == 3: meaning that if x 
equals 3, then we'll do something important.8  If you forget and use "=" in an if 
statement rather than "==", the Python interpreter will generate an error message. 

Exercises 
 
1) Graph the following equations.  Don't forget to translate the equations into Python! 
 

a) y = x2 - 2 
b) y = x3 - 3x - 1 
c) y = x4 - 5x3 + x2 - 3x - 1 
d) y = sin(x) 
e) y = sin(3x) 
f) y = sin(x/3) 
g) y = cos(x) 

 
2) How would you identify the roots (if they exist) of the functions in Exercise 1? 
 
3) Experiment with the glPointSize() statement.  Does this statement apply only to 

the points plotted or does it apply to the x and y axis lines as well? 
                                            
8 The idea of exact equality introduces the possibility of some interesting side-effects.  Floating 
point values are represented by binary numbers (base 2) internally, so if we pose the conditional  
if x == 2:, which is an integer with an exact binary representation and then check to see if 
x == 2.0:, which is a floating point value with a (perhaps) inexact representation, we may not 
get the expected result.  This is only an example, but please keep this idea in mind for later use. 
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4) Replace GL_POINTS with GL_LINES in the glBegin() statement above the 
function plot section of the program.  What happens?  Why does this happen?  What 
about glPointSize() mentioned in exercise 2? 

 
5) Replace GL_LINES with GL_LINE_STRIP in exercise 3.  What happens? 
 
6) Experiment with GL_LINES and glLineWidth(2.0) in place of glPointSize().9  

Try various line widths, including decimal values. 
 
7) Change GL_LINES back to GL_POINTS.  Experiment with the arange command.  

Change the arange(-5.0, 5.0, 0.1) to a arange(-10.0, 10.0, 0.01).  
You may have to edit the gluOrtho2D command in the init() function for this 
change to display properly.  Now try a step (in arange) of 0.001 followed by a step 
of 0.0001.  The smaller the step, the nicer the plot… but it can take a bit longer to 
draw because you are plotting more points.  You can also modify the step size while 
using GL_LINES for a smoother or coarser solid curve. 

 
8) See if you can plot multiple functions in the same graphics window.  You might 

consider something like this in def plotfunc():  
 
 for x in arange(-5.0 ,5.0, 0.01): 
  y = x*x 
  a = x + 1 

 glBegin(GL_POINTS) 
  glVertex2f(x, y) 
  glVertex2f(x, a) 
  glEnd() 
 
 which should give you a result something like Figure 5.5.  Try some other functions 
and see where points of intersection occur. 
 

  Figure 5.5 

                                            
9 Remember, glLineWidth only works with lines.  glPointSize works only with points! 
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9)  Plot y = sin(x) and y = cos(x) on the same graph.  Use different colors for     
  each function and also include coordinate axes for reference.  What do you notice  
  about the two function plots?  How are sin and cos related?  How are they   
  different? 
 
10)  Building on Exercise 8, can you draw a circle?  The equation for a circle is: 
  
 x2 + y2 = r2   or   y = sqrt(r*r – x*x) or y = sqrt(r**2 – x**2) 
 

 You can't enter the traditional implicit equation for a circle as shown in the first 
equation above.  You MUST use the second or third explicit form, y = sqrt(r*r – 
x*x) or y = sqrt(r**2 – x**2).  But how would you go about 
accomplishing the feat of drawing a complete circle?  A circle is NOT a function 
according to the vertical line graph test in algebra.  Think about this and find a 
solution.  Hint: 
 

r = 1.0 
 for x in arange(-1.0, 1.0, 0.01): 
  y = sqrt(r**2 – x**2) 

 glBegin(GL_POINTS) 
  glVertex2f(x, y) 
  # do we need another glVertex2f statement here? 
  glEnd() 

 
Notice that I've added an r = 1.0 statement above the glBegin.  Why? 
Also notice that I've changed the for loop from: 
 
 for x in arange(-5.0, 5.0, 0.01): 
 
to: 
 
 for x in arange(-1.0, 1.0, 0.01):  
 
 Again, why?  Try the original for loop and see if you can figure out the error. 
 

11) At some point in algebra we find ourselves graphing inequalities such as y < x2.  
 How could we do this using Python?  First, plot the graph of y = x2.  Use 
 glPointSize(1.0) and a for loop such as: 
 
  for x in arange(-5.0, 5.0, 0.01): 
 
 Next, modify the plotfunc display function as follows: 
 
 def plotfunc(): 
 glClear(GL_COLOR_BUFFER_BIT) 
 glColor3f(0.0, 0.0, 0.0) 
 glPointSize(1.0) 
  
 for x in arange(-5.0, 5.0, 0.01): 
  y = x*x 
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  glColor3f(0.0, 0.0, 0.0) 
  glBegin(GL_POINTS) 
  glVertex2f(x,y) 
  glEnd() 
  for a in arange(-5.0, 5.0, 0.01): 
   if a < x*x: 
    glColor3f(0.50,0.50,0.50) 
    glBegin(GL_POINTS) 
    glVertex2f(x,a) 
    glEnd() 
  
 glColor3f(0.0, 0.0, 0.0) 
 glBegin(GL_LINES) 
 glVertex2f(-5.0, 0.0) 
 glVertex2f(5.0, 0.0) 
 glVertex2f(0.0, 5.0) 
 glVertex2f(0.0, -5.0) 
 glEnd() 
  
 glFlush() 
 
# End of plotfunc block 
 
You should also change gluOrtho2D as follows if you haven't done so already: 
 
 gluOrtho2D(-5.0, 5.0, -5.0, 5.0) 
 
The shaded region of the inequality is visible in Figure 5.6 
 

 
  Figure 5.6 
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  Notice the outline of the original y = x2 function is still visible.  Also notice the 
addition of a nested loop containing the variable a.10  It is this nested loop that is creating 
the shaded region.  Can you shade the area above the parabola?  Try it!  Now here's the 
challenge.  Using this idea, see if you can revisit exercise 8 and Figure 5.5 and shade 
the region bounded by the line, the parabola, and the constraint that both x and y must 
be greater than 0.  The solution should look like Figure 5.8.  Here is a hint:  The line if 
a < x*x and x > 0 and a > 0: when properly used will produce a plot that looks 
like Figure 5.7.  See if you can build on this concept and reproduce Figure 5.8. 
 
 

 
      Figure 5.7 
 
 

 
  Figure 5.8 

                                            
10 Think of a in the same terms as y.  In the nested loop, we are calculating all values of a and 
coloring them ONLY if they are less than x*x or x2. 



 49

 
 
Note:  Ok, by this time you should be making an attempt to predict the output of your 
program prior to running it for the first time.  What do you expect the program to do?  If 
the program doesn't run, then what is wrong with your code?  Fix the bugs!  If it runs, but 
doesn't do what you predict, then rethink your prediction.  This is very much a scientific 
method!  you should also be experimenting on your own in an attempt to expand on the 
exercises and concepts presented in the chapter.  Only in this manner will you truly 
master the material! 
 
You should also be experimenting on your own in an attempt to expand on the exercises 
and concepts presented in the chapter.  Only in this manner will you truly master the 
material! 
 
 



Sections 5.3 Parametric Equations 
 
 Functions are defined in such a fashion that for each value of x, there can be one 
and only one value of f(x).1  This means that we can’t easily plot circles unless we plot 
them piecewise by first plotting the top half of the circle followed by the bottom half in 
another section of code.  By using parametric equations, we can “fix” this problem.  
Parametric equations behave much like an “Etch-a-sketch”.  The x (horizontal control) 
and y (vertical control) are separately manipulated and the result can be a fascinating 
curve with none of the “vertical line test” limitations.  In order to create a parametric 
system of equations, we define both the x and y equations in terms of another variable 
such as t.  Examples of parametric equations are as follows: 
 
 x = sin(t) 
 y = cos(t) 
 
 The equations that define x and y are independent of each other (like the knobs 
on an “Etch-a-Sketch”), but together they define a single curve.  Let’s see how this 
works.  Using the program we created in the last section, let’s modify the def 
plotfunc(): function to accept parametric equations.  First, make certain the 
gluOrtho2D command in the def init() function has x and y ranges of -2.0 to 2.0 
respectively.  Then change the def plotfunc(): to the following: 
 
def plotfunc(): 
 glClear(GL_COLOR_BUFFER_BIT) 
 glColor3f(0.0, 0.0, 0.0) 
 glPointSize(1.0) 
  
 # Plot the coordinate axes 
 glBegin(GL_LINES) 
 glVertex2f(-2.0, 0.0) 
 glVertex2f(2.0, 0.0) 
 glVertex2f(0.0, 2.0) 
 glVertex2f(0.0, -2.0) 
 glEnd() 
 
 # Plot the parametric equations 
 for t in arange(0.0,6.28, 0.001): 
  x = sin(t) 
  y = cos(t) 
  glBegin(GL_POINTS) 
  glVertex2f(x, y) 
  glEnd() 
  glFlush() 
 
# End plotfunc() 
 

                                            
1 y = f(x) where f(x) is a common designation for a function of the variable x.  Functions must pass 
the “vertical line test”, meaning that if we pass a vertical line through any point on the function 
graph, it can never intersect the graph in more than one point. 
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 Remember that in Python you MUST preserve the indentation scheme as shown 
in the code listing above in order for the program to work properly. 
 
 Save the program as PyParam.py or something similar.  You may want to 
change the comment statements at the beginning of the program to reflect the new 
program title and program operation.  If you run the program, you should see something 
like Figure 5.9.  It’s a circle!2  Now the fun begins!  What happens if we change the 
equations for x and y?  What happens if we let t range from -6.28 to 6.28?3  Try it!  
Change the x and y equations to:  x = cos(3*t) and y = sin(5*t) respectively 
and change the range of t to:  for t in arange(-6.28, 6.28, 0.01): 
 

 
Figure 5.9 

 
 If you followed the directions on the previous page, your next plot should like 
something like Figure 5.10 on the next page.  I took the liberty of remarking out the lines 
that draw the x and y axis.  Isn't this neat?4   
 
 You may be wondering how the circle was plotted in Figure 5.9 or how the neat 
Lissajous curve was drawn in Figure 5.10?  In order to understand these and other 
remarkable plots, we need to briefly discuss the basic trigonometry functions and how 
they work to produce these fascinating drawings.  You should use Figure 5.11 on the 
next page as a reference. 
 
  
 
 

                                            
2 6.28 is approximately 2p.  There are 2p radians in a circle.  See footnote 3. 
3 Of course, these are approximations to -2p and 2p just as the original range of t was from 0 to 
2p.  Trig functions in Python and other programming languages are based on radians rather than 
degrees (2p radians = 360o). 
4 Research Lissajous or Bowditch curves online.  They are remarkable! 
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  Figure 5.10 
 
  

 
 
        Figure 5.11 
 
 You may (or may not) recall the definitions of the trig functions.  The sin of angle 
t is defined as the side opposite angle t (in this case the vertical “y” axis leg in the right 

triangle in Figure 5.11) divided by the hypotenuse r.  Therefore, sin(t) = 
r
y

.  We normally 
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assume that r = 1,5 and then y = sin(t).  So, the value of sin(t) controls the "y" knob on 
our computer "Etch-a-Sketch".  Likewise, the cos of angle t is defined as the side 
adjacent to angle t (in this case the horizontal "x" axis leg in the right triangle in Figure 

5.11) divided by the hypotenuse r.  So, cos(t) =
r
x

 and if r = 1, x = cos(t).6  As before, 

the value of cos(t) controls the “x” knob on our computer “Etch-a-Sketch”.  If the value of 
r is held constant (r = 1 or some other value), then as t “sweeps around” like a radar 
scope, we draw a perfect circle!  Modifying t inside the trig functions “twiddles the knobs” 
and we can get some very interesting graphics as seen previously in Figure 5.10. 
 
 The exercises will allow you to explore these concepts further.  Save a copy of 
the original program for this section as a reference.7  Have fun! 
 

Exercises 
 
 Note:  Be prepared to make modifications to the original program as specified by 
the exercises.  Most of the modifications are minor, but it’s important to retain the original 
version of the program in this section for future reference.  Why?  So you can save time!  
Later we will develop a skeleton program that will help save you quite a bit of typing.  At 
the moment our programs are not lengthy, but by saving the original program you can 
save some time by not having to retype every line.  Each new program you create in any 
exercise should be saved under a different name such as ch5ex3.py or something 
equally meaningful. 
 
1) The equations in the program that determine the values of x and y are: 

 
x = cos(t) 
y = sin(t) 

 
 You can alter these equations by changing them to: 
 

x = (c*t+d)*sin(t) 
y = sin(a*t+b) 
 

  and adding the lines: 
 
 a = 0.5 
 b = 0.5 
 c = 0.25 
 d = 0.0 
                                            
5 This makes everything nice and easy.  Actually, r can be any value we choose and everything 
still works just fine.  A small circle has the same angles and trig values as a large one… think of a 
bulls-eye target.  If you sweep through 360o or 2p radians on the largest circle, you do the same 
for the smallest.  So why not choose r = 1? 
6 The tan(t) is the opposite side divided by the adjacent side or 

)cos(
)sin(
t
t

. 

7 Any new exercises should be named… and saved… as something different than the original 
program.  That way you will always have easy access to the original code. 
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just above the glBegin(GL_POINTS) statement to define the variables.8  
Experiment with different values of a, b, c, and d.  If the plot goes beyond the 
graphics window border, you may increase the x and y axis ranges in the 
glOrtho2D statement.  Be prepared to change these values back to their original 
state if needed in future plots. 

 
2) Try using glBegin(GL_LINES) instead of glBegin(GL_POINTS) in the previous 

and future programs.  Also, try different ranges for t in the for loop.  You may find 
that if the range is large enough, the plot doesn’t change.  What this means is that 
the plot is retracing itself as sin(t) and cos(t) revisit the same values.9 

 
3) Try plotting an ellipse using the following parametric equations.10 
 

x = a*cos(t) 
y = b*sin(t) 
 

Try values of a = 1.5 and b = 0.50 (as in exercise 1, define the variables 
BEFORE you use them) and see what happens.  You should see something like 
Figure 5.12 on the next page.  The “long” axis is called the major axis of the ellipse 
and the short axis is called the minor axis.  How could you change the values for 
parameters a and b so that the major axis was vertically oriented rather than 
horizontally oriented? 

 
What happens if you type in the same values for a and b?  Try a = 1.5 and b = 
1.5, then try a = 1.0 and b = 1.0.  Does the resulting plot make sense based on 
the values you typed?  How does this compare to the original parametric equations 
for a circle at the beginning of this section? 

 
So, do you think that ellipses and circles are related?  Could you say that a circle 
was simply a special case of an ellipse… one in which both major and minor axes 
are equal? 

 
4) Change the equations to: 
 

x = sin(t) 
y = sin(a*t + b) + c*sin(d*t + e) 

 
and add a line:  e = 6.0 below the other variable assignments.  Try values of a = 
2.0, b = 1.0, c = 1.5, d = 3.5, and e = 6.0 and then run the program.  
Experiment with other values for these variables.  Change the for loop to: 
 
 for t in arange(-6.28, 6.28, 0.001): 
 
and set the axis ranges as follows: 

                                            
8 Such variables are often called parameters. 
9 Sin and Cos take on the values from -1.0 to +1.0 inclusive.  You might try plotting a sin(t) or 
cos(t) function (or both) using what you learned in section 5.2.  You will see how both functions 
continually revisit all values between -1.0 and +1.0 as the angle size increases without bound. 
10 Remember to replace or comment out the "old" x and y equations. 
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 gluOrtho2D(-3.0, 3.0, -3.0, 3.0) 
 
If you are also still plotting x and y axis lines, you should change those statements to 
reflect the new ranges above.  How? 

 

  
   Figure 5.12 
 
5) Experiment with the range and step in arange until you notice changes in the 

program.  For example, you might try:  for t in arange(-1.0, 1.0, 0.1): 
and then increase the range and decrease the step until the graph remains 
unchanged.  Trigonometric functions are periodic, which means that the values 
generated by such functions have the potential to repeat themselves at certain 
intervals (periodically).  So, do not be surprised if your graphs do not always change 
when you change loop parameters. 

 
6) First, save the parametric plot program with a new name so that you can preserve 

the original def plotfunc(): as a starting point for further experiments.  Then, 
comment out the lines that assign values to each of the variables a through e and 
modify def plotfunc(): so that it looks like the following.  Remember to indent at 
the same level after each for statement!   

 
 def plotfunc(): 
  glClear(GL_COLOR_BUFFER_BIT) 
  glColor3f(0.0, 0.0, 0.0) 
  glPointSize(1.0) 
   
  for a in arange(0.1, 2.0, 0.1): 
   for t in arange(-4.4, 4.4, 0.01): 
    x = 0.3*a*(t*t – 3) 
    y = 0.1*a*t*(t*t – 3) 
    glBegin(GL_POINTS) 
    glVertex2f(x, y) 
    glEnd() 
    glFlush() 
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 # End plotfunc() 
 
 This code construction is called a nested loop.  There are two loops involved; the 
second for loop is inside or “nested” within the first.  As the variable a in the outer loop 
takes on each value in the range from 0.1 to 2.0, stepping by 0.1, the inner t loop makes 
a complete cycle through its entire range.  This set of equations draws a series of nested 
figures called Tschirnhausen’s Cubic.11  One entire looping curve is drawn by the t loop 
for each value of a produced by the outer loop.  Figure 5.13 illustrates Tschirnhausen’s 
Cubic.12  In order for your plot to look exactly like Figure 5.13, you will need to make 
certain the gluOrtho2D ranges are as follows: 
 
 gluOrtho2D(-2.0, 2.0, -2.0, 2.0)   
 
This is not strictly necessary, however.  The plot looks fine with the larger ranges from 
previous exercises. 
 

 
   Figure 5.13 
 
7) The next experiment is called Miller’s Madness.13  Change the equations in the def 

plotfunc(): in the original parametric plotting program14 at the beginning of this 
section to: 

 
 x = sin(0.99*t) - 0.7*cos(3.01*t) 
 y = cos(1.01*t) + 0.1*sin(15.03*t) 
 

and the loop statement to:   
 
 for t in arange(-200.0, 200.0, 0.005): 

                                            
11 Dewdney, A. K. (1990). “The Magic Machine”. P. 272 
12 Parametric equations don’t have to use trig functions as this problem demonstrates. 
13 Dewdney, A. K. (1990). “The Magic Machine”.  P. 276 
14 You did save it, didn’t you? 
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then save the program with a new name15 and run it.  It may take a few seconds to 
complete the drawing, but I think it’s well worth it as Figure 5.14 shows!  I do 
recommend that you set the x and y axis ranges in gluOrtho2D to: 

 
 gluOrtho2D(-2.0, 2.0, -2.0, 2.0) 
 

if you haven't already done so for the most pleasing plot dimensions.  You may be 
thinking at this point that changing the gluOrtho2D plot ranges is a method for 
zooming into a plot.  You are correct!  However, this is very inefficient.  Later on in 
the text we'll learn how to zoom a bit more efficiently. 

 
 

  
   Figure 5.14 
 
8) Invent your own equations for x and y!  If you get something particularly pleasing, 

make certain you save that program.  Also, experiment with different colors for the 
backgrounds16 and plot points. 

 
9) This is a challenge exercise.  See if you can draw an ellipse that is oriented on a 

different axis (such as the y = x diagonal) rather than the x or y axis.  If you want to 
do this the easy way, research the glRotatef command in the RedBook or online.  
For a greater challenge, try to accomplish this task using parametric equations.  Yes, 
you may research this topic online, but try to experiment on your own first. 

 
10) Figure 5.10 illustrated a Lissajous/Bowditch curve using x = cos(3.0*t) and y = 

sin(5.0*t) as equations.  Change these to x = cos(a*t) and y = sin(b*t) 
and make certain that you have program lines defining a and b just above 
glBegin(GL_POINTS) as in exercise 1.  Make certain that t ranges from 0.0 to 
6.28 in the for loop with a step of 0.001.  Try the following parameters: 

                                            
15 I would suggest pyMiller.py or ch53ex7.py.  You may think you are accumulating a lot of 
programs, but we’ve only just begun. 
16 glClearColor(0.35, 0.79, 0.60) for an odd shade of turquoise, etc. 
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 a = 3.0 and b = 5.0 (which should reproduce figure 5.10).   
 a = 3.0 and b = 7.0  
 a = 3.0 and b = 9.0 
 a = 3.0 and b = 11.0 
 a = 5.0 and b = 11.0 
 
 Do you notice a pattern between the values for a and b and the resulting 
graphic?  Look at the figures below, each labeled with the corresponding values for a 
and b.  What happens if a = b?  Why does a = 3.0 and b = 9.0 behave as it does? 
Try some addition combinations and see what happens.  What if a > b, such as a = 
5.0 and b = 3.0?  What do the numbers 3, 5, 7, and 11 have in common? 
  

   
  a = 3.0, b = 7.0      a = 3.0, b = 9.0 
 

   
  a = 3.0, b = 11.0     a = 5.0, b = 11.0 
 
 
 Note:  The following exercises are designed to illustrate some well-known 
mathematical curves.  The figures associated with these curves are found at the end of 
the exercises. 
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11) The Astroid curve (no, not an asteroid).  Use the following equations for x and y. 
  
 x = a*cos(t)**3 
 y = a*sin(t)**3 
 
 Try an x and y axis range of -5.0 to 5.0.17  Did you get an Astroid?  What do you 
think the parameter “a” specifies?  Try a = 5.0 and then a = 2.5.  What does the 
parameter “a” do?  This curve is also called the tetracuspid because it has 4 cusps.18  
The curve can be formed by rolling a circle of radius a/4 on the inside of a circle of 
radius a.19  What happens if you modify the for loop to for t in arange(0.0, 
3.14, 0.001): instead of for t in arange(0.0, 6.28, 0.001):?  Remember 
there are 2p radians in a complete circle, so 0.0 to 6.28 is equivalent to 2p.   
 
12) The Cardiod.20  The Cardiod is drawn by tracing a point on a circle as it rolls around 

another circle of the same radius.  A Cardiod is drawn using the following equations: 
  
 x = a*(2.0*cos(t) - cos(2.0*t)) 
 y = a*(2.0*sin(t) – sin(2.0*t)) 
 
 Set a = 0.5 or change the x and y axis ranges from -2.0 to 2.0.  The graphic 
should  look like the Cardiod plot at the end of the exercises.  We’ll revisit the Cardiod as 
a polar equation in section 5.5.  Again, what purpose does the a parameter fulfill in this 
equation?  At times, parameters determine the scale or size of the plot and at other 
times the parameter may determine the number of some feature of the graph.  Feel free 
to experiment with any and all parameters!  Where do you think the name “Cardiod” 
came from? 
 
 Also, feel free to experiment with various colors, point sizes, and line widths!  The 
displayed figures in exercises 10, 11, and 12 were drawn with glPointSize(2.0).   
 
13) The Epicycloid.21  This curve is traced by a point P on a circle of radius b which rolls 

around a fixed circle of radius a.  Use the following parametric equations: 
  
 x = (a + b)*cos(t) – b*cos((a/b + 1.0)*t) 
 y = (a + b)*sin(t) – b*sin((a/b + 1.0)*t) 
 
 We need to expand the range of the x and y axes from -20.0 to 20.0 to see this 
plot properly.  The loop statement should be for t in arange(-12.56, 12.56, 
0.001): to both increase the range of t and decrease the step size.  Try parameter 
values  a = 12.0 and b = 2.25.  Also, modify glPointSize to 
glPointSize(1.0) if necessary. 
 

                                            
17 Modify the gluOrtho2D statement in the init function.  Figure it out! 
18 The tetracuspid belongs to a family of curves known as the hypocycloids. 
19 Kokoska, Stephen.  “Fifty Famous Curves, Lots of Calculus Questions, And a Few Answers”.  
Dept. of Mathematics, Computer Science, and Statistics, Bloomsburg University.   
20 Ibid 
21 Ibid. 
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 Experiment with various ranges of t and other parameter values for a and b.  
You may need to change the ranges for the x and y axes in gluOrtho2D as you 
experiment in order to obtain the most pleasing plot.  Also be prepared to change the 
step size in the loop statement if needed.  You may find out that a step of 0.01 or 
0.001 is not small enough to obtain an unbroken plot. 
 
14) The Epitrochoid.22  The circle of radius b rolls on the outside of the circle of radius a.  

The point P is at a distance c from the center of the circle of radius b.  The 
parametric equations for the Epitrochoid are: 

 
 x = (a + b)*cos(t) – c*cos((a/b + 1.0)*t) 
 y = (a + b)*sin(t) – c*sin((a/b + 1.0)*t) 
 
 Keep all ranges (x and y axes and the loop range for t) the same as in the 
previous exercise.  Try values of:  a = 12.0, b = 2.25, and c = 5.0.  Keep 
glPointSize(1.0) unless you prefer a “thicker” plot. 
 
 Again, feel free to experiment with the parameters a, b, and c.  See if you can 
figure out the purpose of each of the parameters based on your experiments and on the 
definition of the Epitrochoid. 
 
15) The Hypocycloid.23  A circle of radius b rolls on the inside of a circle of radius a.  The 

point P is on the edge of the circle of radius b.  Try the following equations: 
 
 x = (a - b)*cos(t) + b*cos((a/b – 1.0)*t) 
 y = (a - b)*sin(t) – b*sin((a/b – 1.0)*t) 
 
 Keep  the same values for a and b as we started with in the previous two 
exercises:  a = 12.0, b = 2.25.  Change the x and y axis ranges to -15.0 to 15.0 
by changing the gluOrtho2D statement in the init function to  
gluOrtho2D(-15.0, 15.0, -15.0, 15.0). 
 
16) The Hypotrochoid.24  A circle of radius b rolls on the inside of a circle of radius a.  

The point P is at distance c from the center of the circle of radius b.  Try the following 
equations: 

 
 x = (a - b)*cos(t) + c*cos((a/b – 1.0)*t) 
 y = (a - b)*sin(t) – c*sin((a/b – 1.0)*t) 
 
 Keep the x and y axis ranges at -15.0 to 15.0 as in the previous exercise and 
the parameters a = 12.0, b = 2.25, and c = 5.0. 
 
17) The Involute of a Circle.25  The Involute of a Circle is the path traced out by a point 

on a straight line that rolls around a circle.  The equations are: 
 
                                            
22 Ibid. 
23 Ibid. 
24 Ibid. 
25 Ibid. 
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 x = a*(cos(t) + t*sin(t)) 
 y = a*(sin(t) – t*cos(t)) 
 
The x and y axes should range from -25.0 to 25.0.  The t loop should be: 
  
  for t in arange(0.0, 25.12, 0.001): 
 
Let parameter a = 1.0.  Your plot should resemble a spiral. 
 
18) The Nephroid.26  The name Nephroid means kidney-shaped.  It is formed by a circle 

of radius a rolling externally on a fixed circle of radius 2a.  Use the following 
equations: 

 
 x = a*(3.0*cos(t) – cos(3.0*t)) 
 y = a*(3.0*sin(t) – sin(3.0*t)) 
 
 The x and y axis ranges should be from -5.0 to 5.0.  Parameter a = 1.0.  In 
the last two exercises, parameters b and c are not used and may be remarked out or 
assigned any value (“1.0” is preferred).  Your Nephroid plot should look like the figure at 
the end of these exercises (you may have to use your imagination to see a kidney?). 
 
19) Talbot’s Curve.27  There are several forms to this curve, one of which looks like a 

football.  See if you can find the parameters for the football!  The equations are: 
  
 x = ((a**2 + c*c*sin(t)**2)*cos(t))/a 
 y = ((a**2 – 2.0*c**2 + c*c*sin(t)**2)*sin(t))/b 
 
Try the following for loop: 
 
  for t in arange(0.0, 6.28, 0.001):   
 
Parameters a, b, and c should be:  a = 1.925, b = 4.0, and c = 1.725.  The x and 
y axis ranges can start out at -2.0 to 2.0, but may need to be expanded for different 
parameters of a, b, and c. 
 
20) The Triscuspoid.28  This curve is created by the following equations: 
 
 x = a*(2.0*cos(t) + cos(2.0*t)) 
 y = a*(2.0*sin(t) – sin(2.0*t)) 
 
 The plot range for both the x and y axes should be -5.0 to 5.0 and assign 
parameter a the value 1.5 (a = 1.5).  
 
21) The final parametric curve will be the famous “Witch of Agnesi”.29  The equations are 

simple: 

                                            
26 Ibid. 
27 Ibid. 
28 Ibid. 
29 Ibid. 



 62

 
 x = a*t 
 y = a/(1.0 + t**2) 
 
 You can set a = 1.0.  The x and y axis plot range should go from -2.0 to 2.0 
and the loop should be: 
 
  for t in arange(-2.0, 2.0, 0.001):   
 
Note that we are not using trig functions in this plot, so we don’t have to concern 
ourselves with multiples of p radians.  The plot is not very scary for a “witch”.  Research 
this curve and find out how it got its name.30 
 

  
     Astroid           Cardiod 
 
 

  
    Epicycloid         Epitrochoid 
 

                                            
30 I have been a bit remiss in using the word "research".  My intent is for you to find at least 3 
different resources online (or in a text or journal) that are consistent in their definitions.  In this 
new world of internet information, one must be VERY careful in choosing a source upon which to 
base a conclusion.  Don't believe everything you read or see online! 
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   Hypocycloid      Hypotrochoid 
 

  
 Involute of a Circle    The Nephroid 
 
 

  
  Talbot’s Curve         Tricuspoid 
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 Witch of Agnesi



Section 5.4 An Example from Physics 
 
 One of the first uses (maybe even the first use?) of computers was to calculate 
the trajectories of artillery shells.1  For an artillery shot, we would be concerned about the 
angle of the cannon barrel and the speed of the cannon (if on a ship).  We would also 
want to know the mass of the shell, the amount of powder used, the distance to the 
target, the wind speed and direction at various altitudes, the friction of the atmosphere, 
and perhaps even the weather and humidity conditions.  Our simulation will be far 
simpler.  We will plot the trajectory of a cannon shell based only on the angle of the 
cannon barrel and how fast the shell is traveling when it leaves the cannon.2  We’ll 
assume no friction forces. 
 
 If we were to do this problem as a typical exercise in a physics text, the problem 
would be stated something like this:  How far will a cannon shell travel if it has a muzzle 
velocity of 357 m/s and the angle of elevation of the cannon is 57 degrees above the 
horizontal?  Also, find the highest altitude reached by the cannon shell in this problem? 
 

 
         Figure 5.15 
 
 Figure 5.15 illustrates the initial conditions in this problem.  In order to find a 
solution mathematically, we would use the following procedure.  First, we would realize 
that we have been given a velocity vector of 357 m/s at 57 degrees above the 

                                            
1 Until the electronic computer, trajectories were calculated by hand using a slide rule.  The 
computer automated this process immensely. 
2 The muzzle velocity. 
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horizontal.3  Vectors are composed of two parts, a horizontal component and a vertical 
component.  These components are independent of each other; for example, the 
horizontal velocity of an artillery shell over the earth is not in any way dependent on its 
vertical movement due to gravity.  In other words, gravity does not change regardless of 
how fast one is moving horizontally and horizontal speed is not affected by gravity. 
 
 We have two different problems to solve in this example.  The first problem is to 
calculate how fast the shell is traveling horizontally (with respect to the earth).  Once we 
know this value, how far the shell flies is determined by how long it remains in the air.4  
The calculations are not too difficult, so let's do them "by hand".  First, let's determine the 
horizontal velocity (the x component).  From Figure 5.15 we see that we'll use the cos 

function.  If cos(t) =
r
x , then x = r cos(t).5  In this case, x, the horizontal velocity, equals 

357 m/s (r) times the cos(57).6  The horizontal velocity of the shell is about 194 m/s.  So 
for every second the shell is in the air, it travels 194 meters horizontally.   

 
The second part of the problem is a bit more difficult.  Let's first calculate the 

initial vertical velocity of the shell (the y component).  If sin(t) = 
r
y , then y = r sin(t).  

Multiplying 357 m/s times the sin(57)7 gives us a value of about 299 m/s for the initial 
vertical velocity of the shell.8  We are not finished with the vertical y velocity, though!  We 
must calculate how long the shell will remain in the air.  It starts upward at a rate of 299 
m/s, but immediately begins to slow down due to gravity.  Eventually, the shell will reach 
its highest point and for the briefest of times, will have a vertical velocity of zero.  It will 
then begin to fall back to the earth, its velocity increasing each second at a rate 
consistent with gravity.  How do we solve for the time of flight? 

 
We know that the initial vertical velocity is 299 m/s.  We know that gravity has an 

acceleration of -9.8 m/s2.9  We also should know that nature exhibits symmetry in our 
ideal problem… in other words, the first half of the flight is a mirror image of the last half.  
If our initial vertical velocity is +299 m/s, the final vertical velocity when the shell strikes 
the ground at the end of its flight will be -299 m/s (notice the sign change).10  There is a 
physics formula that states vf = vi + at…  final velocity equals initial velocity plus the 

acceleration times the time.  Solving for time:  t = 
a

vv if −
.  So, t = (-598 m/s)/(-9.8 m/s2), 

                                            
3 Remember, a vector in physics represents both a magnitude and a direction.  A scalar 
represents magnitude only.  Velocity is a vector, temperature is a scalar. 
4 Distance = rate x time! 
5 And you thought you would never use algebra? 
6 About 0.545 if we assume the value in the parentheses to be in degrees.  The trig functions in 
Python and other languages normally assume the values representing angles to be in radians 
7 About .839, again assuming the angle is in degrees.  More on this later. 
8 The positive values for both x and y indicate motion to the right and upward respectively.  Vector 
direction can be established by +/- signs.  Most of the time, a positive number indicates an 
upward direction for y and motion to the right for x.  The opposite sign (-) would indicate motion in 
the opposite direction.  This is defined by humans and not absolute. 
9 The negative sign indicates an acceleration downward toward the center of the earth. 
10 This is why you should NOT fire a gun up into the air.  When the bullet comes back down, it is 
perhaps not moving quite as fast as it was when it left the gun (due to air friction), but it's still 
moving at a lethal velocity. 
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or t = 61.0 seconds.  The shell is in the air slightly more than a minute.  The distance the 
shell travels is:  distance = (horizontal rate) (time) or distance = (194 m/s)(61.0 sec) = 
11800 meters (approximately).  That's almost 12 kilometers… a bit over 7 miles! 

What is the maximum altitude reached by the shell?  In physics, there are several 
ways to solve for this value, but if we use our head, we might make the problem 
somewhat easier.  The total time in the air was 61.0 seconds.  This means that it took 
30.5 seconds for the shell to climb to its highest point and another 30.5 seconds to fall 
back to earth.  Let's focus on the last half of the journey.  The time it took to fall from rest 
(remember, the vertical velocity at the peak height is zero) back to earth was 30.5 
seconds.  There is a formula which states that the distance an object travels equals one-
half its acceleration times the square of the time, or:  d = 0.5at2.  In this case, distance = 
0.5(-9.8)(30.5*30.5) = -4560 meters.11  This is a height of over 4.5 kilometers… almost 3 
miles! 

 
Well, that was a lot of algebra for a single problem and I included the 

mathematics in the text for comparison purposes.  Since we are interested in 
programming, the question becomes "Can we write a Python program that will not only 
do the proper calculations for us, but also display the flight of the shell (the trajectory)?"  
Of course we can!  What should our program look like when it runs?  The program 
should ask for two inputs in the terminal console.  The first input should be the angle of 
elevation of the cannon barrel in degrees.  The second input should be the muzzle 
velocity of the shell in meters per second (m/s).  We then want the code to solve the 
problem and plot the trajectory of the projectile12 in an OpenGL window.  By the way, if 
you were thinking that the solution of this problem looked a bit like the parametric 
equations we studied in the last section, you are thinking correctly!  We used two sets of 
parametric equations here in this situation.  The first set of parametric equations used 
the cannon barrel angle measurement to determine the individual velocities of x and y.  
The second set of equations used t (time) to solve for flight duration and distance 
traveled.  We are actually using calculus in this program to solve our trajectory problem.  
Now that's impressive... be sure to tell your math teacher! 

 
When we solved the physics problem algebraically, we found a solution for a 

single set of angle and velocity parameters.  Unless we are willing to painstakingly 
create a table of elevation angles and muzzle velocities,13 we will have to algebraically 
solve each new problem in the same manner.  Our computer program must be flexible 
and able to solve any reasonable problem of the same type without major code 
revisions.  This program is the most ambitious we’ve tackled thus far.  We will build on 
the previous programs and add many new features.  Be very careful to type in the code 
without errors.  Save the program as pycannon.py or something similar. 

 
Here is the program listing for pycannon.py.  As usual, pay CLOSE attention to 

the indentations! 
 
# PyCannon.py 
# A Physics Simulation 
 

                                            
11 The negative sign means that we are measuring downward.  Distance is a vector, having both 
magnitude and direction.  It's still 4560 meters high! 
12 A fancy "more official" name for an object obeying gravity and the laws of physics. 
13 Such tables were created for wartime use by both human computers and electronic computers. 
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from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
global horizvel 
global vertvel 
 
def init(): 
 global horizvel 
 global vertvel 
  
 # White background 
 glClearColor(1.0, 1.0, 1.0, 1.0) 
  
 # Large range for long shots 
 gluOrtho2D(-200.0, 12000.0, -200.0, 5000.0) 
 
 # Input angle and muzzle velocity 
 angle = input("Enter the angle of elevation: ") 
 muzzvel = input("Enter the muzzle velocity of the shell: ") 
  
 # Convert the degree angle to radians 
 radangle = (angle*3.1415926)/180 
  
 # Solve for horizontal and vertical initial velocities 
 horizvel = muzzvel*cos(radangle) 
 vertvel = muzzvel*sin(radangle) 
  
 # Print out the initial velocities in the console 
 print 
 print ("Horizontal Velocity (m/s) = "), horizvel 
 print ("Vertical Velocity (m/s) = "), vertvel 
  
def plottrajectory(): 
 global vertvel 
 global horizvel 
 
 # We can now calculate and change vvel 
 # While preserving the original vertvel 
 vvel = vertvel 
 hvel = horizvel  
 
 glClear(GL_COLOR_BUFFER_BIT) 
 glColor3f(0.0, 0.0, 0.0) 
  
 # Draw some horizontal and vertical axis lines 
 glLineWidth(2.0) 
 glBegin(GL_LINES) 
 glVertex2f(0.0, 0.0) 
 glVertex2f(20000.0, 0.0) 



 69

 glVertex2f(0.0, 0.0) 
 glVertex2f(0.0, 15000.0) 
 glEnd() 
  
 # Set the height of the cannon barrel 
 # Initalize variables for later use 
 height = 2.0 
 dtime = 0.0001 
 dist = 0.0 
 maxheight = 0.0 
  
 # Plot the trajectory as long 
 # as the height is above the ground 
 while height > 0.0: 
    
   # Equations to calculate distance and 
   # Height for each unit of time. 
   dist = dist + hvel*dtime 
   vvel = vvel - 9.8*dtime 
   height = height + vvel*dtime 
    
   # Find the max height. 
   if maxheight < height: 
    maxheight = height 
    
   # Plot the trajectory 
   glBegin(GL_POINTS) 
   glVertex2f(dist, height) 
   glEnd() 
 glFlush() 
   
 # Print the solutions.  Not indented! 
 print 
 print("Distance traveled (m) = "), dist 
 print("Maximum altitude (m) = "), maxheight 
       
def main(): 
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(800, 600) 
 glutInit(sys.argv) 
 glutCreateWindow("How Far Will It Go?") 
 glutDisplayFunc(plottrajectory) 
 init() 
 glutMainLoop() 
  
main() 
# End Program  
 
 Save and run the program.  Use the values of 57 for cannon angle and 357 for 
the muzzle velocity to replicate the problem we solved by hand earlier in this section. 
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You should see something similar to Figure 5.16 if all went well.  The graph looks like a 
parabola, which shouldn’t be too surprising if you have ever watched the flight of a 
thrown or batted ball.  Perhaps we’ve “discovered” a parametric representation of a 
parabola? 
 
 This program is longer and more complex than our previous efforts.  You should 
notice that I've made an attempt at using more verbose comments than in previous 
listings.  The import lines are the same as in earlier programs.  However, we see two 
new lines: 
 
global horizvel 
global vertvel 
 
Variables in Python are usually local, meaning that they are defined only in the function 
in which they are used.  For example, in the def init(): function, the variables 
angle, muzzvel, and radangle are used for calculations, but they are valid only in 
this function.  The plottrajectory function knows nothing of these three variables!  If 
we need to use a variable throughout the program, we need to declare the variable as a 
global variable.14  Here, we are using two global variables, horizvel and 
vertvel.  These variables will store the horizontal and vertical velocities respectively.  I 
anticipate needing to use the values stored in these variables in other places, hence the 
global declaration. 
 

 
 
       Figure 5.16 
 
                                            
14 Python experts frown on using global variables, but… well, the experts aren’t here now, are 
they?  I think global variables are handy in simple situations such as this program.  The 
problem is that Python makes it a bit difficult to declare them properly and if too many global 
variables are used in a large program, they can be easy to forget, misplace, or misuse. 
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 The program closely follows the algebraic solution given at the beginning of this 
section and remark statements are used to help clarify many of the code statements.  In 
the def init(): function, we first declare (again) the global variables horizvel and 
vertvel.  We must do this in each function that assigns or changes the values of these 
variables.  The glClearColor command is not new, but notice in gluOrtho2D how 
the range has been changed considerably to reflect the nature of this problem.  We then 
use an input statement to store the cannon elevation angle (in degrees) and muzzle 
velocity in the variables angle and muzzvel.  The trig functions needed to calculate the 
horizontal and vertical components of the muzzle velocity can’t use angle measures in 
degrees, so we must convert degrees to radians using the standard conversion:15 
 
 radangle = (angle*3.1415926)/180 
 
 Next we solve for both the horizontal and vertical components of the muzzle 
velocity vector.  These components serve and the initial horizontal and vertical velocities 
in the problem.  The horizontal velocity remains constant since there is no friction in our 
ideal world.  The vertical velocity changes due to the influence of gravity.  
   
 horizvel = muzzvel*cos(radangle) 
 vertvel = muzzvel*sin(radangle) 
 
 As an added touch, we print the values of horizvel and vertvel in the 
console window at the end of the init() function.  The “empty” print statement 
simply inserts a blank line for “pretty print”. 
 
 In the def plottrajectory(): function, we again declare the global 
variables horizvel and vertvel.  We also add the lines: 
 
 vvel = vertvel 
 hvel = horizvel 
 
The vertical velocity of the cannon shell will be changing due to gravity.  If we resize the 
graphics window, the trajectory will need to be redrawn.  If we don’t preserve the original 
value of vertvel, our solution and plot will be incorrect.  By assigning vvel the value 
of vertvel, we can keep the initial vertical velocity stored in vertvel “safe” for future 
use.  Similarly, we need to preserve the initial horizontal velocity in horizvel for the 
same reason; we may need to use it again! 
 
 The next few lines are business as usual, except we are moving the origin to the 
lower left corner and extending the axis lines to reflect the extended range.  We then 
declare some local variables: 
 
 height = 2.0 
 dtime = 0.0001 
 dist = 0.0 
 maxheight = 0.0 

                                            
15 Radians = 

180
deg*π
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 The variable height is the initial height of the cannon barrel above the ground 
(in meters).  dtime is the time slice used to calculate the trajectory of the shell.16  We 
then set the dist (distance) and maxheight variables to zero.  This serves to declare 
the variables so they can be used properly and also assigns them an initial value. 
 
 We now let Python calculate the solution: 
 
 while height > 0.0: 
    
  # Equations to calculate distance and 
  # Height for each unit of time. 
  dist = dist + hvel*dtime 
  vvel = vvel - 9.8*dtime 
  height = height + vvel*dtime 
    
  # Find the max height. 
  if maxheight < height: 
   maxheight = height 
    
  # Plot the trajectory 
  glBegin(GL_POINTS) 
  glVertex2f(dist, height) 
  glEnd() 
  
 # End of while loop  
 
 As long as the height of the shell is above the ground (while height > 
0.0:), we continue calculating the distance (dist), vertical velocity (vvel), and 
height.  The equations may look a bit strange, but let’s think about them a bit.  In the 
dist equation, we simply take the current distance (where the shell is at that instant) 
stored in the variable dist (on the right side of the “=”) and add to this value the 
additional distance calculated by hvel*dtime (rate x time).  This cumulative value, the 
current distance plus the new distance, is then reassigned to the dist value on the left 
side of the “=”.  This is how we keep a running total of the horizontal distance traveled.  
The vertical velocity (vvel) is calculated in a similar fashion.  The current vertical 
velocity (vvel) on the right side of the “=” is modified by -9.8*dtime (-acceleration x 
time) and the new value is assigned to vvel on the left side of the “=”.  The height 
above the ground is calculated by using the current height (on the right side of the “=”) 
and modifying this value by adding vvel*dtime (rate x time).  The new height is then 
assigned to the “height” variable on the left side of the “=”.  If the term “iteration” came 
to you during this discussion, then you are a true computer geek17… this process 
definitely illustrates the concept of iteration.  We are using the output from one set of 
calculations as input for the next set (notice that the variables vvel and height appear 

                                            
16 "dtime" is a crucial variable.  We are solving this problem by dividing it into many small pieces 
and then adding up the results of each piece to provide a total solution.  The size of "dtime" 
determines the size of the "piece" of the problem.  This numerical method can be quite accurate 
depending on the size of the time slice or "piece".  We are actually doing calculus here! 
17 I mean this in a nice way, of course!  It is absolutely a compliment to be called a “geek”. 
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on BOTH sides of the “=”) and repeating the process until the shell height is 0.0, 
meaning that the shell has hit the ground! 
 
 How do we find the maximum height (maxheight)?  As the shell is going 
upward, each new position is the maximum height, so we can set the maxheight 
variable equal to height (maxheight = height).  We do this by checking to see if 
the new height is greater than the old maxheight (if height > maxheight:).  If 
this is true, and it always will be as the shell is rising, then we set maxheight = 
height.  As we pass the very top of the trajectory, the height begins to decrease and 
will never again be greater than the "old" maxheight variable.  The maxheight 
variable will no longer change because the maxheight = height statement will be 
ignored (if height > maxheight: is now false... height is LESS than maxheight 
because the shell is on the way down).  As a result, we have preserved the value of the 
maximum height in the maxheight variable.  At the end of the code block the points 
corresponding to each (dist, height) ordered pair are plotted using the glVertex2f 
statement, creating the parabolic trajectory. 
 
 The print statements that display the numerical results of the problem 
calculations are not indented at the same level as the other lines in the 
plottrajectory function.  This insures that these lines are NOT in the while loop 
and only display the final results at end of the function when the calculations are 
complete. 
 
 In order to obtain a computer solution to a problem that unfolds over time, such 
as the projectile example here, we must simulate as closely as we can the conditions of 
the problem.  For all practical purposes, time is a continuous process.  This means that 
there are no “breaks” in the flow of time and that no matter how finely we divide a unit of 
time, we will never reach a point where time doesn’t exist… in other words there are no 
holes in a real timeline!  Computers are unable to handle such a number system.  There 
is a practical limit to the precision of computer arithmetic.  Eventually, if we keep dividing 
a number, we’ll reach a point where our computer can no longer distinguish between two 
adjacent values.  This limit is usually around 15 or 16 decimal places.18  In English, this 
means that there are “holes” in the computer number line.19  How do we reconcile the 
real world arithmetic (which is infinitely precise) with the computer world arithmetic 
(which is “holey”)?  We do the best we can.  In this problem, we divide up the time flow 
of the problem into the smallest units of time we can, given the speed of our computer.  
In this way, we can approximate behavior of a real projectile under ideal conditions.20 

                                            
18 Depending on the computer, the software, the programmer, etc.  The more decimal places, the 
longer it takes to make a calculation.  If we want our computer to do "real-time" simulations, we 
can't take much time for an individual calculation.  Hence the trade-off between speed and 
precision. 
19 Assume that your computer can only represent 3 decimal places.  Your computer could not tell 
you the difference between 0.3210123 and 0.3210321.  This may not seem important, but as we'll 
see later, this difference is huge when it comes to real-world simulations. 
20 The time-slice method works this way: the first time step or slice uses the initial conditions for 
the whole problem… zero time and the initial values for all variables.  The program then solves 
the problem for this small time slice.  The solution to the first time slice becomes the initial 
conditions for the second time slice and the computer then solves that problem.  The solution for 
the second time slice becomes the initial conditions for the third… and so on.  The final answer is 
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 You can think of it this way.  We are slicing (using the dtime “knife”) the problem 
up into hundreds, thousands, or even millions of sequential pieces.  The computer 
solves each individual “piece” and sums the total for the approximate answer to the 
problem.  The tinier the slice (the smaller the dtime variable) the more closely we mimic 
nature and the more accurate our answer.  The problem is that if we make dtime too 
small, the computer simulation takes longer to run… much longer, possibly, than actually 
doing the real experiment.  We must find a balance between runtime and accuracy.21 
You might think that using computers to solve equations isn’t such a good thing when we 
can get more precise (possibly) answers by solving the equations manually or with a 
computer algebra system such as Mathematica.  However, many (most?) equations 
involved in physical models can’t be solved easily  or perhaps not at all using manual 
(analytic) methods.  In that case, we have no choice but to use a computer. 
 
 The moral of the story is that computers can be very flexible problem-solving 
devices.  When we solve a physics example by hand, we employ analytical methods and 
find an algebraic solution.  Computers, if programmed properly, can do this as well.  In 
this example, we used both analytical methods (to solve for initial horizontal and vertical 
velocities) and numerical methods (to calculate running totals for distance, vertical 
velocity, height, and maxheight).  Numerical methods follow a recipe or algorithm to 
arrive at solutions to problems.  This may not seem important, but many equations 
simply can't be solved by any other method.  In any case, computers are very valuable 
tools for calculating solutions to problems. 
 
 When working these exercises, you may want to save the original program from 
this chapter under a different name and work with the newly named version.  That way 
you preserve the original in the event you need it later.  Most of the modifications 
required in the exercises are easily reversed by simply assigning variables to their 
original state or removing the new lines of code. 
 

Exercises 
 
1) Try several different problem scenarios.  You may have to adjust the ranges in 

gluOrtho2D to display the results.  
 
2) Change the gravitational constant in vvel = vvel - 9.8*dtime" in the 

plottrajectory function to -1.6 (keep the "-" sign in place).  This will simulate 
gravity on the moon.  You will probably have to adjust the plot ranges in 
gluOrtho2D!22 

 
3) In exercise 2, change the sign from "-" to "+" and see what happens.  Before you run 

the program, see if you can predict the outcome.  Were you correct? 
 
4) This exercise will be a challenge.  For every muzzle velocity, there is a maximum 

horizontal distance a projectile will travel.  Try an angle of 45 degrees and a muzzle 

                                                                                                                                  
the summation of the solutions for all the small time slices.  Each plotted point of the trajectory is 
a solution to a particular time slice.  Again, this is calculus!  
21 Or you use a super-computer, computer cluster, or grid.   
22 Also adjust the axis line ranges in the glBegin(GL_LINES) section of code!. 
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velocity of 350 m/s.  Write down the distance the projectile travels.  Now try an angle 
of 40 degrees with the same muzzle velocity.  Try an angle of 60 degrees with the 
same muzzle velocity.  What do you notice?  Now here is the challenge.  Can you 
find pairs of different angles that produce the same distance with the same muzzle 
velocity?  Is there a pattern to these "double angles" that would allow you to predict a 
method that, when given one angle, you can find the other? 

 
5) Try various values for dtime.  What happens when you reduce the value of dtime 

for a shorter time interval?  What happens when you increase the value of dtime for 
a longer time interval?  Which is best for solving the problem, a very short time 
interval (dtime < 0.0001) or a longer time interval?  Why? 

 
6) You may want to try different plot colors, line widths, and point sizes for the program.  

Also experiment with the background color.  What combination of settings provides 
the most pleasing display? 

 
7) Calculate the distance an object (such as a bowling ball) would travel horizontally if it 

drove off a vertical cliff at a certain velocity.  Say we have an a bowling ball traveling 
at 50 m/s and it flies off a 1000 m cliff.  How far away from the cliff would the ball 
strike the valley floor?  Hint:  Look at the height variable to take the altitude of the 
cliff into consideration and consider what the angle of elevation should be. 

 
8) An addition to problem 7 would be to print vertical velocity of the auto as it strikes the 

ground.  Where would you place this print statement in the program and what 
variable would you use? 

 
9) Research beowulf clusters, grid computing, and supercomputers.  What are the 

possible uses of such computer systems?  Why might they be valuable to us based 
on what you have learned in this section?  Google "MPICH Blank" if you are 
interested in building your own private beowulf cluster.23 

 
10) Sometimes a physics problem will ask for the total amount of time an event takes to 

complete.  It would be nice to have our program calculate the total time the shell (or 
bowling ball) is in the air.  You might think that the variable dtime contains this 
information, but this is not correct.  "dtime" contains the length of the time step or 
slice… remember, we are breaking this problem up into many small individual 
problems and summing them for a final solution.  Here's more than a hint:  if we can 
add up the number of time slices in the problem, we can calculate a total time of 
flight.  Place the line:  totaltime = 0.0 immediately underneath the section 
where we assign initial values to height, dtime, dist, and maxheight.  The 
variable totaltime will store the total time of flight, so we need to define 
totaltime and initialize it to 0.0.  Place the statement totaltime += dtime in 
the while height > 0.0: loop immediately after the line height = height + 
vvel*dtime.   Finally, we need to print the value of totaltime.  I'll leave that up 
to you… but make certain you follow the format of the other print statements by 
providing information about the value you are displaying. 

 

                                            
23 Yeah, that's me. 
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11) Redo exercise 7 using the totaltime concept in exercise 10.  This will tell you how 
long it takes to fall a certain height (under ideal conditions).  Using symmetry, you 
can determine this information from a ground launched projectile (as in the original 
problem) by dividing the total flight time in half. 

 
12) The problem as stated involves an ideal situation… we are assuming no friction.  

How could we simulate the effects of friction?  At first thought, we might try 
subtracting a small value from the horizontal and vertical velocities.  Let's see how 
this works.  Change the while height > 0.0: loop as follows, noting the 
addition of hvel -= 0.001 and vvel -= 0.001. Both of these modifications 
subtract 0.001 from the motion (we think?) of the cannon shell, hopefully(?) 
behaving like friction.  Use the original values of 57 degrees elevation and 357 m/s 
muzzle velocity. 

 
while height > 0.0: 

    
  # Equations to calculate distance and 
  # Height for each unit of time. 
  dist = dist + hvel*dtime 
  vvel = vvel - 9.8*dtime 
  height = height + vvel*dtime 
  hvel -= 0.001 
  vvel -= 0.001 
    
  # Find the max height. 
  if maxheight < height: 
   maxheight = height 
    
  # Plot the trajectory 
  glBegin(GL_POINTS) 
  glVertex2f(dist, height) 
  glEnd() 
 
 # End of while loop 
 
 Here's the plot in figure 5.17 

 
        Figure 5.17 
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 That's some strong wind blowing from right to left... only the wind isn't blowing!  
Friction opposes motion, it doesn't cause motion.24  Our model is incorrect.  It turns 
out that friction in a fluid is much more complicated than our simple 0.001 
subtraction.  Friction only works when an object is in motion.  Once an object 
reaches zero velocity, friction will not make it move less!  So, friction depends on 
motion and we need to reflect this idea in our model.  Modify the hvel and vvel 
"friction" lines as follows: 
 
  hvel -= .00000002*hvel**2 
  if vvel > 0.0: 
   vvel -= 0.00000002*vvel**2 
  else: 
   vvel += 0.00000002*vvel**2 
   
 In this new model, the friction depends on the motion in hvel and vvel.25  If 
either becomes zero, then friction also becomes zero.  You may wonder why we've 
added an if..else statement?  First, in the hvel equation, friction is always 
negative because the projectile always moves toward the right with a positive 
velocity (hvel > 0.0).  With the vvel equations, if vvel > 0.0: (the shell is 
going upward), then we need to subtract from the positive vvel value.  If vvel is 
negative (vvel < 0.0), then the else statement is called and we ADD a positive 
expression to vvel.  I know this sounds confusing, but we must make certain that 
friction always opposes (has the opposite sign of) motion.  There are times when the 
vvel is positive (going up!) and there are times when vvel is negative (falling 
down!).  The two vvel statements in the conditional block serve the purpose of 
always opposing the motion of vvel.26  The value of 0.00000002 is “made up” in that 
I simply wanted to provide a constant that represented27 the density/viscosity of air.   
 
 Run the model again using the same initial values and compare the results of 
figure 5.18 on the next page with figures 5.17 and 5.16.  You can see that the 
trajectory is definitely not a perfect parabola as in figure 5.16 and the projectile is not 
“blown” backwards as in figure 5.17.  You’ll also note that the maximum height and 
distance are considerably reduced.  The new model still doesn’t perfectly portray 
friction, but it’s better than the first effort.  In science, models are useful to the extent 
that they accurately portray nature.  A model aircraft in a wind tunnel is not the same 
thing as the real airplane in flight, however we still may learn something useful from 
the model.  We might be able to say the same thing about our projectile/air friction 
model here.  The simulation (virtual cannon shell) is not the same as a real cannon 
or howitzer shell, but our model may serve to help us learn something about the 
behavior of projectiles in a fluid. 
 

                                            
24 If you were to create a tank or artillery game, you might need the idea of "wind" for game play.  
The wind would act somewhat like the constant value we are subtracting from hvel. 
25 The velocities stored in hvel and vvel are squared to be somewhat realistic.  It actually is 
true that if you double your velocity, then air friction is 4 times as great.  Tripling your velocity 
multiplies air friction by 9, etc. 
26 Which is what friction does! 
27 Conceptually, if not accurately. 
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          Figure 5.18 
 
 Experiment with different cannon elevation angles and muzzle velocities.  For 
example, try an elevation of 25 degrees and a muzzle velocity of 975 m/s.  How does 
your plot compare to figure 5.19 on the next page?  It looks a lot like the profile of a 
seven iron shot.28  This should tell us that even though the model is not perfect, we 
are at least making a decent attempt at a simulation of air or fluid friction. 
 
 Experiment with your own friction equations or with those you have researched.  
Change the value of the air density/viscosity constant of 0.00000002.  What 
happens if you increase this value?  What happens if you decrease this value?  No 
matter how you change the value of this constant, the new equations based on the 
square of the velocities guarantee that the projectile will not fly the “wrong” way as in 
figure 5.17.  Once either vvel or hvel become zero, the friction associated with that 
particular velocity also becomes zero (as it should!). 
 
 A major part of learning to program depends on your own efforts at modifying 
programs and experimenting with new ideas. 
 
 As a challenge, research fluid friction and see if you can improve the model!29   
 

                                            
28 For the golfers in the crowd… but seven irons don’t travel nearly this far!  Att least mine don't. 
29 This is a tough problem!  Best wishes… 
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         Figure 5.19 
 
  

13) Research the concept of difference equations.  This program uses difference 
equations to solve for the trajectory of the projectile.  Difference equations are 
powerful computational tools for providing numerical solutions to difficult equations.  
Difference equations also are a topic in calculus.  You are doing some rather 
sophisticated mathematics in this chapter!



Section 5.5 Polar Coordinates 
 
 In algebra, we learned to plot points and graph equations using the Cartesian 
rectangular coordinate system.  This coordinate system, the brainchild of Rene 
Descartes, established a link between points in a plane and ordered pairs of real 
numbers.  In sections 5.1 and 5.2, we plotted individual points and graphed 2D functions 
using the traditional x-y Cartesian coordinate system.  In section 5.3, we used 
parametric equations to plot Lissajous/Bowditch curves… again using the Cartesian 
system.  Other coordinate systems also exist and we are not limited to Cartesian 
coordinates.1 
 
 One such system is the use of polar coordinates to map points on the plane.  We 
begin by establishing a fixed point, which we can refer to as the origin2 or pole.  If we 
then determine a length from the origin and an angle from the zero axis, we can plot any 
point in the plane.  The ordered pair looks like this:  (r, q), where “r” is the length or 
radius of the point and q is the angle from the zero p radian axis.  Figure 5.17 illustrates 
a point P in the polar coordinate system. 
 

 
 
             Figure 5.20 
 

                                            
1 Well, actually we are limited in computer graphics.  The screen coordinates map nicely to (x,y) 
ordered pairs.  We CAN calculate using other systems and convert to screen coordinates.  That is 
what we’ll do in this section. 
2 The origin is a reference point in the Cartesian system.  We need a reference point in any 
coordinate system we use. 
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 Graphs in the polar coordinate system look something like:  r = 4cosq + 2.  
How do we plot them on a computer screen?  We have to convert this equation into 
Cartesian coordinates!3  We already know how to do this, though, from our parametric 
equation work.  If you’ll recall, in the parametric format we assumed a radius of r = 1.  
In polar equations, we’ll not make this assumption and allow r to vary according to some 
rule or equation.  The conversions from polar to Cartesian coordinates are: 
 
 x = r·cos(q) 
 y = r·sin(q) 
 
 When we combine these two conversions with an equation for r, such as r = 
4cosq + 2, interesting things happen!  As an analogy, you can think of a polar equation 
as a fancy “radar” screen like you may have seen in movies featuring military radar 
tracking incoming planes or missiles.4  The r value sweeps around according to angle q.  
The variable r can shrink or lengthen according to a rule such as r = 4cosq + 2.  
Together, r and q produce a polar graph.  Enough talk; let’s try some Python code to 
plot polar equations.  New in this program will be a “keyboard” function that will allow us 
to interact with the program and a “reshape” function that will help maintain the proper 
shape5 of the graphics.   
 
 Type in the listing below and save the program as pypolar.py or something 
similar.  Again, pay close attention to indentations and spelling! 
 
# PyPolar.py 
# Plotting Polar Equations 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
#  Set the width and height of the window with global variables 
#  Set the axis range globally using global variable axrng 
global width 
global height 
global axrng 
 
#  Initial values 
width = 400 
height = 400 
axrng = 7.0 
     
def init(): 
 glClearColor(1.0, 1.0, 1.0, 1.0) 
                                            
3 See footnote 1 in this section again. 
4 This was also used as an analogy in the parametric equation section. 
5 Also called the aspect ratio of the graphic figure.  You may have noticed that if you resized or 
maximized the graphics window in earlier programs, the plot figure will resize, but will look 
distorted or stretched.  We’ll fix this problem with a new function called def reshape:. 
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# GLUT Display Function 
def plotpolar(): 
 glClear(GL_COLOR_BUFFER_BIT) 
  
 # Plot axis lines for reference 
 glColor3f(0.0, 0.0, 0.0) 
 glBegin(GL_LINES) 
 glVertex2f(-axrng,0) 
 glVertex2f(axrng,0) 
 glVertex2f(0,axrng) 
 glVertex2f(0,-axrng) 
 glEnd() 
  
 # Plot polar equation for a Limacon 
 glPointSize(2.0) 
 for theta in arange(0.0, 6.28, 0.001): 
  r = 4*cos(theta) + 2 
  x = r*cos(theta) 
  y = r*sin(theta) 
  glBegin(GL_POINTS) 
  glVertex2f(x,y) 
  glEnd() 
  glFlush() 
 
# This is new... this is a reshape function so that the 
# aspect ratio of the graphics window will be preserved 
# and anything we draw will look in proper proportion 
def reshape(w, h): 
  
 # To insure we don't have a zero window height 
 if h==0: 
  h = 1 
  
 #  Fill the entire graphics window! 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 #  Set the aspect ratio of the plot so that it 
 #  Always looks "OK" and never distorted. 
 if w <= h: 
  gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w) 
 else: 
  gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng) 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
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def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
def main(): 
 global width 
 global height 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
 glutInitWindowPosition(10,10) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("Polar Equations") 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(plotpolar) 
 glutKeyboardFunc(keyboard) 
  
 init()  
  
 glutMainLoop() 
 
main() 
 
# End Program 
 
 If everything is typed correctly and the program runs without error, you should 
see something like Figure 5.21: 
 

 
  Figure 5.21     
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 Figure 5.21 is a nice rendering of a looping curve called a Limaçon.  In the 
exercises at the end of this section we’ll explore several “famous” polar equations.6 
 
 Now we’ll look at the code for Figure 5.21 a bit more closely.7  The first few lines 
are the familiar import statements required of all OpenGL programs, including the 
numpy module for enhanced mathematical functions.  They are followed by: 
 
#  Set the width and height of the window with global variables 
#  Set the axis range globally using global variable axrng 
global width 
global height 
global axrng 
 
#  Initial values 
width = 400 
height = 400 
axrng = 7.0 
 
 We are using global variables to set the initial width and height of the 
graphics window.  Also, we are using a variable called axrng to establish the x and y 
axis ranges.  axrng also will also be used by the gluOrtho2D statement in the def 
Reshape( w, h): function.  Following the global variable declarations, the initial 
values of these variables are set.  We are choosing a graphics window 400 x 400 pixels 
and an axrng (axis range) of 7.0.  Any changes made to these variables will result in a 
“global” change of their values… far easier than searching through the code and 
manually typing in new numbers! 
 
 Now for the def plotpolar(): display function: 
 
def plotpolar(): 
 # Clear the screen 
 glClear(GL_COLOR_BUFFER_BIT) 
  
 # Plot axis lines for reference 
 glColor3f(0.0, 0.0, 0.0) 
 glBegin(GL_LINES) 
 glVertex2f(-axrng,0) 
 glVertex2f(axrng,0) 
 glVertex2f(0,axrng) 
 glVertex2f(0,-axrng) 
 glEnd() 
  
 # Plot the polar equation for a Limacon 
 glPointSize(2.0) 
 for theta in arange(0.0, 6.28, 0.001): 
  r = 4*cos(theta) + 2 

                                            
6 And perhaps some not so famous curves as well. 
7 As the text progresses, I’ll highlight only the new concepts or the use of “old” concepts in a new 
way.  I will not discuss every single line in detail because you are past the complete novice stage 
by now!  Also, I will begin using more remark statements to help explain the code. 
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  x = r*cos(theta) 
  y = r*sin(theta) 
  glBegin(GL_POINTS) 
  glVertex2f(x,y) 
  glEnd() 
  glFlush() 
 
 The def plotpolar(): function is not radically different from previous 
programs, but notice the use of the axrng variable in drawing the axis lines within the 
glBegin(GL_POINTS) section.  It simply makes sense to draw axis lines based on the 
ranges of the x and y axes.  The other changes are found within the same 
glBegin(GL_POINTS) code segment.  We are defining the variables r, x, and y by 
equations using theta (q).  It is here, of course, that the polar graphics "picture" is 
created and plotted. 
 
 As stated in an earlier footnote, when the size of the screen is manually changed 
by using the mouse, either by maximizing the windows or by dragging the edges or 
corners, the drawing may become distorted.  We will now “fix” this problem by using a 
new function:  def reshape(w, h):8 
 
def reshape(w, h): 
  
 # To insure we don't have a zero window height 
 if h==0: 
  h = 1 
  
 #  Fill the entire graphics window! 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 #  Set the aspect ratio of the plot so that it 
 #  Always looks "OK" and never distorted. 
 if w <= h: 
  gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w) 
 else: 
  gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng) 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
 
# End Reshape 
 
 You’ve no doubt noticed the “w” and “h” in between parentheses in the reshape 
function name?  A quick glance at def main(): will show that we’ve actually defined 
the reshape function using the glutReshapeFunc(reshape) command.  GLUT and 
                                            
8 Again, we try to give functions names that make sense. 
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OpenGL both now know that any time the graphics window is resized, the reshape 
function will be notified or called.  The variables w and h are “passed” to the reshape 
function by OpenGL/GLUT and are "caught" by the (w, h) variables in the function 
name.  w and h now contain the new values for the width (w) and height (h) of the 
graphics window.  This is great!  We can use this new information to reset the drawing 
“canvas” using gluOrtho2D so that our plot image is not distorted! 
 
 The lines: 
 
 if h==0: 
  h = 1 
 
keep us from making the resized window of zero height.  This is important because we’ll 
be using h as a divisor later.  The glViewport(0, 0, w, h) command makes 
certain that the entire graphics window contains the display.  It is possible to use this 
command to “peek” at small sections of a graphic plot within a window, but we want to 
view the entire picture.  Note the use of w and h again! 
 
 As our programs become more complex, we become concerned about two 
viewing concepts.  The first is how we are going to draw the object itself and the second 
is how we are going to place and view the object within the “world” contained by the 
graphics screen.  The next two lines concern themselves with the viewing “world” where 
the object will eventually be placed. 
 
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
 
 A glMatrixMode() command is usually followed by glLoadIdentity().  
The GL_PROJECTION parameter specifies the world view or projection matrix.  If you 
haven’t had linear algebra, you can think of a matrix as a system of equations that 
govern the x, y, and z coordinates of our graphics world.  Doing mathematics with these 
equations (the projection matrix)9 manipulates how we see the world.  We can translate 
(or move laterally) the world, rotate the world, and make the world larger or smaller 
(scale the world).   
 
 #  Set the aspect ratio of the plot so that it 
 #  Always looks "OK" and never distorted. 
 if w <= h: 
  gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w) 
 else: 
  gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng) 
 
 Once we have the projection matrix set to the identity matrix (using 
glLoadIdentity)10 we can then set the new x and y ranges using gluOrtho2D.  We 

                                            
9 Yes, I’ve seen the movies.  No, it isn’t quite the same thing. 
10 glLoadIdentity() resets the projection or modelview matrices back to the identity matrix… 
which serves as a starting point for all future calculations.  This is important for proper graphics 
rendering. 
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check to see if the width is less than or equal to the height and choose the correct 
gluOrtho2D command based on this information (using the if statement).  What do 
you think else: means here?  axrng is used once again to establish the new x and y 
axis ranges and, more importantly, “fix” the distortion caused by stretching, shrinking, or 
maximizing the window.  Where do you think the “fix” occurs and how are w and h used?  
What we are doing here is changing the aspect ratio of the graphics window according to 
the new window dimensions. 
 
 Once we have set the new window ranges and aspect ratios, we are ready to 
redraw our plot.  Since we want to draw our object or “model” again, we set the 
glMatrixMode() to the GL_MODELVIEW matrix.  Note the glLoadIdentity() after 
glMatrixMode(GL_MODELVIEW).  glLoadidentity() resets the GL_MODELVIEW 
matrix so that all future translations, rotations, and scalings begin with the identity matrix. 
 
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
 
 The reshape function is very useful because it can be inserted into nearly any 
program.  To see how this function operates, let’s look at two examples.  Figure 5.22 
demonstrates a resized graphics window (from figure 5.21) WITHOUT using the 
reshape function. 
 

 
     Figure 5.22 
 
 Now look at figure 5.23 WITH the reshape function in place. 
 



 88

 
     Figure 5.20 
 
 We can find fault with fact that our axis lines did not “stretch” properly (wait for 
the exercises!), but we can’t deny that the picture of the Limaçon now looks as it 
originally did in Figure 5.21, albeit a bit smaller.  You may be wondering why we don’t 
have a gluOrtho2D command in the def init(): function?  Since we declared the 
reshape function as the glutReshapeFunc() in def main():, when the 
pypolar.py program runs, OpenGL/GLUT assumes that the creation of the graphics 
window constitutes a “reshaping” of the window and the reshape function is 
automatically called or triggered by GLUT.11  
 
 Also new in this program is keyboard interaction while the graphics display is 
visible and the program is running.  We have used keyboard input before, but that input 
was prior to displaying a graphics window.  This keyboard interactivity is a bit different.  
We will be able to close the program, for example, while a graphics window is open by 
pressing the “Esc” key or the “q” key. 
 
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
 # End keyboard function 
 
 As with the def reshape(w, h): function, take a look at def main():.  You’ll 
see that we’ve used glutKeyboardFunc(keyboard) to inform OpenGL/GLUT that 
the keyboard function will provide keyboard interaction.  Again, we don’t have to 
actually call the keyboard function “keyboard”, but any name we use for our keyboard 
routines must be defined in def main using glutKeyboardFunc().  You’ll notice 
three variable parameters in parentheses for def keyboard.  When a “normal”12 key is 
pressed, the function named in glutKeyboardFunc is called and the value of the key 

                                            
11 Or whatever function is name in the glutReshapeFunc() line in def main(): 
12 “Normal” keys refer to letters and numbers.  Other keys such as arrows or “Page Up” are called 
“special” keys and will be discussed later. 
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is sent to this “keyboard” function and stored in the variable key.  In this manner, the 
value of the key may be processed or used by our program code.  The x and y 
parameters are not used here.  They must be present within the keyboard function 
parentheses, but we won’t discuss them at this time. 
 
 Looking closely at the if statements, if either a chr(27) value for the variable 
key is present (the ‘Esc’ key) or we press the letter q13, Python executes a 
sys.exit()14 and the program ends.  Any other single key press will be ignored and 
the program will continue to run unless halted via the DrPython "Stop" button. 
 
 We also could have written the keyboard "if" block of code as follows: 
 
 if key == chr(27) or key == "q": 
  sys.exit() 
 
This construction basically says "if the 'Esc' key OR the 'q' key are pressed, then exit the 
program".  This form is a bit shorter, but is it easier to understand?  Perhaps.  Such 
constructions are eventually up to the taste of the programmer. 
 
 In def main():, the only major changes are in the use of the globals width 
and height and the addition of the glutKeyboardFunc() and 
glutReshapeFunc() commands.  As stated previously, the use of global variables 
will allow us to change the value of width and height at the beginning of the program 
for convenience. 
 

Section 5.6 Conclusion 
 
 In this chapter you have been introduced to basic 2D plotting, function plotting, 
parametric equations, simple physics simulations, and polar equations.  Hopefully you 
“saw” some similarities between graphing parametric and graphing polar equations as 
well as some differences.  I hope that you are beginning to see some of the interesting 
possibilities available to you now that you know some programming fundamentals.  In 
the next chapter, we'll continue with some more complex 2D graphics and create some 
fractal images. 
 

Now let’s try some exercises to explore polar equations in more detail.  In each 
exercise, see if you can determine the symmetries (if any) displayed by the graphs.  
Examples would be reflections in either the x or y axes (or both).  Perhaps there are 
other symmetries as well? 
 

                                            
13 Only a lower case q will work… Python is very specific about this.  If we want to use an upper 
case Q, we would have to use a function to check for either letter OR we could write another if 
statement and check for Q.  We can use any letter as our exit key… q simply makes sense. 
14 Remember the import sys line at the beginning of the program?  sys.exit() is a 
command provided by the sys module and stops the program immediately.. 



 90

Exercises 
 

1) In the def plotpolar(): function, change the line r = 4*cos(theta) + 2 
to r = 4*sin(theta) + 2.  What happens?  sin() and cos() are exactly 
90 degrees (p/2 radians)"off" or out of phase with each other.  Is it surprising, 
then, that the graph is rotated 90 degrees?  You can do similar rotations with 
almost all the polar equations we'll be exploring in these exercises. 

 
Note:  Plot examples for exercises 2-15 are found at the end of these exercises.  Also, 
see the ***NOTE*** at the end of the plot examples. 
 

2) Let’s visit our old friend the Cardiod, polar equation style.15  Change r = 
4*sin(theta) + 2 in exercise 1 to:  

  
  r = 2*a*(1 + cos(theta))  
  
 Assign a value of 10.0 to the axrng variable and set a = 2.5. 
 

3) Cayley’s Sextic.16  This curve is also called a sinusoidal spiral and is formed by a 
cardiod rolling over another cardiod of the same size.  The equation for Cayley’s 
Sextic is: 

    
  r = 4*a*cos(theta/3)**3 
 
 An axrng of 10.0 is adequate and theta (in the for loop) should range from 
 -6.28 to 6.28.  Try 0.0 to 6.28 first and see why we need to extend theta.  Try a 
 value of 2.5 for the parameter a. 
 
4) Cissoid of Diocles.17  The Cissoid curve demonstrates the vertical asymptote of 

the tangent function.  The polar equation is: 
 
  r = 2*a*tan(theta)*sin(theta) 
 
 Assign a value of 5.0 to the variable axrng.  theta can range from 0.0 to 
 6.28.  Keep the step size at 0.001 unless you want to experiment a bit. 
 
5) One of my favorite polar equations draws a Cochleoid.18  The cochlea is an 

organ found in the inner ear and it resembles a snail in that it is spiral shaped.  
The Cochleoid is not shaped much like a snail or a true spiral, but it is interesting 
nonetheless.  The polar equation for the Cochleoid is: 

 
  r = a*sin(theta)/theta 
 

                                            
15 Kokoska, Stephen.  “Fifty Famous Curves, Lots of Calculus Questions, And a Few Answers”.  
Dept. of Mathematics, Computer Science, and Statistics, Bloomsburg University.   
16 Ibid 
17 Ibid 
18 Ibid 
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 Here’s where it gets interesting.  First, assign axrng = 1.0 and a = 1.0.  
 Now let theta range from 0.0 to 6.28 and run the program.  What happens?  
 What caused the error?  Notice that we are dividing by theta in the polar 
 equation.  If theta equals zero, we are dividing by zero… and that’s not good.  
 When we divide by a variable, we must make certain that the value of the 
 variable does not equal zero at any time.  How do we fix this?  We could start 
 theta at 0.001… something like this:   
 
  for theta in arange(0.001, 6.28, 0.001):   
 
 But let’s learn something new.  When we use from numpy import * at the 
beginning of the program, the numpy module actually defines the variable pi for us 
as 3.14159265359.   This makes our task a bit easier.  Try this for loop 
statement: 
 
  for theta in arange(-5*pi, 5*pi, 0.001): 
 
 If pi has such a precise value (so many decimal places!) and we step by  
 0.001, theta will never be zero.  We’ll “step” right over zero!  A good question 
 to ask at this point might be “Why did you wait so long to tell us about the pi 
 variable?  We could have used it instead of 3.14!”  That is indeed a good 
 question.  Anyway, I like the Cochleoid.  Hint:  Use glPointSize(1.0) for a 
 finer plot.  Also, experiment a bit with the arange for theta.  Try from –pi to 
 pi.  Then try from -10.0*pi to 10.0*pi.  How important is the loop range in 
 arange? 
 
6) Conchoid of de Sluze.19  The Conchoid of de Sluze is a looping curve that 

displays x-axis symmetry.  The polar equation for this curve is: 
 
  r = b*cos(theta)/a - a/cos(theta) 
 
 We are dividing by both a and theta, so we must not allow either to be assigned 
 a value of zero.  The range for theta can be from –pi to pi.  The axrng 
 variable may be assigned a value of 1.0.  Let a = 1.0 and b = 2.0.  Can you 
 see the symmetry? 
 
7) The Double Folium.20  If my Latin is not too terrible, folium means something 

similar to “petal” as in a flower.  So this polar equation draws a two-petal “flower”.  
The equation is: 

 
  r = 4*a*cos(theta)*sin(theta)**2 
 
 As in the last exercise, let theta range from 0.0 to pi in the for loop.  Let 
 axrng = 2.0 and let a = 1.5.  See if you can change the theta range in the 
 loop and produce a “single folium”. 
 

                                            
19 Ibid 
20 Ibid 
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8) Fermat’s Spiral.21  Individuals who practice omphaloskepsis have adopted this 
interesting curve as their symbol.  You’ll have to look up omphaloskepsis.  Trust 
me, it’s strange.  Anyway, the polar equation is: 

 
  r = a*sqrt(theta) 
  
 Change the theta loop to look like this: 
 
  for theta in arange(0.0, 10*pi, 0.0001): 
 
 The value for theta can’t be less than zero (why?).  The step size has been 
 decreased to 0.0001 so we can watch the plot as it is drawn.  Assign a = 1.0 
 and axrng = 5.0.  For the purposes of symmetry, add an additional 
 glVertex2f command:  
   
  glVertex2f(-x, -y) 
 
 What happens when we add this additional glVertex2f?  Try the program first 
 with just the original glVertex2f(x,y) command and then try it with both.  
 What kind of symmetry do you see?  Does the Fermat’s Spiral figure at the end 
 of the exercises use one or both glVertex2f commands?  You can go back 
 and explore some of the earlier exercises by inserting the additional 
 glVertex2f(-x, -y) and see how the plots change.  Some of the graphs are 
 very interesting!  Experiment with switching the positions of the x and y variables 
 in glVertex2f.  What happens? 
 
9) Folium.22  In exercise 7, you were asked to attempt the creation of a single 

folium.  Now we’ll explore the polar equation for a folium: 
  
  r = -b*cos(theta) + 4*a*cos(theta)*sin(theta)**2 
 
 First, remember to comment out (using #) the glVertex2f(-x, -y) from the 
 last exercise.  We’ll use it again later, so don’t erase it.  Set axrng = 1.0 and 
 set parameter a = 0.25 and parameter b = 1.0.  Let theta range from 0.0 
 to pi.  Now let’s experiment a bit.  Try a = 1.0 for a trifolium!  What happens if 
 a = 0.5?  Experiment with different values of a and b.  For extra fun, 
 uncomment the glVertex2f(-x, -y) command and see what happens.  
 Again, consider the types of symmetry you see in the plots.  When you are 
 finished, don’t forget to once again comment out glVertex2f(-x, -y) for 
 future exercises. 
 
10) Freeth's Nephroid.23  This curve is a bit more kidney shaped than the nephroid 

we explored in the parametric equation section.  Freeth's Nephroid is plotted 
using the following polar equation: 
 

r = a*(1 + 2*sin(theta/2)) 
                                            
21 Ibid 
22 Ibid 
23 Ibid 
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Let axrng = 3.0 and a = 1.0.  theta should range from -2*pi to 2*pi.  
You can experiment a bit by dividing theta by different values.  For example, try 
r = a*(1 + 2*sin(theta/3)) and have theta range from  -4*pi to 
4*pi in order to complete the plot.  Check out the "Mod Freeth" figure at the 
end of these exercises for the (theta/3) example. 
 

11) The Hyperbolic Spiral.24  You may remember from your algebra class that the 
equation y = 1/x is the classic form for a hyperbola.  We are going to create a 
spiral curve using a polar equation based on the classic hyperbola function.  
Here is the equation: 

 
r = a/theta 
 

The polar form is very simple and doesn't involve trig functions.  We must be 
careful and not allow theta to equal zero.  Try this for"\ statement: 
  
 for theta in arange( 0.0001, 10*pi, 0.001): 
 
Notice how we start at 0.0001 and step by 0.001.  This insures that we will never 
"hit" zero in our loop.  Set  axrng = 1.0 and a = 1.0.  For an interesting 
modification, let theta range from -10*pi to 10*pi and see what happens.  
Finally, uncomment the glVertex2f(-x,-y) statement (or add it after the 
regular glVertex2f(x,y) it has been deleted).  Run the program again.  This 
spiral is similar to a curve called the Lituus25 and is shown in the "Lituus" figure 
at the end of these exercises.  Think “symmetry”! 
 

12) Rhodonea Curves.26  This curve is also one of my favorites.  The polar equation 
for plotting Rhodonea curves is: 
 

r = a*sin(b*theta) 
 

Don't forget to comment the glVertex2f(-x,-y)!  Let theta range from 0.0 
to 2*pi, set axrng = 1.0, a = 1.0, and b = 5.0.  If b is an odd integer, 
then there will be b lobes (folia?) in the curve.  If b is even, there will be 2b lobes 
in the curve.  If b is an irrational number, then the number of lobes will be infinite 
and the curve will never close on itself.  We can't "do" irrational numbers in 
Python, but we can let b equal a decimal number.  Try b = pi (p is an irrational 
number, but not on a computer… why?) and set theta to range from 0.0 to 
20*pi.  Neat, huh?  The figure "20*pi" illustrates the parameter b = pi. 
 

13) The Spiral of Archimedes.27  Perhaps the easiest polar equation of all, the Spiral 
of Archimedes produces, well… a spiral.  The equation couldn't be simpler: 

 
r = a*theta 

                                            
24 Ibid 
25 Ibid 
26 Ibid 
27 Ibid 
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Set a = 0.1, axrng = 10.0, and the theta range from 0.0 to 30*pi.  Some 
variations you can try are to let theta range from -30*pi to 30*pi and 
uncommenting glVertex2f(-x,-y).  Don't forget to "re-comment" this 
statement prior to working the next exercises! 
 

14) Butterfly Curves.28  Butterfly curves were discovered by Temple H. Fay at the 
University of Southern Mississippi.  They are graceful objects exhibiting 
symmetry and complex loops and lobes.  Whether they actually resemble 
butterflies or moths is in the eye of the beholder, but they are undeniably 
interesting.  The polar equation for the Butterfly Curve is: 

 
r = exp(cos(theta))-2*cos(4*theta)+sin(theta/12)**5 
 

Let axrng = 5 and allow theta to range from 0.0 to 30*pi.  The "Butterfly 
Curve 1" figure at the end of the exercises illustrates this plot.  Now try this 
equation: 
 
r = exp(sin(theta))–2*cos(4*theta)+sin((2*theta-pi)/24)**5 
 
Use the same parameters as in the first butterfly curve.  The results are shown in 
the “Butterfly Curve 2” figure at the end of these exercises.  What do you think 
caused the 90 degree or p/2 rotation?  Experiment with either or both of these 
equations.  Change the coefficients and the range for theta and see what you 
can create!  Butterfly curves have a unique beauty and grace, making them 
particularly pleasing to the eye.  Research Butterfly Curves online and see what 
you can learn.  Perhaps you can create your own Butterfly Curve? 
 

15) Chrysanthemum Curve.29  The Chrysanthemum Curve was also discovered by 
Temple Fay, so we can perhaps expect it to be somewhat similar to the Butterfly 
Curve.  A chrysanthemum is a flower and the curve bears some resemblance to 
the petals on a flowering plant.  The polar equation for a chrysanthemum curve 
is: 

 
 r = 5*(1+sin(11*theta/5))-(4*sin(17*theta/3)**4)*(sin(2*cos(3*theta)-28*theta)**8) 
 

 This is a long and complicated equation, so check your typing carefully!  For best 
 results, set axrng = 10.0 and let theta range from 0.0 to 21.0*pi.  Feel 
 free to experiment with the equation and see if you can create a new species of 
 flower!  Later we may revisit this polar equation when we work with 3D curves! 
 

16) Now it’s time for you to experiment on your own.  We are at the end of chapter 5 
and you know enough to try something of your own creation.  Use the programs 
in this chapter and the exercises at the end of each section as models.  Try to 
create a “work of art” using different colors, symmetry, and different equations.  
Feel free to change the graphics window size and shape as well as 
experimenting with the background color, glPointSize and anything else you 

                                            
28 Pickover, Clifford A. (1991).  "Computers and the Imagination: Visual Adventures Beyond the 
Edge." St. Martin's Press: New York.  Pages 19-21. 
29 Bourke, Paul.  http://astronomy.swin.edu.au/~pbourke/curves/chrysanthemum/ 
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can think of doing.  For example, you might try to draw a “butterfly” on a 
“chrysanthemum”?  Use your imagination… a computer is an imagination 
machine.  What we can imagine, we can create! 

 

Figures for Exercises 2-15 
 

   
                Cardiod     Cayley’s Sextic 
 

   
  Cissoid of Diocles        Cochleoid 
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         Conchoid of de Sluze     Double Folium 
 

   
    Single Folium     Fermat’s Spiral 
 

   
      Folium          Trifolium 
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  Freeth’s Nephroid       Mod Freeth 
 

   
  Hyperbolic Spiral            Lituus 
 

   
  Rhodonea Curves            20*pi 
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  Spiral of Archimedes   Butterfly Curve 1 
 

   
  Butterfly Curve 2         Chrysanthemum Curve 
 
***NOTE***  If you are having problems creating plots that look like the examples figures 
on this and previous pages, make certain that you: 
 

a) Pay attention to the suggested range for theta, the axrng value, and the 
values for any parameters such as a, b, c, etc. 

 
b) Make certain that you have typed in the proper equation for r, and 

 
c) Make certain that you have not altered the equations for x and y.  They should 

be (for polar equations):30 
   
  x = r*cos(theta) 
  y = r*sin(theta)

                                            
30 You CAN alter these equations, but you are no longer mapping polar equations to the standard 
Cartesian x-y coordinate system.  The results of changing these equations can be bizarre! 



Chapter 6 Patterns and Chaos in 2 Dimensions 
 
 This chapter will build on the skills we’ve learned in previous chapters and 
introduce you to some concepts that, prior to the computer age, were not available to 
mere mortals.  One of the basic foundations of math and science is the search for 
patterns, both in numbers as well as in nature.  Patterns imply prediction and prediction 
implies security.  As humans, we seem to be programmed to seek patterns in our daily 
activities and it comes as no great surprise that we find many patterns pleasing to the 
eye.  Indeed, a lack of patterns in behaviors, artwork, or natural events can be very 
disturbing!  In Section 6.2, we’ll explore some patterns that could easily be considered 
mathematical art.  First, though, we need to make your programming life a bit easier. 
 

Section 6.1 PySkel 
 
 You may be thinking that we are doing a lot of typing to display some relatively 
simple graphics.  I might disagree with this, but I understand your viewpoint.  With that in 
mind, let’s see if we can make the programming task a bit easier for you.  If you haven’t 
already noticed, each program you have written is similar in structure.  Let’s build on that 
concept and create a skeleton program that we can use for future exercises.  As we add 
new concepts and ideas that we want to incorporate in all our coding examples, we’ll 
add to the skeleton program.   
 
 Open the last program you wrote from the previous chapter, click “File” and 
“Save As” and rename the program pyskel.py.1  Then “gut” the program, leaving the 
following code: 
 
# PySkel.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
#  Set the global width, height, and axis ranges of the window 
global width 
global height 
global axrng 
 
#  Initial values 
width = 500 
height = 500 
axrng = 1.0 
     
def init(): 
 glClearColor(1.0, 1.0, 1.0, 1.0) 
 

                                            
1 In tribute to Prof. George Francis's “illiSkel” programs. 
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def plotfunc(): 
 glClear(GL_COLOR_BUFFER_BIT) 
  
 # Plotting functions 
 
 glBegin(GL_POINTS) 
 glVertex2f(x,y) 
 glEnd() 
 glFlush() 
  
def reshape(  w,  h): 
  
 # To insure we don't have a zero height 
 if h==0: 
  h = 1 
  
 #  Fill the entire graphics window! 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 #  Set the aspect ratio of the plot so that it 
 #  Always looks "OK" and never distorted. 
 if w <= h: 
  gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w) 
 else: 
  gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng) 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
def main(): 
 global width 
 global height 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("PySkel") 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(plotfunc) 
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 glutKeyboardFunc(keyboard) 
  
 init()  
 glutMainLoop() 
 
main()     
 
#End of Program 
 
 This pyskel.py skeleton can serve as a basis for writing new programs.  You 
should note that all the main ingredients we need for proper program execution are 
included in the code.  The import statements, the global variable definitions, the def 
init():, def reshape():, def plotfunc():, def keyboard():, and def 
main(): functions are ready for our use and/or modification.  As a matter of fact, 
pyskel.py will run on its own, although the output won’t be very interesting.2 
 
 Using pyskel.py as a skeleton or template is simple.  All you do is load 
pyskel.py into DrPython or your programming editor, change the name by using the 
“File" and "Save As” menu item, and modify the def functions with new commands (if 
needed).  Certain def functions, such as def reshape():, may not change at all.3  
Other functions, such as def plotfunc(): may be renamed and completely 
overhauled.  Still other functions (as yet unwritten) may be ignored and can be 
commented out.  In any event, pyskel.py should save you a considerable amount of 
work.  As we add new items such as mouse motion, zooming, menus, etc. we can add to 
pyskel.py.   
 
 Remember to keep the original pyskel.py code intact by immediately 
renaming the skeleton program as soon as you load it.  Carefully compare the new 
program listing with the "old" (and hopefully renamed!) pyskel.py listing and make any 
needed changes.  Such changes may include modifications to global variables such as 
axrng and/or height and width as well as changes in def functions and 
modifications to def main(): to reflect new functions and/or new function names.  
Now let’s put pyskel.py to work! 
 

Section 6.2 Some Interesting Patterns 
  
 The inspiration for this particular topic comes from A.K. Dewdney’s “The 
Armchair Universe”.4  Dewdney uses the phrase “Wallpaper for the Mind” as the title to 
the chapter, but I don’t know much about wallpaper.  Let’s simply say that we are going 
to create some interesting patterns using our computer.  I think you’ll enjoy the example 
program and the possibilities it represents.  After presenting the program listing, I’ll 
attempt to explain how it works and the exercises will allow you to explore the 
mathematics of creating your own unique patterns.   

                                            
2 Try it!  Before you do, though, try to guess what the output will be. 
3 NOTE*** If your program doesn’t display properly, check the def reshape(w,h): function 
carefully, particularly the glMatrixMode commands! 
4 Dewdney, A. K. (1988).  “The Armchair Universe:  An Exploration of Computer Worlds”.  W. H. 
Freeman and Company, New York.  Pages 15-26. 
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Load pyskel.py and "Save As" pymathart.py or something similar.  Change the 

code in the listing so that it matches the following program listing: 
 
# PyMathArt.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
#  Set the global width, height, and axis ranges of the window 
global width 
global height 
global axrng 
 
#  Initial values 
width = 500 
height = 500 
axrng = 10.0 
     
def init(): 
 glClearColor(1.0, 1.0, 1.0, 1.0) 
  
def plotmathart(): 
 glClear(GL_COLOR_BUFFER_BIT) 
 
 for x in arange(-axrng, axrng, 0.04): 
  for y in arange(-axrng, axrng, 0.04):  
   r = cos(x) + sin(y) 
   glColor3f(cos(y*r), cos(x*y*r), sin(r*x)) 
   glBegin(GL_POINTS) 
   glVertex2f(x,y) 
   glEnd() 
   glFlush() 
  
def reshape(  w,  h): 
  
 # To insure we don't have a zero height 
 if h==0: 
  h = 1 
  
 #  Fill the entire graphics window! 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 #  Set the aspect ratio of the plot so that it 
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 #  Always looks "OK" and never distorted. 
 if w <= h: 
  gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w) 
 else: 
  gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng) 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
def main(): 
 global width 
 global height 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("Math Art Patterns") 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(plotmathart) 
 glutKeyboardFunc(keyboard) 
  
 init()  
 glutMainLoop() 
 
main()     
 
#End of Program 
 

When you run this program it may take several seconds or even minutes for the 
entire graphics picture to display depending on the speed of your computer.5  The 
reason for this slow execution is that we are "visiting" every pixel or dot within the 
graphics window and applying a mathematical function to each pixel.  We then have the 
Python code decide the color for the pixel by applying another set of functions.  When 
finished, the output for this program should look something like Figure 6.1 on the next 
page. 
 

                                            
5 Some of the graphics we'll create may take some time to complete.  To put this into perspective, 
20 years ago in our "old" Apple lab a graphic that now takes a minute to draw might have taken 
several hours or even days to finish and the completed picture would have been in glorious green 
and black.  Hopefully any short wait time we suffer will be well worth the picture we draw! 
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         Figure 6.1 
 
 What do you think?  We haven’t really added much to the programs from the 
previous chapter and look what happened!  If you look at the graphic output long 
enough, you can even see hints of a layered or 3D effect even though no such structure 
was intended.  Let’s see if we can understand how such interesting patterns were 
created.  I am going to preface the explanation by saying that some of the pattern that 
you see is caused by an artifact introduced by the nature of the graphics screen.  We 
can only represent anything we draw by using single pixels.  This makes is virtually 
impossible to draw perfect straight lines and curves.  There will always (almost) be some 
jagged edges or "jaggies" that will cause some interesting patterns in plots such as 
Figure 6.1.  You might want to look up "aliasing" and "Moire Patterns" online?  
 
 First, we set the global variables as follows: 
 
width = 500 
height = 500 
axrng = 10.0 
 

If you look at the program listing, you’ll find that the only major changes are found 
in the display function, named def plotmathart():, so let’s look there. 
 
def plotmathart(): 
 glClear(GL_COLOR_BUFFER_BIT) 
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 for x in arange(-axrng, axrng, 0.04): 
  for y in arange(-axrng, axrng, 0.04):  
   r = cos(x) + sin(y) 
   glColor3f(cos(y*r), cos(x*y*r), sin(r*x)) 
   glBegin(GL_POINTS) 
   glVertex2f(x,y) 
   glEnd() 
   glFlush() 
 
#  End Function 
 
 The function begins as usual by clearing the graphics windows and specifying 
that we’ll be plotting points by using glBegin(GL_POINTS).  We then encounter a 
nested loop structure.  The "top" or “outer” loop, for x in arange(-axrng, 
axrng, 0.04): begins with the leftmost column of pixels (-axrng) and eventually 
chooses every single column of pixels from left to right until it finishes at the far right of 
the screen (axrng).  The variable x 6 begins with –axrng and ends with axrng, 
stepping by 0.04.  You may be wondering why 0.04 was chosen as the step?  The 
width of the graphics window is 500 pixels (width = 500) and the value for axrng = 
10.0.  This means that the screen coordinates are from -10.0 to 10.0 in both the x 
and y axes, for a total width (and height) of 20.0 graphic screen units.  This 20.0 unit 
width and height must be mapped into a 500 pixel window screen width and 
height.  Doing a little arithmetic tells us that 20.0/500 = 0.04.  So, if we step by 0.04, 
we’ll hit every pixel column and row… in other words, every single pixel or "dot" in the 
window!  So, according to the screen coordinates,7 each pixel in the graphics window 
translates to a distance of 0.04 square units.8 
 
 The outer for x loop visits every vertical column from left to right (-axrng to 
axrng), but in order to complete the journey to every single pixel, we must also choose 
individual rows.  The "inner" loop, for y in arange(-axrng, axrng, 0.04): 
accomplishes this task.  The two loops work together as follows:  for every value of x 
chosen (an individual column), the values of y range from the bottom of the window to 
the top of the window (-axrng to axrng), hitting each row in turn.  When the y loop has 
finished its task, the next value (column) for x is chosen and the y loop repeats.  You 
can actually see this happen on your screen.  When you run this program, notice how 
the screen fills from left to right a column at a time.  You may even be able to see the 
bottom to top filling?  If you can't see the filling, place an additional glFlush() 
statement immediately after the glVertex2f() statement.  What do you think this 
does? 
 

                                            
6 We don't have to use x as our variable… we can choose any variable we want (within reason), 
but since we are using the variable to store horizontal screen positions, x makes sense.  The 
same reasoning holds for y. 
7 The coordinates of the graphics window are pixel based.  A width of 500 means that the 
coordinates for the x axis range from 0 to 500 pixels.  Using gluOrtho2D changes the way we 
address each pixel and produces the axrng screen Cartesian coordinate system.. 
8 You may wonder what happens if we change axrng or the width and height of the graphics 
window?  Good question!  See exercise 1. 
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 When we visit each pixel on the graphics screen, we must have the computer 
decide what to do with the selected pixel.  The only raw information we have available 
are the x and y coordinates (in axrng or screen units).  The program must somehow 
transform the x and y coordinate values into something new.  It may not seem as if 
having such a small amount of information could lead to anything graphically interesting, 
but this is exactly how Figure 6.1 was produced.  Let’s see how the “magic” was done: 
 
 r = cos(x) + sin(y) 
 
 First, we use the x and y information to obtain a single value r by simply adding 
the cos(x) and the sin(y).  This equation is nothing special.  It was simply “made up” 
on the spur of the moment.  What we do with the value of r is where the graphic design 
"magic" is formed. 
 
 glColor3f(cos(y*r), cos(x*y*r), sin(r*x)) 
 
 We use the value for r, along with the x and y screen coordinates, to determine 
the color of each individual pixel.  The trig functions in glColor3f are periodic, which 
accounts for the swirling multicolor patterns in Figure 6.1.  The def plotmathart(): 
function finishes in a familiar fashion with glVertex2f(x,y), glEnd(), and 
glFlush().9  The only other changes are in def main(): to indicate the graphic 
window caption in glutCreateWindow and the name of the display function in 
glutDisplayFunc.  
 
 In summary, we did the following: 
 

1. Used nested loops to visit each pixel in the graphics window. 
2. Used the screen (axrng) x and y coordinates in a mathematical function to 

obtain a value, which we stored in the variable r. 
3. Used the variable r, along with the x and y coordinate values, to produce a pixel 

color. 
 
 We’ll use these steps and this concept again.  When you think about it, producing 
any graphics in a window involves working with individual pixels and changing their 
colors! 
 

Exercises 
 
1) We used a step of 0.04 to visit every pixel in our graphics window.  The 0.04 step 

size was calculated based on the specific width, height, and axrng of this 
particular example.  If we change the width, height, and/or axrng, we’ll need to 
recalculate the step size.  To see why, set width = 600 and height = 600 and 
run the program again.10  What did you see?  How did the white lines get there?  

                                            
9 Try running the program by commenting glFlush() with a # sign.  Does it work?  Are there 
any problems when you resize or move the graphics window? 
10 We keep width = height for a square window.  This is “forced” on us by the reshape 
function.  You can set the width and height to different values, but only a square area will plot. 
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Reset the width and height back to 500 and set axrng = 20.0.  Run the 
program again.11  This time we did not get white lines even though we increased the 
screen range from -20.0 to 20.0.  But is the step size correct?  Perhaps we are doing 
too much work and using a step size that is too small?  This will not produce an 
incorrect plot, but it will increase the time it takes to complete the graphic display.  
Set the step size in both loops to 0.08 and run the program again.  The execution 
time is much faster and the display is the same.  It turns out that 40.0/500 = .08.12  
OK, now for the question.  Is there a way for Python to automatically calculate the 
step size based on the values for width, height, and axrng?  How might you do 
this? 
 

2) If you were stumped by exercise 1, here are a couple of hints.  We might first ask the 
question “How did we calculate the ideal step size manually?”  Then we could break 
down the manual solution into steps and convert each step into Python code.13  
Many problems can be solved in this manner.14  See if you can modify the 
pymathart.py program to automatically calculate the step size.  How would you 
know if it works properly? 
 

3) Here’s a possible solution to calculating the step size automatically.  First, add the 
following global variable underneath the global width and global height 
variables at the beginning of the program: 
 
 global stepsize 
 

 Then underneath the "axrng =" assignment statement, add the following 
calculation: 
 
 stepsize = (2.0*axrng)/width 
 

 We multiply axrng by 2.0 because axrng takes on all values from -axrng to 
+axrng, which is exactly twice the value of axrng.  We divide by width since the 
width and height are equal and represent the number of horizontal and vertical 
pixels in the graphic window.  The result is the proper stepsize for these values. 
 

 Finally, in both for loops, change the step value (probably 0.04) to the variable 
stepsize as follows:   
 

 for x in arange(-axrng, axrng, stepsize): 
  for y in arange(-axrng, axrng, stepsize):  
 

                                            
11 This causes us to have a “zoomed out” view of the plot. 
12 40.0 is the total axrng from -20.0 to 20.0. 
13 Of course, Python isn’t the only language!  Some programming languages are better than 
others at a particular task.  The “J” language is excellent for mathematical and matrix 
programming, for example.  Ruby is outstanding for web programming through Rails. 
14 No claims are made for this method being the best or most elegant method for solving all 
problems with a computer.  It seems to work in most cases, though, and such an approach is 
generally understandable.  There are computer wizards who seem to be able to solve problems 
better than most mortals.  I don’t understand the ways of such programming gurus and as Tolkien 
said, “Do not meddle in the affairs of wizards…” 
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Now run the program with axrng = 10.0 to verify that you can plot the same 
graphic as in Figure 6.1.15  Now try axrng = 5.0 followed by axrng = 15.0.  
Also try various values for width and height (keeping both variables equal to the 
same value for a square plot window).16  Personally, I prefer axrng  = 15.0, but 
you are free to disagree! 
 

4) Now let’s experiment with the r equation and see what we can discover.  Let axrng 
= 10.0 and alter the r equation as follows: 
 
 r = cos(x) + sin(y) - tan(x*y) 
 
What do you think?  Now try: 
 
 r = cos(x**2) + sin(3*y) - tan(x*y/4) 
 
Weird!?  Try your own equations.  Experiment!  I’m certain you can do better than I 
can at creating your own artistic patterns!  You can also use sqrt(), log(), and 
exp() as functions.  If you generate an error message and the program doesn't run, 
more than likely you are supplying a function with a value that causes that function to 
be undefined, such as the square root or log of a negative number or trying to take 
the log of zero.  One way to fix such problems is to use the abs()17 function as 
follows: 
 
 r = cos(x)**2 + sin(y/3) – sqrt(abs(x*y)) 
 
Note the use of abs(x*y) within the sqrt function to insure that x*y is never a 
negative number. 
 

5) What if we want to use a function such as log(r)?  The variable r can never be 
zero because log(0) is undefined.  We can fix this problem by using an if 
statement.  Try this r equation without any other program modifications: 

 
 r = cos(x)**2 + sin(y/3) - log(abs(x*y)) 

 
The program acts as if it's going to run and then it stops.  If you look at the console 
window below the code, you'll see that Python "flags" this statement and tells you 
that we've generated an "OverflowError:  math range error".  Why?  
Because at some point abs(x*y) within the log() function equals zero!  We can 
fix this problem by either making certain that abs(x*y) is never zero or (better) we 
can simply ignore or skip the r equation if abs(x*y) equals zero. 

 
                                            
15 You must use 10.0 or some other floating point value that displays a decimal.  Otherwise the 
division in the stepsize = (2*axrng)/width will result in a value of zero (an integer). 
16 You might change the “height =” statement to height = width.  That way you only have 
to change one number to adjust the size of the graphics window. 
17 Absolute value.  The log of zero is a bit more problematic.  One solution would be to simply 
make certain the variable or statement within the log() function is never zero.  The best solution 
is to use an if statement so that you only execute the log() function when the statement is not 
zero.  See exercise 5! 
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Here's how.  After the for y loop (shown), modify the code as follows: 
 
for y in arange(-axrng, axrng, stepsize): 
   
 if x <> 0: 
  r = cos(x)**2 + sin(y/3) - log(abs(x)) 
 

 Note the indent in the r equation after the if statement.18  An English translation of 
this code is as follows:  IF the value for x is NOT equal to zero (we used "!=" for 
NOT equal in the Super-3 program.  If you will recall, I told you then that "<>" also 
means NOT equal), then execute the r equation.  This is exactly the behavior we 
want!  We want to have Python evaluate an equation only if the equation is “legal”.  If 
x IS zero, then log(abs(x)) is NOT defined.  The if statement “catches” this 
problem and skips the r equation when x = 0.  Now if you run the program, you 
should be able to generate a graphics plot.  The drawback to using an if statement 
in this manner is that, depending on which math functions you use, you may have to 
modify the conditional every time you change the equation to avoid encountering an 
undefined value.  This usually isn't difficult, though.19 

  
6) Try this slightly modified equation for r: 

 
 r = cos(x/y)**2 + sin(y/3) - log(abs(x)) 

 
When you run the program, it doesn't work!  Even with the if statement to avoid x 
== 0, we still get an error.  Can you see why the error is generated?  Look at the 
cos(x/y) command.  What happens if y = 0?  We can fix this problem by using a 
more complex if statement as follows: 

 
 if x <> 0 and y <> 0: 

 r = cos(x/y)**2 + sin(y/3) - log(abs(x)) 
 

This conditional block of code executes only if both x AND y are NOT equal to 
zero.20  Run the program again.  This time it should work and you may see an 
interesting pattern! 
 

7) Now let’s turn our attention to the line of code that determines the color of each pixel.  
We’ll find out that this code statement is no less important than the equation for r in 
determining the pattern plotted in the graphics window!  First, let’s return everything 
back to its original state so that we can once again plot a pattern resembling Figure 
6.1.  You can refer to the global variables and def plotmathart(): code listed 
immediately after Figure 6.1 if needed.  Run the program to make certain you can 
plot Figure 6.1 again. 
 
Let’s modify the glColor3f statement as follows: 
 

                                            
18 Any and all lines indented at this level after an if statement are included in the if block. 
19 You might have to think a bit?  Ouch. 
20 Another possibility is if x <> 0 or y <> 0:  Would using the or logic work properly in this 
situation?  Why or why not? 
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 glColor3f(cos(r), cos(r), cos(r)) 
  
 After running the program, you should see something like the Exercise 7 plot at 
the end of these exercises.  What happened to all the colors, swirls, curves, and 3D 
effects?  The cos(r) function varies according to the value of r, but since all 3 
colors21 are varying at the same time and producing the same values, the effect is to 
produce shades of white, gray, and black.  Apparently we need to make certain that 
the red, green, and blue color values vary at different rates or by different functions in 
order to create colors and patterns like we saw in Figure 6.1.  
 

8) Building on the previous exercise, let’s explore some “color” functions.  Try this: 
 
 glColor3f(r*r, x*r, y*x*r) 
 
Sadly, the plot looks like something from the ‘60’s… we used to call it “modern art”.  
Unfortunately it’s no longer “modern” and whether it was ever “art” is certainly open 
for debate.  However, you probably noticed that the underlying pattern was similar to 
the Exercise 7 plot.  Evidently the intrinsic pattern is produced by the trig functions in 
the r equation,22 but both the r equation and glColor3f statements work together 
to produce the intricate designs and colors found in Figure 6.1.23  An illustration of 
this plot is found in the Exercise 8 figure at the end of these exercises. 
 

9) Keeping the r equation the same as in the original program, modify the glColor3f 
command as follows: 

 
 glColor3f(tan(r*r), sin(x*r)*cos(r*y), sin(y*x)*tan(r)) 
 

This plot is much better (in my opinion) than the previous example in exercise 8.  
Feel free to try other math expressions such as log(), sqrt(), and exp().  If you 
get an error message, remember that you might be trying to supply the math 
function(s) with an illegal or undefined value.  You know how to fix that problem, 
don’t you?  The Exercise 9 plot at the end of these exercises demonstrates this 
glColor3f statement. 

 
10) One more example and I’ll let you explore on your own.  Set axrng = 5.0 and 

modify the r equation as follows: 
 
 r = cos(x)**2 + sin(y*y)**2 + tan(x*y)**2 
 
Then change the glColor3f command to: 
 
 glColor3f(x*y*sin(r), sin(x*r*y)*cos(r*y), sin(y*x)*cos(r)) 

 
The plot generated by these statements is a bit different than the previous patterns.  
Do you see any symmetry?  If so, what forms of symmetry did you discover?  Pattern 

                                            
21 glColor3f(red, green, blue) 
22 There aren’t any trig functions in this glColor3f statement! 
23 Also aliasing and "jaggies". 
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symmetry?  Color symmetry?  Both?  Again, an example of this plot is found in the 
Exercise 10 Figure at the end of these exercises. 
 

11) Now go ahead and try to create some patterns of your own.  When you do your 
computer experiments, see if you can discover the symmetries in the plot.24  Some of 
the symmetries may be subtle and could involve both pattern and color.  What math 
functions result in symmetry and which functions cause the symmetry  to break 
down?  Do you notice any 3D effects?  What do you think causes the illusion of 
depth? 

 

Figures for exercises 7, 8, 9, and 10 
 

   
    Exercise 7         Exercise 8 
 
 

   
     Exercise 9        Exercise 10

                                            
24 If there is a lack of symmetry, do you find the pattern disturbing in any way? 



Section 6.3 The Chaos Game 
 
 We aren’t really going to play a game in the sense that there will be a winner and 
a loser, but we are going to simulate some aspects of a game using chance and rules.  
But what is chance?  We usually use the word "random" to describe a chance 
occurrence, but what do we mean by random?  One possible definition is that random 
means unexpected.  This definition is not very valid because there are many unexpected 
events that are not random.  Did you ever receive a card, email, or letter that you didn't 
expect?  Assuming that the message was from someone in your family or from a friend, 
it was hardly a random event.  This individual purposely sent you the message.  We 
might also define random as "unpredictable".  It is true that random events are 
unpredictable, but unpredictable events are not necessarily random.  As an example,  
I might ask "Who will win the World Series next year?"  I don't know and neither do you.  
As I write this, my favorite baseball team, the St. Louis Cardinals, just finished winning 
the 2006 World Series.  I could not have predicted this outcome with any certainty even 
a month ago.  Yet the championship was not simply a random occurrence.  
Unpredictable and unexpected certainly, but it was not random.  A multitude of 
sequential events (hits, runs, errors, outs, managerial decisions, wins, losses, etc.) and 
parallel events (other teams winning or losing) led to the final outcome.   
 
 For the purposes of this chapter, what do we mean by a random event?  We 
must first specify all the possible events that can occur.  Once we have specified all 
possible events that can take place, we then supply the condition that each of the 
possible events has an equal probability or chance of occurring.  Furthermore, the 
occurrence of any single event is not affected by past events, nor will its occurrence 
affect future events.1  Once we establish these rules, we can then say that an event is 
random and therefore we can now also say the event is unpredictable.  An example of a 
random event would be the toss or roll a fair die.  There are six possible events that can 
occur; one event corresponding to each face or number on the die.  Each of the six 
faces or numbers has an equal chance or probability of being "thrown".  The occurrence 
of a "3" on one toss of the die, for example, was not based on any previous number 
being thrown, nor will this occurrence of a "3" have any influence on the next roll or toss 
of the die.   
 
 While we can't predict the next roll of the die, we can use the mathematical laws 
of probability to predict that over a large number of rolls (millions, billions, trillions!), we 
would expect that each number on the die would appear with nearly equal frequency.  
This definition of random is very compressed and certainly not complete enough for a 
mathematician, but it should serve our purpose here.  The question now becomes, "How 
can Python generate a random number?"  The short answer is that it can't.  Computer 
languages are very much deterministic.  In other words, computer languages are based 
on algorithms (code recipes) and formulas.  We can, however, simulate random 
numbers in code by using rather complex formulas.  Such formulas are inherent in the 
Python random module and the numbers they generate are called "psuedo-random" 

                                            
1 Such events are called independent events in statistical jargon. 
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numbers.  For all practical purposes, we can treat such pseudo-random numbers as 
random.2   
 
 The Chaos Game3 involves rolling a die and applying a rule based on the random 
outcome of the die.  Imagine that you have placed 3 points on a large poster board and 
these 3 points determine the vertices of a triangle.  The points can form any triangle 
shape, but let’s assume that the triangle is at least isosceles if not equilateral.4  Then, 
completely at random, choose any new point (call it P1) on the poster board, either inside 
or outside the triangle.  So, at this point we have the vertices of a triangle plotted on our 
imaginary poster board and we have a fourth point P1 randomly drawn in another 
location on the poster board. 
 
 Now comes the interesting part.  Label the vertices of the triangle 1, 2, and 3 
respectively.  As we roll the die, let an outcome of 1 or 2 “choose” or map vertex 1.  An 
outcome of 3 or 4 will map vertex 2, and an outcome of 5 or 6 will map vertex 3.  Since 
this is an imaginary exercise (at this point), we can even use an imaginary 3 sided die, 
with each side corresponding to one of the 3 vertices.5  The rule we apply is as follows:  
starting with the first random (non-vertex) point P1, role the die and plot the midpoint 
between P1 and the vertex chosen by the die.  Label this point P2.  P2 now becomes the 
new starting point.  Roll the die again and choose a new (or same… this is random!) 
vertex based on the outcome of the roll.  Plot the midpoint from P2 to the new vertex and 
label this point P3.  P3 becomes the new starting point.  Roll the die again to choose the 
next vertex.  Once again, plot the midpoint between P3 and the new vertex and label this 
point P4.  This process continues until you become bored or the universe ends.   
 
 Figure 6.2 illustrates the first few moves of the Chaos Game.  You can probably 
follow along with the sample game progress.6  Starting with point P1, the die was rolled 
and vertex 1 was selected.7  The midpoint between P1 and vertex 1 was plotted and 
labeled P2.  Which vertex was chosen next by the die?  That’s correct, vertex 2.  Notice 
that P3 is the midpoint between P2 and vertex 2.  Then vertex 3 was chosen and P4 was 
plotted as the midpoint between P3 and vertex 3.  Vertex 3 was “rolled” again, and P5, 
the midpoint between P4 and vertex 3, was plotted. 
 
 Here’s the important question.  What happens if you continue this game for 100 
rolls of the dice?  How about 1000 rolls?  How about 10000?  How about an infinite 
number of rolls?  Will we see anything interesting or will the poster board fill with a 
random jumble of dots?  I don’t have time to do this as a “real” exercise and neither do 
you, but our computer can be a willing lab assistant and help us explore this problem as 
a virtual exercise.  The trick is to translate the game instructions into Python code.  The 
listing following Figure 6.2 is one possible solution.  Go ahead and carefully type in the 
code now, paying close attention to spelling, punctuation (where needed), and 
                                            
2 Look up random number generators online.  See if you see the phrase "linear congruential" 
anywhere.  Also look up "Wolfram Rule 30". 
3 Barnsley, Michael (1989). "Fractals Everywhere".  Boston:  Academic Press.   
4 This is merely for convenience and appearance.  We don’t HAVE to choose vertices that form 
an equilateral triangle. 
5 A 3-sided die makes our imaginary game a bit easier.  However, there can be no actual 3-sided 
die.  Why?  If we do this as a “real” exercise, you can use a conventional 6-sided die as described 
in the text. 
6 Follow the arrows! 
7 Either by a “1” on our imaginary die or a 1 or 2 on a “real” die. 
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indentation.8  I strongly recommend that you use the pyskel.py program template we 
created in section 6.3 to reduce your workload.  Load and then immediately save 
pyskel.py (using “File" and "Save As”) as pychaosgame.py.9  Don't worry if you don't 
understand all of the code at this point.  We'll go through the new concepts in detail after 
we get the program running correctly.       
   

   
        Figure 6.2 
 
# PyChaosGame.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from random import * 
import sys 
 
#  Set the global width, height, and axis ranges of the window 
global width 
global height 
global axrng 

                                            
8 I know you know this by now, but it doesn’t hurt to mention it again.  Most Python programming 
errors are simple mistakes in spelling and/or indentation. 
9 You know this already, but by immediately saving the pyskel.py program under a new name, 
we protect the pyskel.py template program from harm.  Computer savvy students can find 
pyskel.py using the File Explorer program (right-click “Start” and select “Explore”) and can 
change the attributes of pyskel.py to “Read-only” so it can’t be erased or overwritten by accident.  
To do this, right-click the pyskel.py Python icon, select “Properties” and check the “Read-only” 
box at the bottom of the dialog window.  Linux users can do something similar using either a 
command line chmod statement or by using the Linux file explorer equivalent. 
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# Initial values 
width = 500 
height = 500 
axrng = 2.0 
     
def init(): 
 # White background 
 glClearColor(1.0, 1.0, 1.0, 0.0) 
  
 # Black Plot 
 glColor3f(0.0, 0.0, 0.0) 
 
def plotfunc(): 
 # Store the triangle vertices in an array 
 verts = [[0.0,2.0],[-2.0,-2.0],[2.0,-2.0]] 
  
 # Choose an initial point... any point 
 x = -1.5 
 y = 0.75 
  
 glClear(GL_COLOR_BUFFER_BIT) 
   
 for n in range(0,100): 
  v = randint(0,2) 
  x = (x + verts[v][0])/2 
  y = (y + verts[v][1])/2 
   
  if n > 30: 
   glBegin(GL_POINTS) 
   glVertex2f(x,y) 
   glEnd() 
   glFlush() 
  
def reshape(  w,  h): 
  
 # To insure we don't have a zero height 
 if h==0: 
  h = 1 
  
 #  Fill the entire graphics window! 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 #  Set the aspect ratio of the plot so that it 
 #  Always looks "OK" and never distorted. 
 if w <= h: 
  gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w) 
 else: 
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  gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng) 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
def main(): 
 global width 
 global height 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("The Chaos Game") 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(plotfunc) 
 glutKeyboardFunc(keyboard) 
  
 init()  
 glutMainLoop() 
 
main() 
 
# End of program 
 
 When you have typed the code listing and have checked for errors, run the 
program.  Not very impressive, is it?  Let's fix that!  In the function def plotfunc():, 
change the 100 in for n in range(0,100):10 to 1000 and run the program again.  
Do you see some structure?  Change the 1000 to 10000 and try again.  Better?  Now 
try 100000 points.  The structure you see is called the Sierpinski Gasket11 and it is an 
attractor, meaning that all points after the first few are attracted to this triangular shape.  
We could plot millions12 of points and they would all find their way to the Sierpinski 
Gasket!  I find this fact to be as remarkable as it is mysterious!  How can it be that a 
random process such as the selection of a vertex, and a rule consisting of finding the 

                                            
10 You may be wondering why we used range(0,100) instead of arange(0,100)?  The 
arange() command requires the use of from Numeric import * and range() does not.  
So what?  Well, arange() allows us to step by decimal values such as 0.001 while range() is 
restricted to integer steps.  In this program, we use integer steps and arange() is not required. 
11 Sometimes called the Sierpinski Triangle.  This shape is a fractal! 
12 Actually, an infinite number of points would behave in the same manner, but would take a 
LONG time... well, an infinite amount of time to plot.  We'll settle for thousands or perhaps 
millions of points in our work in this text. 
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iterated midpoint between the old midpoint and the randomly selected vertex, results in 
such a remarkable picture?  This is nothing short of amazing! 
 
 One special property of the Sierpinski Gasket is that it has no surface area.  You 
may find this difficult to believe, but consider that we are actually plotting geometric 
points13 and geometric points have zero area.  The Sierpinski Gasket can be constructed 
in other ways and you’ll have the opportunity to research this in the exercises.  Example 
plots of the Sierpinski Gasket are found in figures Sierpinski 100, Sierpinski 1000, 
Sierpinski 10000, and Sierpinski 100000 below.14 
 
 

  
  Sierpinski 100     Sierpinski 1000 
 
 

  
 Sierpinski 10000   Sierpinski 100000 
 
 
 What is the first thing you noticed about the Sierpinski Gasket?  Triangles within 
triangles, of course!  A second special property of the Sierpinski Gasket is that it is an 
example of a fractal.  Fractals such as the Sierpinski Gasket exhibit self-similarity 

                                            
13 Geometric points are represented by pixels… a pixel is NOT a geometric point! 
14 The numbers refer to the number of points plotted in each figure. 
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(among other things) and no matter how much you magnify them, you will always 
encounter the same image… at least until you reach the limit of your computer’s ability 
to distinguish one number from another.15  For example, if you choose one of the smaller 
triangles within the large triangle and magnify it, you will see that the magnified image is 
indistinguishable from the original Sierpinski Gasket.  As a matter of fact, they are 
exactly the same!  There are as many points within ANY of the small triangles (no matter 
how small!) and the entire Sierpinski Gasket.  This is absolutely true, but very difficult to 
believe.  For a physical analogy, think of a hologram.  A complete hologram contains 
enough information to display a true 3D image of an item or scene.  If you cut a 
hologram into tiny pieces, each piece still contains the entire image, albeit from slightly 
different perspectives.16  This isn’t a mathematical proof, of course, but the idea can be 
extended to fractals in a somewhat similar fashion.  Another interesting property of a 
fractal is that its dimension is not an integer.  The Sierpinski Gasket is not a 2-
dimensional object, nor is it a 1-dimensional object.  Instead, its dimension is 
somewhere in between.  A fractal has a fractional dimension. 
 
 If you want a more mathematical treatment of fractals than the hologram analogy, 
remember that there are as many counting numbers as even numbers and as many 
even numbers as odd numbers and as many prime numbers as counting numbers… all 
these sets contain an infinity of numbers.  Likewise, there are an infinite number of 
points in every portion of a Sierpinski Gasket.  You could magnify a small corner of the 
Gasket 101000000 times and that tiny portion still contains an infinite number of points… 
just like the original image!  We’ll revisit the concept of fractals and iteration several 
times throughout this text.  Now back to the pychaosgame.py program and the 
Sierpinski Gasket. 
 
 If you were paying attention to the code as you typed, you may have noticed the 
unfamiliar use of the variable verts in the def plotfunc(): function.  This 
construction is known as a list (in Python) or generically as an array.  Arrays are a very 
powerful feature in any programming language and we need to discuss how they are 
created, accessed, and manipulated in a program. 
 
 Imagine for a moment that we need to create and store a list of 100 (x, y) 
coordinates.  How would you do this?  Well, we could create 100 "x" variables and 100 
"y" variables and name them x0, y0, x1, y1, x2, y2, … x99, y99.  That would be a royal 
pain, though, and we wouldn't have an easy way to reference or use any of the variables 
when we needed them.  There must be a better way and that's where the concept of an 
array enters the scene.  An array is a list of variables, all having the same variable 
name, but with each position in the array assigned a different number or index.  In our 
100 (x, y) coordinate example, we could create an "x" array and a "y" array, each 
capable of storing 100 (or more) values.  The first "x" coordinate would be called x[0] 
and the first "y" coordinate would be called y[0].  The 50th (x, y) coordinate would be 

                                            
15 Contrary to popular belief, computers are NOT that great when it comes to mathematics.  The 
real number line is a good example.  You already know that the real number line is complete, 
meaning that there are no holes in the number line anywhere.  Not so with the computer!  Most 
computers are capable of 15 or 16 digits of precision (decimals), which means that if two values 
differ in the 17th decimal place or beyond, your computer can’t tell the difference between them 
without special software. 
16 I’ve seen and done this… it’s remarkable! 
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(x[49], y[49]).17  The value of such a construction is that we can easily run through all 
100 coordinates by using a loop as follows: 
 
 for n in range(0,100): 
  glBegin(GL_POINTS) 
  glVertex2f(x[n], y[n]) 
  glEnd() 
  glFlush() 
 
 This small sample of code would have plotted all ordered pairs (100 of them from 
x[0], y[0] to x[99], y[99]) stored in the x[] and y[] arrays.18  This is FAR easier 
than trying to create and use 2*100 individually named variables! 
 
 Arrays are an efficient method for storing hundreds, thousands, and even millions 
of data points.  However, they can be difficult to understand, especially for a beginning 
programmer.  Sometimes visualizing arrays as lists seems to help in the understanding 
of how to store and access data in an array.  Let's use the x, y coordinate data we've 
previously discussed as an example.  Imagine that the x and y data are stored in the 
following manner: 
 
 x[ ] variable  y[ ] variable 
  
 x[0]   y[0] 
 x[1]   y[1] 
 x[2]   y[2] 
 x[3]   y[3] 
 .   . 
 .   . 
 .   . 
 x[99]   y[99] 
 
 The x[] and y[] arrays are examples of single dimensional arrays.  You can 
imagine each as a single column or list of values with each x[n] and y[n] entry 
capable of storing one value.  We are not limited to arrays of a single column or 
dimension, though.  We can just as easily create 2, 3, 4 or higher dimensional arrays.  
Arrays of 2 dimensions can be visualized as rows and columns similar to a spreadsheet.  
3-dimensional arrays can be visualized as layers of spreadsheets or stacks of row and 
column data.  Higher dimensions are a bit more difficult to visualize. 
 
 The pychaosgame.py code in this section uses a 2-dimensional array to store 
the vertex coordinates of the initial triangle shape.  We'll use this program to illustrate the 
concept of storing and accessing data in a 2-dimensional array. 
 
 The import section of the code is slightly different than the previous programs 
we've studied.  We have removed the from numpy import *19 line and inserted 
                                            
17 Remember that we usually start counting with "0" in computer science. 
18 We would have used a similar loop construction to store values, such as those generated by a 
function, prior to plotting the array. 
19 We could have left this statement in the code without problems.  We didn't need the extra math 
functions in this example, so I chose to remove the from Numeric import * line. 
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from random import *.  The width and height statements are similar to previous 
programs and axrng is set to 2.0.  The def init(): function specifies a white 
background with black as the graphics plot color.  The major changes occur in the def 
plotfunc():, so we'll focus on that routine. 
 
def plotfunc(): 
 # Store the triangle vertices in an array 
 verts = [[0.0,2.0],[-2.0,-2.0],[2.0,-2.0]] 
  
 # Choose an initial point... any point 
 x = -1.5 
 y = 0.75 
  
 glClear(GL_COLOR_BUFFER_BIT) 
  
 for n in range(0, 100): 
  v = randint(0,2) 
  x = (x + verts[v][0])/2 
  y = (y + verts[v][1])/2 
   
  if n > 30: 
   glBegin(GL_POINTS) 
   glVertex2f(x,y) 
   glEnd() 
   glFlush() 
 
# End Function 
 
 We have been discussing arrays, so it should come as no surprise that the first 
uncommented line of the def plotfunc(): function uses an array to store the 
vertices of the Sierpinski Gasket.  This line of code looks a bit odd compared to the x, y 
coordinates array example, so an explanation will be provided. 
 
 verts = [[0.0,2.0],[-2.0,-2.0],[2.0,-2.0]] 
 
 We use the variable verts to hold the triangle vertices.20  Look carefully at the 
use of brackets imbedded within brackets.21  Although it may not be apparent at first 
glance, this is a 2-dimensional array.  We are grouping three sets of two values each 
and storing these sets of values (x, y coordinates) in the verts array.   

 
You can visualize this storage as follows: 
 

 verts array 
 
 verts[0] = [0.0,   2.0] 
 verts[1] = [-2.0, -2.0] 

                                            
20 Variable names should, where possible, describe the data they store. 
21 Using an all-bracket array construction allows us to change array values during a program run.  
We could have used all parentheses or brackets with imbedded parentheses, but then we could 
not make any changes to the array while the program is running. 
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 verts[2] = [2.0,  -2.0] 
 
Compare the above table with: 
 

verts = [[0.0,2.0],[-2.0,-2.0],[2.0,-2.0]] 
    verts[0]      verts[1]    verts[2] 
 
Do you see how the verts array is structured?  It is a list of ordered pairs.22 
 
 After storing the triangle vertices in verts, we then choose an initial point to 
begin the Sierpinski Gasket attractor.  The point can be any point within reason.  You 
could even use a couple of random() statements here (we'll save that for an exercise).  
I chose x = -1.5 and y = 0.75, but again, any point would suffice.  After the initial 
point is assigned, the graphics window is cleared and the glBegin(GL_POINTS) 
command tells OpenGL to prepare to plot pixels.   
 
 The loop statement for n in range(0,100): serves only to help us plot 
exactly 100 pixels.23  In this loop, n serves only as a counter to keep track of how many 
times we've looped.  We'll see why n is important in a moment.  Changing the 100 to 
1000, 10000, or 100000 will increase the number of plot points accordingly.  Immediately 
following the for loop statement we see: 
 
 v = randint(0,2) 
 
which chooses a random integer from 0 to 2 inclusive and stores this integer in the 
variable v.24 
 
 Do you remember the midpoint formula from algebra?  The midpoint (x2, y2) of 
the segment joining the two points (x0, y0) and (x1, y1) is found by the following set of 
formulas: 
 
 x2 = (x0 + x1)/2     
 y2 = (y0 + y1)/2  
 
Remember the midpoint formula as we explore the following two lines of code: 
 
 x = (x + verts[v][0])/2 
 y = (y + verts[v][1])/2 
 
 We are using the midpoint formula in the two lines of code above,25 but it may not 
be readily apparent.  You can see in each line that we are dividing an expression in 

                                            
22 We’ll revisit these two examples again with additional information later. 
23 In this case, we don't use the index n to access array variables as we did in the array example 
using (x, y) coordinates.  n is used only as a "counter" to insure that we actually do loop the 
specified number of times in order to plot the specified number of pixels. 
24 "Inclusive" means that a 0, 1, or 2 will be chosen and stored in v each time we "loop" by this 
statement.  So any integers used as parameters in random(a,b) will randomly choose integers 
from a to b inclusive. 
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parentheses by 2, but the parenthetical expressions look a bit strange!  Let’s see if we 
can decipher this code, starting with: 
 
 x = (x + verts[v][0])/2 
 
 But before we go further, let’s make the concept of an equation in Python more 
clear.  Anytime we see an “=” sign in an equation, we must interpret the expression as 
follows:  First, calculate the value of the function on the RIGHT side of the “=” sign and 
THEN store that value in the variable on the LEFT side of the “=” sign.  Using this rule 
allows us to use equations in Python (and other languages) that make no sense in 
algebra.  For example, the equation x = x + 1 has no solution.  Such an equation 
makes perfect sense in Python, however, because we would interpret such an 
expression as follows:  Add 1 to the current value of x and store this result as the NEW 
value for x.  Such a construction acts as a counter because each time we “hit” the 
statement, 1 is added to the current value of x.26  Again, this x = x + 1 statement is 
an example of the concept and process of iteration, which can be generally illustrated by 
the following expression:27 
 
 (what you now have) = (what you had) + (something new) 
 
 Using this reasoning, we evaluate the statement x = (x + verts[v][0])/2 
by first calculating the expression on the right hand side of the "=" sign.  This expression, 
(x + verts[v][0])/2,  uses parentheses to group a couple of terms, so let’s focus 
on (x + verts[v][0]) first.  To the current value of x, we add verts[v][0].  
Based on the description of how to plot a Sierpinski Gasket, you might deduce that x 
represents the current x coordinate location and verts[v][0] represents the x 
coordinate of the randomly selected vertex… but how do we know this?  Look at this 
earlier “visual” again with some additional information.  The [0] and [1] labels are 
placed above the x and y coordinates respectively. 
 

             [0]      [1]            [0]        [1]          [0]        [1]  
verts = [[0.0,2.0],[-2.0,-2.0],[2.0,-2.0]] 

    verts[0]      verts[1]    verts[2] 
 
 Does this make sense?  Remember that each of the vertices of the Sierpinski 
Gasket are stored in the verts array, shown again below (again, with additional 
information).  Each vertex contains two pieces of information, an x and a y coordinate 
and we must have a method of “finding” or calling each piece of data in order to 
calculate a midpoint.  If we label each vertex with a verts[0], verts[1], or 
verts[2], it makes sense that we can label the x and y coordinates with an additional 
[0] and [1] respectively in the following manner:  verts[0][0] or verts[2][1].  
Do yourself a favor and examine the following table carefully! 

                                                                                                                                  
25 Remember that we plot the Sierpinski Gasket by finding the midpoint from the current point to a 
random vertex, with each new midpoint serving as an endpoint for the next calculation or 
iteration. 
26 x = x + 1 is one form of a counter.  Another counter form which leads to identical results is  
x += 1 which is sometimes called an increment function. 
27 I've already discussed the concepts of what the "=" sign does and iteration, but indulge my 
tendency to repeat important concepts.  Iteration will be discussed again a bit later. 
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 verts array      x     y 
 

 verts[0] =  [0.0,   2.0] 
 verts[1] =  [-2.0,  -2.0] 
 verts[2] =  [2.0,  -2.0] 
 
       [0]      [1] 
 
 So, verts[0][0] holds the x coordinate of the first vertex (x = 0.0) and 
verts[0][1] holds the y coordinate of the first vertex (y = 2.0).28  What verts 
expression holds the y coordinate of the 3rd vertex and what is its value?29  What verts 
expression contains the x coordinate of the 2nd vertex and what is its value?30  Now we 
can interpret the two lines of code that calculate the midpoints. 
 
 x = (x + verts[v][0])/2 
 y = (y + verts[v][1])/2 
 
 In the first line (look at the right side of the “=” first!), we add the current x 
coordinate position to the x coordinate of the randomly chosen vertex stored in 
verts[v][0].31  We then divide this sum by 2 and store the value of the x coordinate 
of the new midpoint back into the variable x.  In the second line, we add the current y 
coordinate position to the y coordinate of the randomly chosen vertex stored in 
verts[v][1].  We then divide this sum by 2 and store the value for the y coordinate of 
the new midpoint back into the variable y.  So, each new value for x and y is calculated 
from the old values for x and y.32 This procedure is an example of the iteration process 
we discussed earlier. 
 
 Although it isn’t legal Python, we might think of these iterated equations in 
“pseudo-code” for clarity: 
 
 xnew = (xold + verts[v][0])/2 
 ynew = (yold + verts[v][1])/2 
 
 Now that we’ve calculated the new midpoint, we need to plot it using 
glVertex2f(x, y). 
 
 if n > 30: 
  glBegin(GL_POINTS) 
  glVertex2f(x,y) 
  glEnd() 

                                            
28 THINK about this!  This is a crucial concept. 
29 If you answered verts[2][1] and y = -2.0 then you were correct! 
30 verts[1][0] and x = -2.0.  Were you correct?  If so, then you understand this array.  Nice 
work! 
31 Remember that “v” will equal 0, 1, or 2 based on the v = randint(0,2) statement. 
32 So, x and y serve “double” duty.  When on the right side of the = sign, they represent the old 
values for x and y.  When on the left side of the = they store the new calculated values for x and 
y.  This double duty can be confusing for humans, but Python has no problem distinguishing the 
“old” from the “new”.  See the pseudo-code equations in the text. 
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  glFlush() 
 
 The only difference between this code and previous programs is the if n > 
30: conditional statement.  We don’t begin to plot points until we have passed 30 
iterations (if n > 30:).33  This line of code is not strictly necessary,34 but it serves to 
“pretty up” the plot.  The Sierpinski Gasket is an attractor in that eventually all points end 
up belonging to the set of points that make up the Gasket.35  Since we picked the initial 
point at random, the first few calculated midpoints may not yet be on the Sierpinski 
attractor and may be found scattered in the “open” spaces of the Sierpinski Gasket.   By 
waiting for the first 30 or so iterations to pass before we begin plotting, we will be 
reasonably certain that all future plotted points will be on the Gasket. 
 
 The functions def reshape( w, h):, def keyboard(key, x, y):, and 
def main(): are essentially unchanged from previous programs with the exception of 
the caption in glutCreateWindow within the def main(): function. 
 

Exercises 
 

1) Research Sierpinski online.  See if you can find examples of other methods for 
creating a Sierpinski Gasket or Sierpinski Triangle.  What other facts about 
Sierpinski Gaskets can you find?  How about other fractals called Carpets?  We 
haven’t yet studied 3D graphics, but can you find an example of a 3D Sierpinski 
Sponge?  Also, look up “Menger Sponge” and see if you notice any similarity with 
the Sierpinski Sponge. 

 
2) Research fractals online.  Be prepared to find a LOT of information on this topic!  

What are fractals?  Why does the Sierpinski Gasket qualify as a fractal?  What 
other fractals did you find?  You might see some of the fractals you found online 
later in the text?  As you research, remember the mathematics is NOT an opinion 
or belief.  How might you verify the information you find online? 

 
3) Comment the following lines in def plotfunc(): as follows: 
 

  #x = -1.5 
  #y = 0.75 
 
 and add these lines immediately below36 #y = 0.75 and above the loop code 
 block. 

 
  x = random() 
  y = random() 
 

                                            
33 Actually, 31 iterations.  Why? 
34 If you remove it (and we will in an exercise) remember to move the glVertex2f indentation to 
match the lines above it. 
35 They are “attracted” to the Gasket… the points have no choice but to find Sierpinski! 
36 You can add a blank line first to separate the new lines from the remarked code. 
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 What do you think these new lines do?  Run the program and see if there are any 
 differences in the new plot when compared with the original program. 
 
4) 100 points is far too small for an adequate plot of a Sierpinski Gasket.  Try 1000, 

10000, and 100000 and see how the plot changes.  If you have the patience, try 
1000000 points!  Does the graph change?  If so, how?37 

 
5) Remove or comment the if n > 30: line, remembering to indent the 

glVertex2f line at the same level as the lines above it.  Run the program 
plotting at least 100000 points.  Do you see any “stray” points?  These “strays” 
would represent the initial point and the first few midpoints as they find their way 
to the Sierpinski Gasket attractor.  Based on your experimentation, do we need 
to wait until 30 iterations have completed before plotting or would a smaller 
number suffice?  What is the smallest value needed?  Hint:  You may want to plot 
the first few points in a different color or size (or both) to distinguish them from 
the points on the Sierpinski Gasket.  How would you do that? 

 
6) Place the line 
  
  glColor3f(random(), random(), random())  
 
 immediately above the glVertex2f statement.  Before running the program, 
 try to predict the output.  Were you correct?  What happens if you add a 
 glPointSize(2.0) above the glBegin(GL_POINTS) statement? 
 
7) It’s now time to change the plotting rules and see if we can create something 

different.  In def plotfunc():, change the x and y assignment statements to: 
   
  x = (tan(x*y*y) + verts[v][0])/2 
  y = (tan(y) + verts[v][1])/3  
 
 You should see something similar to Figure Ex. 7 at the end of these exercises.   
 
 Now try the following x and y assignment statements (note the additional code 
 and the change in the y assignment statement): 
 
  x1 = x 
  x = (tan(y*y*x) + verts[v][0])/2 
  y = (tan(x1*x) + verts[v][1])/3 
 
 The x1 = x line retains the “old” value of x so that we can use it in the "y = "  
 assignment statement.  Otherwise, we would be forced to use the “new” value of 
 x calculated in the “x = “ assignment statement.  This is OK if that’s our intent, 
 but sometimes we need to use the previous value of x or some other variable in 
 future calculations. 
  
 Experiment with these lines and create something new! 
 

                                            
37 You know where to change these values, don’t you…?  I knew you did! 
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8) Now let’s change the vertices and see what we can create.  Try the following:38 
 
  verts = [[0.0, 2.0],[1.732, 1.0],[1.732, -1.0], 
   [0.0, -2.0],[-1.732, -1.0],[-1.732, 1.0]] 
 
 Let axrng = 1.0 and in def plotfunc(): change the randint() 
 statement to: 
 
  v = randint(0,5) 
 
 Also, change the x and y assignment statements to: 
 
  x = (x + verts[v][0])/3.0 
  y = (y + verts[v][1])/3.0 
 
 Note that you are dividing by 3.0 instead of 2.0.  Can you predict what will 
 happen when you run the program?  You should see something like Figure 
 Ex. 8 at the end of these exercises.  Surprised? 
 
9) Once again we’ll change the x and y assignment statements.  We’ll use the same 

lines of code that we used at the beginning of exercise 7 as follows: 
  
  x = (tan(y*y*x) + verts[v][0])/2 
  y = (tan(y) + verts[v][1])/3 
 
 Let axrng = 1.5 and run the program.  The output should look like Figure Ex 
 9.  The plot looks a bit “plant-like”, don’t you think?  Remember this structure in 
 the next section of the text! 
  
10) Finally, try one more modification and then you can experiment on your own.  

Again, set axrng = 1.5 and make a simple modification to the “x = “ 
assignment statement as follows: 

 
  x = (tan(y*x) + verts[v][0])/2 
 
 The plot is interesting and should resemble Figure Ex 10.  Now experiment on 
 your own and see what you can create.39 

 
11) Ok, I didn't really mean "Finally" in the last exercise.  I simply had to add one 

more, mainly because I think this one is really neat.  I'm not certain what to call it, 
so how about "Blank's Carpet"?  Seriously, try the following modifications to your 
program: 

  
  # Initial values 
  width = 500 

                                            
38 This is all one statement and it’s OK to type it as such… but it’s also OK to type it as seen in 
the text.  Python doesn’t care and will ignore the line feed.  You could even carry this example 
further and put a single vertex on each line for clarity.  Try it! 
39 Iterated functions that create pictures such as the ones in this section and the Barnsley Fern in 
the next section are called Iterated Function Systems. 
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  height = 500 
  axrng = 1.0 
 

  # in plotfunc 
  verts = [[-2.0, 2.0], [-2.0, -2.0], [2.0, 2.0],  
   [2.0, -2.0],[-1.0,1.0],[-1.0,-1.0], 
   [1.0,1.0],[1.0, -1.0]] 
 
  for n in range(0,100000): 
   v = randint(0,7) 
   x = (x + verts[v][0])/3.0 
   y = (y + verts[v][1])/3.0 
 
 Place the above lines in the proper locations in your program code.  Notice that 
 we have added some extra vertices.  Where would they be plotted?  Would all of 
 them show up in your graphics display window?  Before you run the program, do 
 you have any idea what the fractal will look like?  Notice that we are choosing 
 points 1/3 the distance from the current location to the next random vertex.  Go 
 ahead and run the program!   You should see something like Figure Ex 11 on 
 the next page.  I think this is an interesting plot (at least). 
 
 12) Can I add one more exercise?  You'll like this one, I promise!  Modify the code  
  from the previous exercise as follows: 
 
   # Add the following import statement  
   # to get the trig functions 
   from numpy import * 
 
   # Initial values 
   axrng = 10.0 
 
   # In plotfunc 
   verts = [[-2.0, 2.0], [-2.0, -2.0], [2.0, 2.0],  
     [2.0, -2.0]] 
 
   and change the for loop to: 
    
   for n in range(0,100000): 
    v = randint(0,3) 
    x = (x + verts[v][0])*sin(y) 
    y = (y + verts[v][1])*cos(x) 
 
 The multiplication of the vertex selection code by trig functions should add some 
 interesting effects to the graphic display.  Run the program and see what 
 happens.  I think this is a beautiful plot.  Can you add some color and make it 
 even better?  Figure Ex 12 shows the fractal! 
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Section 6.4  The Barnsley Fern 
 
 Exercise 9 in the previous section asked you to remember the plant-like 
structures that were plotted when you added and modified the lines of code listed in the 
problem.  We are now going to expand on the ideas introduced in the Chaos Game 
section to produce an graphics plot that raises the “plant-like” descriptor to a new level.  
In Section 6.3 we used a simple rule with a random choice of vertices to produce the 
Sierpinski Gasket attractor.  In this section we are going to enlarge our scope and use a 
combination of 4 sets of parameters, each one assigned a different probability of being 
selected at random.  Once a parameter set has been randomly chosen we’ll apply the 
selected parameters to our rules or equations.  The result of this iterated function system 
is both surprising and beautiful! 
 
 Here is the program listing for this section. 
 
# PyBarnsleyFern.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from random import * 
from numpy import * 
import sys 
 
# Globals for window width and height 
global width 
global height 
 
#  Initial values of width and height 
width = 600 
height = 600 
     
def init(): 
 # White background 
 glClearColor(1.0, 1.0, 1.0, 0.0) 
  
 # Green Plot… it IS a Fern 
 glColor3f(0.3, 0.6, 0.2) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 #  Set the plot window range 
 gluOrtho2D(-3.0, 3.0, 0.0, 10.5) 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
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def plotfunc(): 
  
 # Choose an initial point... any point 
 # You can randomize this if you wish 
 x = -1.5 
 y = 0.75 
  
 glClear(GL_COLOR_BUFFER_BIT) 
  
 # Plot 100000 points.  This number is very large.   
 # Feel free to experiment with smaller values. 
  
 for n in range(0,100000): 
   
  # n allows us to reject the first few points 
  # to give the attractor a chance to do its “thing” 
 
  # Choose a random value between 0 and 1 and 
  # then select a set of parameters based on this value. 
  v = random() 
   
  if v >= 0 and v <= 0.8000: 
   a = 0 
   b = 1.6 
   c = -2.5*pi/180 
   d = -2.5*pi/180 
   e = 0.85 
   f = 0.85 
   #glColor3f(1.0, 0.0, 0.0) 
    
  elif v > 0.8000 and v <= 0.8050: 
   a = 0 
   b = 0 
   c = 0*pi/180 
   d = 0*pi/180 
   e = 0 
   f = 0.16 
   #glColor3f(0.0, 1.0, 0.0) 
   
  elif v > 0.8050 and v <= 0.9025: 
   a = 0 
   b = 1.6 
   c = 49*pi/180 
   d = 49*pi/180 
   e = 0.3 
   f = 0.34 
   #glColor3f(0.0, 0.0, 1.0) 
   
  elif v > 0.9025 and v <= 1.0: 
   a = 0 
   b = 0.44 
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   c = 120*pi/180 
   d = -50*pi/180 
   e = 0.3 
   f = 0.37 
   #glColor3f(1.0, 0.0, 1.0) 
   
  #  Save the old values of x and y so we can iterate 
  #  those values according to the chosen parameters 
  #  and rules.  
  xx = x 
  yy = y 
 
  #  Apply the parameters to the rule equations 
  x = e * xx * cos(c) - f * yy * sin(d) + a 
  y = e * xx * sin(c) + f * yy * cos(d) + b 
   
  #  Start plotting after the 10th point 
  if n > 10: 
   glBegin(GL_POINTS) 
   glVertex2f(x,y) 
   glEnd() 
   glFlush() 
   
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
def main(): 
 global width 
 global height 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("The Chaos Game... Fern!") 
 glutDisplayFunc(plotfunc) 
 glutKeyboardFunc(keyboard) 
  
 init()  
 glutMainLoop() 
 
main()     
 
#End of Program 
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 Figure 6.3 at the end of the exercises illustrates the Barnsley Fern.  Nice, huh?  
This is supposedly an example of a spleenwort fern, but I’m not a fernologist40 so I can’t 
verify this.  The Barnsley Fern is another example of a fractal image.  Remember that 
fractals are self-similar geometric objects that have fractional dimensions.41  Self-similar 
means that as we magnify the fractal, the details never diminish and we continue to see 
the same patterns, perhaps with slightly different rotations or with some distortions.  In 
the case of the Barnsley Fern, each branch is a smaller copy of the entire fern.  Each 
leaf on a branch is a smaller copy of the branch, which is a smaller copy of the entire 
fern… and so it goes!  Fractals are infinite in complexity, yet they can be captured to an 
extent by your computer.  The next chapter will be devoted to some of the more beautiful 
easily generated fractal images.  Toward the latter part of the text, we’ll make a valiant 
attempt to visualize some 3D fractal images and perhaps some 4D fractals.  Some of 
these are bizarre in their structure and I hope you'll enjoy them! 
  
 The Barnsley Fern program in this section randomly chooses a set of parameters 
and then applies those parameters to some specific rule statements.  With the exception 
of the init function, which sets the x and y axis ranges to different values than in 
previous programs (look at the ranges!), the majority of the Barnsley Fern program 
listing is similar to the Sierpinski Gasket “Chaos Game” program.  We’ll focus our 
attention only on the section of code in the def plotfunc(): routine where the fern 
attractor is created.  The v = random() statement assigns a pseudo-random value 
between 0.0 and 1.0 to the variable v.  Notice the series of if… elif42 decisions 
following the v = random() line of code.  Careful examination should reveal that the 
first if statement and its associated parameter set is far more likely to be chosen than 
any of the other conditional statements.  Why?  Which conditional or decision statement 
and parameter set is least likely to be chosen?  Again, why?  Notice the use of pi within 
the conditional statement code blocks.  We are using pi in the parameter sets to convert 
from angle measurements (which the Python trig functions can’t use) to radian 
measurements (which the Python trig functions MUST use).  There are pi radians in 
180 degrees, so the conversion is: 
 
 n degrees * (pi radians)/(180 degrees) 
 
The degree(s) units will cancel and we are left with the appropriate angle measure in 
radians.  So, c = 120*pi/180 is a statement that converts 120 degrees to radians and 
stores the radian angle measure in the variable c.  Which other parameter uses this 
conversion?43 
 
 The rule statements: 
 
 x = e * xx * cos(c) - f * yy * sin(d) + a 
 y = e * xx * sin(c) + f * yy * cos(d) + b 
 

                                            
40 I’m certain that isn’t the correct term for a fern expert. 
41 Instead of 2D, the dimension may be 1.576D.  We’ll touch on the topic of fractals, but a detailed 
study of these interesting and beautiful objects is beyond our scope at this point. 
42 elif is a Python abbreviation for “else if”. 
43 "d" of course! 
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both use the randomly chosen parameters and the previous values of x and y (xx and 
yy) to calculate new values for x and y.  These new values are then plotted using the 
glVertex2f command.  Notice the use of trig functions within the equations.  These 
trig functions make use of the radian angles converted using pi in the parameter code 
blocks.  You also probably noticed the commented glColor3f statements after each 
parameter set in the if… elif decision blocks.  We’ll explore the affect of these 
glColor3f statements (as well as other options) in the exercises.  Make certain that 
you save this program prior to working with the exercises.  You can then reuse the 
saved code for each exercise. 
 

Exercises 
 
1) Uncomment each of the glColor3f statements in the if… elif decision block.  

You can now identify which parameter set is responsible for each part of the fern 
attractor.  Are you surprised?  Feel free to experiment with different colors schemes. 

 
2) Change the number of iterations from 100000 to a much smaller number (say, 1000) 

and see what effect this has on the fern attractor.  What is the minimum number of 
iterations needed to create a decent (to you) attractor?  Likewise change the number 
of iterations to a larger value.  The simple fact that all points eventually find their way 
to the image of the fern provides a nice intuitive definition of the term “attractor”. 

 
3) Above the glBegin(GL_POINTS) statement, add glPointSize(2.0) and see 

what happens.  Try changing glBegin(GL_POINTS) to glBegin(GL_LINES) or 
glBegin(GL_LINE_STRIP) and see what effect this has.  Do you like the result? 

 
4) Experiment with some of parameter assignments.  See if you can make the fern 

bend or twist.  Perhaps you can even change the leaf or stem patterns? 
 
5) Change the probabilities within the if… elif decision statements.  What 

happens?  Notice that the sum of all the probability intervals equals 1.0.  Why?  What 
happens if there is a “hole” in the interval?  For example, change the first if v >= 
0 and v <= 0.8000: statement to if v >= 0 and v <= 0.5000: and see 
what happens.  Was there a difference in the fern plot?  What did you expect to see? 

 
6) One simple modification that you can make is to change the sin() statements in the 

rules to tan() statements.  At small angles, the values of sin() and tan() are 
nearly the same, so distortions would occur only when the angles are relatively large.  
The figure "tan()" at the end of the exercises illustrates this simple change.  The 
effect is not dramatic, but the fern appears to be a bit more filled out in its foliage. 

 
7) Experiment with the rule statements and see if you can create a unique and perhaps 

otherworldly plant.  Make certain you save your best efforts! 
 
8) The Barnsley Fern program does not have a reshape function.  Is this a problem?  

What difficulties can you foresee in adding a reshape function to the program?  
Would it be impossible to add such a function? 
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9) Use Google or your favorite search engine to look for “Michael Barnsley” and 
“fractals” and see what you can find.  Barnsley is one of the pioneers in fractal 
imagery.  In particular, see if you can find references to his Collage theorem.  What 
is this theorem used for?  You might remember this reference for a final project 
suggestion if you are interested in the topic of fractal forgeries. 

 
10) This is just a thought question.  How does nature determine patterns in living 

organisms?  The easy answer is "By using the genetic code in DNA".  But how does 
this code work?  Could it be that there is an iterated system found in the DNA of 
every living thing?  All maple leaves are different, yet they all are similar in shape 
and structure otherwise we could not distinguish a maple leaf from an elm leaf.  Can 
this be explained by assuming that DNA randomly chooses a set of parameters 
(whatever they may be) and applies a set of rules to those parameters?  Look up 
Stephen Wolfram and "A New Kind of Science" to see what one scientist has to say 
about nature and computation. 

 
 
 

  
         Figure 6.3 
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    tan() 
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Section 6.5  Chaos and the Logistic Map 
 
 The population of a living species may fluctuate from year to year depending on 
the available resources and the environmental conditions of the habitat.  Biologists are 
interested in the dynamics44 of population growth and decline.  Computer simulations 
have provided some insight into the nature of population dynamics and such simulations 
continue to be an area of research and interest to modern biologists.  In this section we 
will conduct a classic simulation of population dynamics.  We will use this simulation to 
introduce the topic of chaotic behavior produced from a simple deterministic equation.45 
 
 The logistic equation, xn+1 = rxn(1-xn) has been used to model population growth 
and decline in addition to providing an introduction to the subject of chaos and chaotic 
dynamics.46 47  In this equation, x represents the decimal percentage of the species 
population in terms of the total carrying capacity of the habitat.  For example, x = 0.85 
would mean that the population is at 85% of its maximum capacity.  The parameter r 
represents all factors that affect the population we are studying (food, competition, 
climate, etc.).  The subscripts n and n+1 indicate that the output, xn+1, will be used as 
the input, xn, during the next iteration.  If the value of xn+1 is high, the term (1-xn) will be 
relatively low for the next calculation, resulting in a lower population in the next 
generation.  As an example, using x = 0.85 would result in (1- 0.85) or 0.15 as 
the population value for the next generation.  This would represent a massive die-off 
within the species in that particular habitat.  Likewise, using x = 0.23 as the initial 
population would result in (1- 0.23) or 0.77 as the population in the next generation, 
presumably due to the abundance of resources available to the lower 0.23 number of 
individuals.  So, the (1-xn) term acts as a feedback mechanism, insuring that under 
many conditions, the species population will adjust itself according to the conditions 
specified by the variable r.   
 
 This relatively simple equation, when iterated, produces surprising and 
unpredictable results.  Suppose we start with a value of r = 2.548 and a value of x = 
0.5.  Iterating the logistic equation we quickly find that the “population” stabilizes at 0.6 
of its maximum carrying capacity.  We can see this by plotting the graph of the 

                                            
44 Dynamics can be defined here as the process of change in a system.  This process of change 
can be a change in position, motion, or simply a change in value or number.  System dynamics is 
quantitative or numerical in nature, but can be studied qualitatively by using graphics such as we 
are doing here. 
45 While this isn't a precise definition, we can restate this as "apparently random behavior from a 
relatively simple non-random equation".  The study of chaos and chaotic systems had its zenith in 
the late '80's and early '90's.  I still find the topic fascinating and I hope you find it interesting as 
well. 
46 Gleick, James (1987).  "Chaos:  Making a New Science".  Penguin Books. 
47 Stewart, Ian (1992).  "Does God Play Dice?  The Mathematics of Chaos".  Blackwell 
Publishing, p. 136. 
48 The meaning of r is a bit obscure.  In the logistic equation or mapping, r simply represents all 
the factors that affect a species population.  r is meaningless in terms of “What does r = 2.5 
signify?”  It’s just a value that represents a measureless quantity.  It turns out, though, that the 
parameter r is responsible for the interesting behavior behind the logistic equation and the 
logistic equation seems to have some validity as a model of species population over time. 
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population with respect to time.  In this case, time will be represented along the x-axis by 
subsequent generations.  The following program listing will plot this graph under the 
specified conditions. 
 
# PyLogistic.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
#  Define the width and height variables as global 
global width 
global height 
 
#  Initial values for width and height 
width = 600 
height = 600 
     
def init(): 
 glClearColor(1.0, 1.0, 1.0, 1.0) 
 gluOrtho2D(-8.0,7.0,0.0,1.0) 
  
def plotlogistic(): 
 glClear(GL_COLOR_BUFFER_BIT) 
  
 glPointSize(1.0) 
  
 # Set the initial values of x and r 
 x = 0.5 
 r = 2.5 
  
 #  Range over the entire interval 
 for a in arange(-8.0, 7.0, 0.0001):  
   
  # The logistic equation 
  x = x*r*(1-x) 
  glColor3f(0.0, 0.0, 0.0) 
  glBegin(GL_POINTS) 
  glVertex2f(a,x) 
  glEnd() 
  glFlush() 
 
 #  Print the final value 
 print x 
   
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 



 138

 if key == "q": 
  sys.exit() 
 
def main(): 
 global width 
 global height 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
 glutInitWindowPosition(200,200) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("Logistic Chaos") 
 glutDisplayFunc(plotlogistic) 
 glutKeyboardFunc(keyboard) 
  
 init()  
  
 glutMainLoop() 
 
main()     
 
# End Program 
 
 The plot from this program is found in the figure below. 
 

  
    x = 0.5  r = 2.5 
 
 Not very impressive, is it?  There appears to be a bit of “noise” at the extreme left 
hand portion of the screen.  This noise represents some initial population fluctuations 
resulting from the (1-xn) feedback mechanism attempting to find equilibrium.  Rather 
quickly 0.6 is reached as a fixed point.  No further change in the population value occurs 
once this fixed point is established.  You should see 0.6 displayed in the DrPython 
console.   
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 The program listing is fairly self-explanatory.  The logistic equation is found in the 
plotlogistic function and is properly commented.  Study this function carefully so 
that you understand how the logistic equation is iterated.  As in previous iterated 
functions we’ve encountered, the “new” calculated value of the function (stored in x) will 
be used as input for the next iteration (it will then be the "old" value at that future time).  
The logistic equation is a dynamic system, meaning that it is constantly changing based 
on the current conditions.  Nature enacts such changes continuously, but we can’t model 
continuous time flow using a computer.  Instead, we introduce increments of time 
(iterations) to model nature as closely as possible.  The smaller the increments (usually 
resulting in more iterations), the better we may simulate nature.  Unfortunately, when we 
decrease the time increments and increase the number of iterations, our simulation can 
slow significantly.  In this program we are using 0.0001 as our increment length.  You 
can experiment with the size of this value to see the effect on the simulation speed.  If 
the increment is too large, the plot will appear “dotted”.  If the increment is too small, we 
may unnecessarily increase the execution time of the program.  It is possible to calculate 
the optimum increment in most cases.49  We’ll discuss this topic further in later chapters. 
 
 Note the print x statement following the glFlush() command.  This 
statement is used to print the value corresponding to the population in this first example.  
You might loosely define this value as the current decimal representation of the fraction 
of the carrying capacity of the habitat based on the present conditions (initial population 
and the value for r).  If the population fluctuates, this statement will only print the last 
calculated value in the simulation.  If you desire a running total, then you can place this 
statement immediately after the logistic equation x = x*r*(1-x).  Be warned that this 
will slow down program execution!  My recommendation is that you comment out this 
line after the first simulation. 
 
 Here is a short deviation from the task at hand.  One of my former students 
"accidentally" commented the glutInitWindowSize(width, height) 
statement and noted that the program still ran.  Try this!  The program will run, but the 
window size will be the default value of 300 x 300 rather than the 600 x 600 specified in 
the initial width and height variables. 
 
 Let’s experiment a bit.  First change the value of x in the plotlogistic 
function to x = 0.95 and run the program again.  Try a few more initial values for x 
(remember that 0.0 < x < 1.0, in other words, keep x between 0 and 1).  It appears 
as if the value of x is not crucial to the outcome of the simulation!  From our simulation, 
we can state that the initial size of the population doesn’t appear to affect the long-term 
stability of the population using this particular value for r.  Now let’s change r to r = 
3.0 and see what happens.  There is definitely a change in the graph.  The line seems 
to be a bit thicker and the left hand side of the graph has a split appearance.  The 
population does seem to again stabilize, but this time at a slightly higher value than 
before.  Apparently there is some minor periodic fluctuations at the beginning of the 

                                            
49 There are instances, such as in this example, where we use a much smaller increment than 
needed in order to slow down the rendering of the graph.  Modern computers are so fast that 
many drawings are plotted almost instantly.  This is great if all we are interested in is the final 
graph.  Sometimes, though, it’s nice to watch the graph being plotted.  In those cases, we 
increase the number of increments (or decrease the time interval) to slow things down. 
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simulation under these conditions.  Once again change the value of x to verify that this 
variable has no role in the long-term behavior of the population. 
 
 To make things a bit more interesting, set r = 3.05.  The result is pictured 
below in figure x = 0.5  r = 3.05.  We implemented a small change in r and the 
result is a population that appears to fluctuate back and forth between two values!  Can 
you find the parameter between r = 3.0 and r = 3.05 where the two separate 
population values first appear?  The next figure x = 0.5  r = 3.45 was created 
using r = 3.45.  The population fluctuations are now a bit more complex.  Try r = 
3.49.  Do you see that our species population now alternates between 4 separate 
values?  Now try r = 3.562.  The result is in figure x = 0.5 r = 3.562.  Now there are 8 
separate values!  This is getting interesting!  Try r = 3.565 and then r = 3.571.  
What do you see?  I find it amazing that such small changes in r result in impressive 
changes in population fluctuations.   
 
 One of the hallmarks of chaotic behavior is the sensitivity of such systems to the 
initial conditions of the simulation.  In English, this means that a very small change in the 
initial conditions (such as the value of r) can result in enormous changes in the 
outcome.  This is due to the feedback mechanism built into iterative systems.  Small 
errors keep growing (like feedback in a microphone and speakers!) until they completely 
overwhelm the system.  Also, notice the pattern of changes in the population values:  1, 
2, 4, 8.  If we were to experiment carefully, we would find 16, 32, 64, etc.  This is called 
“period doubling” and is found in all chaotic systems, not just this one.  If we were to 
check closely, we would also find that the rate of period doubling is constant at about 
4.66950 times quicker for each successive doubling. 
 

  
   x = .5  r = 3.05 
                                            
50 This is called Feigenbaum’s Constant after Mitchell Feigenbaum, who first discovered the value 
experimentally using a hand held programmable calculator in 1975.  He found period doubling in 
the logistic equation increased at the rate of about 4.669 for each successive doubling.  He then 
discovered the same 4.669 value in other completely different systems and he theorized that this 
value was a universal constant found in all chaotic systems.  He was proven correct and the 
constant now bears his name. 
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 Finally, let’s glimpse true chaos.  Set r = 3.98.  The result is nothing short of 
impressive.  We now have a population which is unstable at best.  Even though we are 
using the same logistic equation as before, it would be virtually impossible to predict the 
population for more than a few iterations in advance.  Figure x = 0.5  r = 3.98 
illustrates the chaos lurking within this simple equation. 
 
 To generate the Chaos! figure pictured below requires both an explanation and a 
modification to our program.  The explanation involves varying the value of r as we 
move from left to right in the window.  Lower values of r (<3.00) indicate a single stable 
population.  As we increase the value of r, the stable population rises until we reach a 
point where the population abruptly divides into 2 values (at ~3.05).  As r continues to 
increase, we see period doubling bifurcations51 to 4, and then 8 values.  After that, the 
bifurcations come too quickly to distinguish in this figure and chaos is rapidly 
established.  This is a classic figure used frequently to illustrate explanations of chaotic 
phenomena.  Now you know how to make this graph yourself! 
 

  
  x = .5  r = 3.45    x = .5  r = 3.561 
 
 

                                            
51 A bifurcation is a splitting into two parts or paths. 
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  x = .5  r = 3.98     Chaos! 
 
 
 The program listing modifications needed to render the Chaos! Figure above are 
found in the def plotLogistic(): function as follows: 
 
def plotLogistic(): 
 glClear(GL_COLOR_BUFFER_BIT) 
  
 glPointSize(1.0) 
 
 x = 0.5 
 r = 2.5 
  
 for a in arange(-8.0, 7.0, 0.0001):  
  r = r + 0.00001 
   
  x = x*r*(1-x) 
  glColor3f(0.0, 0.0, 0.0) 
  glBegin(GL_POINTS) 
  glVertex2f(a,x) 
  glEnd() 
  glFlush() 
 
# End function 
 
 We set r = 2.5 initially and allow it to increase by  0.00001 during each iteration 
of the r = r + 0.0000152 statement within the for loop.  As you recall, the value of r 
is the critical value in our program.  As r increases, the population changes until chaos 
is reached.  You may be tempted to think that such a simple population model would 
have little resemblance to real populations in the wild.  In fact, many species of plants, 

                                            
52 This statement can also be written r += 0.00001. 
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insects, and animals seem to exhibit both stable and chaotic fluctuations in population 
numbers as a result of changing conditions within their habitats. 
 

Exercises 
 
1) Use Google and look up Mitchell Feigenbaum and chaos.  Also look up Robert May 
 and chaos. 
 
2) Another method of looking at the logistic equation is to consider that the equation is 

actually a quadratic function and can be graphed as a parabola that opens 
downward.  We can see this by multiplying rx(1-x) and getting rx – rx2.  The 
negative rx2 term dictates the downward opening parabola.  We can then iterate the 
equation on the parabola and y = x line and see the chaos emerge.  Try the 
following changes to see this different view.  First modify the gluOrtho2D statement 
in def init(): as follows: 

 
 gluOrtho2D(0.0,1.0,0.0,1.0) 
 

 Once you have adjusted the viewing dimensions, then change the def 
plotlogistic(): function according to the following listing. 

  
      def plotlogistic(): 
 glClear(GL_COLOR_BUFFER_BIT) 
  
 glPointSize(1.0) 
  
 # set the r parameter 
 r = 2.5 
  
 # Plot the logistic parabola and the line y = x 
 for x in arange(-1.0, 1.0, 0.00001):  
  y = x*r*(1-x) 
   
  glColor3f(0.0, 0.0, 0.0) 
  glBegin(GL_POINTS) 
  glVertex2f(x,y) 
  glVertex2f(x,x) 
  glEnd() 
  glFlush() 
  
 # Plot the population 
 x = 0.3 
 y = 0.0 
  
 for n in arange(1,100000): 
   
  # add some color for effect 
  glColor3f(sin(x),cos(x*n),sin(n*y)) 
  glBegin(GL_LINE_STRIP) 
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  # the OLD point 
  glVertex2f(x,y) 
 
  y = x*r*(1-x) 
 
  # the NEW point 
  glVertex2f(x,y) 
  x = y 
  glEnd() 
  glFlush() 
 
      # End Function 
 
  The graph is illustrated in figure x = 0.3 r = 2.50 on the next page.  The 

“upside down” parabola represents the logistic equation.  The diagonal line is the     
y = x reference line.  This reference line is important because it will allow us to use 
the output of the logistic equation as input for the next iteration.  The interpretation of 
the horizontal and vertical lines connecting the parabola and the y = x reference 
line is a bit tricky, but remembering the concept of iteration, let's give it a try.  We 
start with x = 0.3, represented by the vertical line extending from the bottom of the 
window (at a location corresponding to approximately x = 0.3) and upward until it 
intersects the parabola.  The value of the logistic equation at this point (the 
intersection of the x = 0.3 vertical line and the parabola) represents the new 
population in the next iteration.  We iterate this new population back into the logistic 
equation by drawing a horizontal line from this intersection point to the y = x 
reference line and then upward until we intersect the parabola again.  This process is 
continued until we stabilize at a single point (as shown in the first figure below) or we 
complete some specified number of iterations.  The y = x reference line is how we 
turn "old" values of the logistic equation into new input for the next iteration.  Do you 
see how this works? 

 
  If you are wondering about the duplication of glVertex2f(x,y) in the for 

loop, remember that we are using glBegin(GL_LINE_STRIP) to plot from the 
previous point to the current point.  The first glVertex2f(x,y) is the previous 
point and the second glVertex2f(x,y) represents the current point after the 
logistic equation is applied.  The result is a connected set of line segments that 
represent the path or orbit of our iterations.  Graphical analysis, while not definitive in 
terms of proof, is a very powerful tool for analyzing the qualitative behavior of 
equations and systems of equations.  We can actually see the logistic equation 
search for a stable solution (if one exists) or descend (ascend?) into chaos. 

 
  Let’s experiment.  Set r = 3.05.  Figure x = 0.3  r = 3.05 shows the 

result.  The graph never settles to a single fixed point.  If we watch closely, we may 
be able to see that the horizontal and vertical lines eventually intersect the parabola 
in two different points, corresponding to two population values.  This two cycle 
behavior is sometimes called a limit cycle.  A limit cycle is simply a cycling or 
repeating set of values and can be of any length depending on the equation and 
equation parameters. 
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   x = 0.3  r = 2.5    x = 0.3  r = 3.05 
 
  Now let’s increase r until we approach chaos.  Try r = 3.45.  The result is 

shown in figure x = 0.3  r = 3.45 below.  Notice that the graph fluctuates 
around several values.  r = 3.561 demonstrates even more fluctuations as 
pictured in x = 0.3  r = 3.561.  Finally, to get a picture of full blown chaos, set 
r = 3.98 and run the program.  The result is rendered in figure x = 0.3  r = 
3.98 and illustrates the wild population values created as a result of the chaotic 
behavior of the equation.  The figure can’t do justice to actually watching the program 
run.  You can easily see the population size change in a seemingly random fashion 
and cover almost the entire range of allowable values.  What values appear to be left 
out? 

 

   
     x = 0.3  r = 3.45    x = 0.3  r = 3.561 
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     x = 0.3  r = 3.98     Zoom! 
 
 
3) Try several values of r between 3.00 and 4.00.  Try r = 4.00 and see if you can 

detect a difference between r = 4.00 and r = 3.98.  What is this difference?  
Finally, try r = 4.01 and see what happens.  Can you explain the result? 

 
The figure Zoom! Illustrates a magnification of the intersection point between the y = 
x line and the parabola in the previous figure.  This magnification is around 100000 
times, certainly in the realm of an electron microscope!  Notice that the orbits of the 
chaotic lines encircle the intersection, but of the 5 million iterations plotted for this 
diagram (most of which are much larger than this very tiny area and are not shown), 
none appear to hit the intersection point.  This is certainly not a proof, but it is 
suggestive that no line will ever strike this intersection point even though the 
iterations are wildly chaotic.  Can you think of a reason why this is so?53  Along the 
same “lines” (sorry), none of the orbits will ever retrace itself.  Why not?54  So, even 
though the logistic system exhibits chaos and has the appearance of randomness, 
there are some constraints on the system.  We’ll visit this topic again in the next 
chapter.  Can you figure out a way to modify your program to replicate the Zoom! 
figure? 
 
This is not an exercise, per se, but I want you to think about this!  Computers have a 
reputation for truth.  The computer is never wrong.55  If you don't believe me, then 
the next time you are incorrectly billed or scheduled for a class you didn't sign up 
for… or given a grade you didn't deserve, then where will the blame for the error be 
placed?  Most likely the error will be blamed on the human who input the original 

                                            
53 What would happen if one of the chaotic orbits would exactly hit the intersection point?  Would 
there be any further chaos?  Why not?  The intersection point is a fixed point and would capture 
all future orbits ending the chaos.  However, this is a chaotic system, so that will never happen. 
54 For the same reason as the fixed point.  If an orbit ever retraced itself, then there would be a 
predictable periodicity.  In other words, the diagram would repeat itself and there would be no 
more chaos. 
55 And if you believe that, I have a bridge in New York I would be interested in selling… 
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data!  But is this always the case?  Can computers make errors?  You bet they can!  
Computers lie all the time.  It is simply not possible to represent all real numbers as 
computer values.  We can usually work with 15 or 16 digits of precision (if we are 
lucky) and no more.  This means that the computer real number line is "holey".  
Nature has no such limitations.  When an event occurs in nature, the precision of the 
"calculations" is infinite.  Because of this, we can never completely represent a 
natural event within the confines of a computer simulation.  There will always be 
some error involved.  This may not seem too important… after all, the computer can 
represent values to 15 or 16 digits so the error will be quite small, right?  Wrong.  It 
turns out that most of nature is chaotic.  In chaos, the outcome is extremely sensitive 
to the initial conditions and even vanishingly small errors "feedback" to the extent 
that the resulting noise overwhelms our attempts to accurately portray nature. 
  

 In the previous exercises, what would happen if the graph appeared to retrace itself 
or strike the intersection point of the logistic parabola and the y = x reference line?  
Would this mean that the model was wrong and the math incorrect?  Not at all!  The 
pixels on the display window are not geometric points.  Screen pixels are finite in 
size and there are an infinite number of points between any two pixels.  Just as with 
the number line, we can never display all geometric points on a computer window.  
So it would be quite possible for a line to appear to intersect a point, when actually it 
does not.  Try to keep this in mind if your graph doesn’t seem to do what you expect 
or if the geometry doesn’t seem correct.  Of course, the fault may still be human 
error. 
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Section 6.6 Predator-prey Relationships 
 

 The logistic equation is a simple model56 of a single population within a habitat.  
We can expand this model to include populations which are dependent on one another, 
such as a predator-prey relationship.  The Lotka-Volterra predator-prey model57 was 
presented as a system of two differential equations as follows: 
 

  bxyax
dt
dx

−=   and  exycy
dt
dy

+−=  

 
 You probably haven’t studied differential equations, so I’ll attempt to interpret the 
meaning of these.  Let’s define x to be the prey population and y the predator 
population.  The first equation says something to the effect of “the change in x (that’s the 
dx term) with respect to time (the dt term) is determined by some parameter a times the 
previous x population minus some parameter b times the interaction between the 
previous prey and predator populations (x*y)”.  Specifically, we would reason that that 
change in the prey population with respect to time (dx/dt) is affected by how many of 
these organisms are available to reproduce (a*x) and the negative impact of the 
interaction between predators and prey (-b*x).  The predator population equation can 
be translated in a similar fashion.  The important thing to realize is that both equations 
are “wired” together so that they interact with each other as do the populations they 
model. 
 
 How do we translate these differential equations into a form usable by Python?  
The equations assume continuous time, but we can’t program continuous time in any 
computer language.58  We must take some liberties and rewrite the equations as follows: 
 
 x = x + (a*x – b*x*y)*dt 
 y = y + (-c*y + e*x*y)*dt 
 
where dt represents a very tiny time increment and both dx and dy are represented by 
x and y respectively.  In the equations, the new population values are calculated by 
adding the old values of x and y to the change in populations represented by the 
equations in parentheses multiplied by the time increment.  We can now use the 
equations in Python and solve them numerically by iteration.59  Technically, these 
equations are now called difference equations and the listing below will demonstrate 
their graphical behavior. 
 
# PyPredPrey.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 

                                            
56 With not so simple behavior! 
57 http://mathworld.wolfram.com/Lotka-VolterraEquations.html 
58 As far as I know… which may not be very far. 
59 This method or rewriting differential equations is called Euler’s Method.  You REALLY need to 
look up Euler.  He was an amazing mathematician of the first order.  Much of his work was 
completed after he was completely blind! 
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from OpenGL.GLUT import * 
from random import * 
from numpy import * 
import sys 
 
#  Initial values of width and height 
width = 400 
height = 400 
     
def init(): 
 # White background 
 glClearColor(1.0, 1.0, 1.0, 0.0) 
   
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 #  Set the plot window range 
 gluOrtho2D(0,10,0,6) 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
 
def plotpredprey(): 
  
 # habitat and population parameters 
 a = 0.7 
 b = 0.5 
 c = 0.3 
 e = 0.2 
  
 # time increment 
 dt = 0.001 
  
 # initial populations 
 x = 0.5 
 y = 0.5 
  
 glClear(GL_COLOR_BUFFER_BIT) 
  
 for n in arange(0,10, 0.0001): 
   
  # predator-prey equations 
  x = x + (a*x - b*x*y)*dt 
  y = y + (-c*y + e*x*y)*dt 
   
  glBegin(GL_POINTS) 
  # parametric plot 
  #glColor3f(0.0,0.0,0.0) 
  #glVertex2f(x,y) 
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  # prey 
  glColor3f(1.0, 0.0, 0.0) 
  glVertex2f(n,x) 
   
  # predator 
  glColor3f(0.0, 0.0, 1.0) 
  glVertex2f(n,y) 
  
  glEnd() 
  glFlush() 
   
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
def main(): 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("Predator Prey Simulation") 
 glutDisplayFunc(plotpredprey) 
 glutKeyboardFunc(keyboard) 
  
 init()  
 glutMainLoop() 
 
main()   
 
# End of Program 
 
 The astute reader may notice the lack of global variables within functions.  
The global declaration is needed only if we want to change a variable’s value within a 
function and have that change reflected over the entire program.  In this case, we are 
setting the width and height variables immediately and won’t alter them again during 
a single run of the program.  One note worth mentioning:  The difference equations 
contain the parameter e instead of d from the sample equations on the first page of this 
section.  This substitution was made to avoid confusion with the dt term. 
 
 When we run the program, we should see a graphic plot similar to figure “Pred-
prey” below.  The prey population is plotted in red and the predator population is blue.  
Notice that the two peaks are related, but they don’t coincide.  As the prey population 
reaches its maximum, the predator population begins to grow.  As the predator 
population grows, the prey population declines (they are being eaten!).  When the prey 
population diminishes, the predators begin to starve.  When the predators reach a low 
number, the prey population begins to grow again and the cycle repeats.  This is 
interesting, especially if you like dynamic systems! 
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 Another interesting way to graph this relationship is parametrically.  Uncomment 
the following glColor3f and glVertex2f lines in the def plotpredprey(): 
function (in the parametric plot section as shown below) and see what happens.   
 
 # parametric plot 
 glColor3f(0.0,0.0,0.0) 
 glVertex2f(x,y) 
 
 This additional plot (in black) is superimposed on the previous plot as pictured in 
figure Pred-prey parametric below. 
 

  
   Pred-prey 
 

  
  Pred-prey parametric 
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 What does this new plot mean?  We are plotting both predator and prey 
populations with respect to each other.  Each point on the “oval” plot represents a single 
predator-prey ordered pair or relationship, with the prey value on the x-axis and the 
predator value on the y-axis.  Trace the oval plot with your finger and see how it relates 
to the previous x,y plot of population values.  When the prey population is at its highest 
level (the extreme right side of the oval), the predator population is below 50% of its 
maximum.  When the predator population is at its maximum (the extreme top of the 
oval), the prey population is very low (the extreme top of the oval is toward the left side 
of the graph… where the prey population is low).  Remember, the x axis still represents 
prey and the y-axis the predator populations! 
 
 This section concludes chapter 6.  In the next chapter we’ll explore some 2D 
strange attractors and present some 2D fractal images that are considered “classic” in 
both beauty and significance.   
 

Exercises 
 
1) The Lotka-Volterra equations are not chaotic as they are presented.  Experiment with 

the initial population values and see if these have an effect on the plot.  Do you 
notice any changes in the resulting graph? 

 
2) Now experiment with the habitat and population parameters.  You may have to 

adjust the gluOrtho2D values if the graph becomes too small or too large.  Can you 
induce chaos?  That is your goal in this exercise.  Can you create a predator-prey 
model that appears to fluctuate randomly, yet stays within certain limiting values?  
You don’t want either population to run away to infinity, nor do you want either 
population to reach extinction (zero).  If you are able to achieve chaos, share your 
model with your classmates and teacher! 

 
3) You can experiment with time by changing the value for dt.  Try dt = 0.01, 

followed by dt = 0.0001.  The smaller the "time-slice", the slower the program 
execution.  Why?  Also experiment with the increment size in the for n in 
arange(0,10, 0.0001): statement.  Try 0.001 and then try 0.00001 and see 
what happens.  You can also try combinations of changes in dt and the loop 
increment.  However, if you are experimenting to see the effect that individual 
changes have on a program, you should only change ONE parameter at a time.  
Why? 

 
4) For an interesting experience, use random() to randomize the parameters.  Here's 

how: 
 

a = random() 
b = random() 
c = random() 
e = random() 

 
 You can also randomize the initial population values for x and y.  The random() 

command (which is available through the from random import * statement) 
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generates a pseudo-random number between 0.0 and 1.0, which is perfect for the 
parameters in this program.  I would recommend that you print the parameter values 
using print a, print b, etc. after the random statements in the event that you 
get an interesting plot and you want to study it further.  Do you see any chaotic 
behavior with any particular set of parameter values?  Chaotic behavior would give 
the appearance of randomness among the population peaks and valleys rather than 
a "nice" regular pattern of spikes.  The parametric plot of chaotic behavior might be 
interesting.  If you come up with something that appears unusual, let your teacher 
and classmates see the result!   

 
Far from being simply an interesting command to play with, the pseudo-random 
numbers generated by random() are important in many branches of math and 
statistics… and of course, in game play.   

 
5) What happens when you experiment with the population difference equations 

themselves?  Modify the equations and see what happens.  Anything goes!  What 
happens if you substitute trig functions for some of the variables?  Your result may 
not model anything at all in the real world, but perhaps the graph will be interesting. 

 



Chapter 7 Strange Attractors and Beautiful Fractals 
 
 In this chapter we will take a closer look at some famous chaotic “strange” 
attractors and explore the foundations of a few of the most beautiful fractal images ever 
created.  In conjunction with these fractal images, we’ll explore the rudiments of complex 
arithmetic and learn that imaginary numbers are not imaginary at all!  With the exception 
of a brief interlude when we discuss animation, this chapter will constitute our last formal 
study of 2D space.  First, let’s talk about the weather… 
 

Section 7.1 Lorenz and the Weather 
 
 The weather is an intricate part of our daily lives and accurate weather 
forecasting is both an enormous responsibility and a multi-billion dollar business.1  It was 
once thought that with the introduction of computers in the mid-1900’s, weather 
forecasting would eventually become an exact science (or nearly so!).  If we could only 
bring enough computing power to bear on the problem of forecasting, we could predict 
with arbitrary certainty the weather many days, or even weeks, in advance.  Imagine 
what this would mean!  We would no longer wonder whether2 or not we should take an 
umbrella with us to school or work that day.  We would know if the game will be played 
next Sunday afternoon or if we should avoid the 3-hour round trip to the stadium.  
Farmers could plan strategies for drought or wet conditions during the current growing 
season.  Insurance companies could advise potential home owners to avoid areas slated 
to be hit by severe storms, tornadoes, or hurricanes.  But in 1963, all these hopes of a 
perfect weather forecasting system were dashed, although few recognized it at the time. 
 
 Edward Lorenz was a meteorologist at MIT in the early 1960's.3  He had a 
computer, which was not a common thing back in those days.  It was hideously slow 
compared to the machine you are using now,4 but it did work most of the time.  Lorenz 
used his computer to model the weather and his model was based on three (now 
famous) differential equations he distilled from a more complex system.  The three 
equations are: 
 

 yx
dt
dx 1010 +−=  

 

 xzyx
dt
dy

−−= 28  

 

                                            
1 Many of the most watched programs on television deal with the weather and some of the most 
popular segments on news shows are the weather forecasts.  As I write this, hurricane Katrina is 
a recent memory and hurricane Rita is bearing down on Texas, it’s exact path uncertain..  
Inclement weather has a profound and far-reaching effect on our economy and our daily lives! 
2 Pun intended. 
3 Stewart, Ian (1992).  "Does God Play Dice?",  Cambridge, MA:  Blackwell (pp. 133-144). 
4 The computer was a Royal McBee and had a clock speed of about 1 Hz.  Compare that to a 
typical desktop or laptop computer with a 1 gHz cpu.  Your computer is about a billion times faster 
than Lorenz's! 
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 xyz
dt
dz

+−=
3
8

  

 
 The three x, y, and z equations are dependent on each other and they calculate 
the change in each variable with respect to time.5  The key to these equations (and what 
makes them impossible to solve analytically) is the xz and the xy terms in the second 
and third equations respectively.  The only way to effectively understand the behavior of 
this system of equations was to let a computer solve the equations numerically6 and that 
is exactly what Lorenz was doing when he made his monumental discovery.   
 
 One day he was running his weather simulation and he wanted to know how a 
particular solution behaved over a longer period of time.  Since his computer was so 
slow, he decided not to start over at the beginning, but instead, simply entered some 
numbers from the middle of the run and started the simulation from that point.  What he 
expected to happen (and by all rights, what SHOULD have happened) was that his 
Royal McBee computer would simply repeat the original run exactly from the new 
starting point and then go on from there.  Lorenz took a coffee break and returned to the 
printout, expecting to see a duplication of the second half of numbers followed by a new 
weather pattern.  What he saw on the paper was nothing short of a mystery.  The 
numbers did repeat themselves for awhile, but then they slowly diverged until the 
computer was predicting a completely different weather pattern.  How could this be?  
How could the same equations produce a different result?  At first, Lorenz suspected a 
computer glitch, but then when the computer was found to be running correctly, he 
realized that something deep was occurring within the equations themselves.  He saw 
that instead of entering the numbers exactly as they were on the printout, he had 
rounded them to 3 decimal places instead of the usual 6.  This seemed reasonable, 
since everyone knew at the time that small differences in input led to small differences in 
output… in other words, it shouldn’t have made much difference whether the starting 
values were 3 or 6 decimal places as long as they represented close to the same value.  
Well, everyone was wrong.  It DOES make a difference!  Small, even vanishingly small, 
differences in input can lead to enormous changes in output.  Once Lorenz realized this 
fact, he knew that long-range weather forecasting would be forever out of reach. 
 
 All official weather forecasts are based on computer models.  These models use 
systems of equations that rely on data received from various weather stations.  This 
input is limited to a relatively few weather stations scattered worldwide and the 
measured weather data is limited to a few decimal places depending on the instrument 
used to collect the data.  Nature, however, is not limited to any specific number of 
decimal places and weather occurs at every point in our atmosphere.  Based on 
Lorenz’s discovery, we now know that the outcome of any computer weather model is 
extremely dependent on the data the model receives.  Even if we improve our data 
collection and instrumentation, we can never hope to achieve accurate prediction more 
than a few days in advance.  This extreme sensitivity to initial conditions has been 

                                            
5 The three distinct x, y and z variables also imply 3 dimensional behavior, but we will view only 2 
of these dimensions at a time in this chapter.  We’ll explore the full 3D behavior of the Lorenz 
system later in the text.  Notice there is an xy term in the z equation, a y and xz term in the y 
equation and a y term in the x equation.  The equations are “wired” together! 
6 No graphics at all… Lorenz's primitive computer produced only numerical results. 
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termed the “Butterfly Effect” and is a hallmark of chaotic behavior.7  The flapping of a 
butterfly’s wings in Hong Kong leads to a tornado (or not) in Kansas.  Thank you, 
Edward Lorenz… 
 
 The following program will attempt to duplicate (as best as we can) Lorenz’s 
famous computer run.  We will have the advantage of graphics, but hopefully we can 
catch a glimpse of what he saw on his printout and understand the insight he achieved 
based on his computer model.  Here is the program listing: 
 
# PyLorenz.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from random import * 
from numpy import * 
import sys 
 
# Globals for window width and height 
global width 
global height 
 
#  Initial values of width and height 
width = 500 
height = 500 
     
def init(): 
  
 # White background 
 glClearColor(1.0, 1.0, 1.0, 0.0) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 #  Set the plot window range 
 #  This will coincide with the for... arange loops 
 gluOrtho2D(-30.0, 30.0, -30.0, 30.0) 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
 
def plotlorenz(): 
 glClear(GL_COLOR_BUFFER_BIT) 
  
 # Enlarge the points for better visibility 

                                            
7 Remember that chaotic behavior was loosely defined in the last chapter as apparently random 
behavior produced from deterministic or non-random equations.  There are much more precise 
mathematical definitions to be sure! 
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 glPointSize(2.0) 
  
 # The blue plot is the original plot 
 # Note the values for x,y, and z 
 x = 0.50002 
 y = 0.50002 
 z = 0.50002 
 dt = 0.0005 
 glColor3f(0.0,0.0,1.0) 
 
 # the range is the horizontal width of the window 
 for n in arange(-30,30, 0.0005): 
 
  # Lorenz’s equations 
  x = x + (-10*x + 10*y)*dt 
  y = y + (28*x - y - x*z)*dt 
  z = z + (-2.66667*z + x*y)*dt 
  glBegin(GL_POINTS) 
  glVertex2f(n,y) 
  glEnd() 
  glFlush() 
  
 # The second plot in red is the truncated plot 
 # Note the small difference in starting x,y,z values! 
 x = 0.50000 
 y = 0.50000 
 z = 0.50000 
 dt = 0.0005 
 glColor3f(1.0,0.0,0.0) 
  
 for n in arange(-30,30, 0.0005): 
  x = x + (-10*x + 10*y)*dt 
  y = y + (28*x - y - x*z)*dt 
  z = z + (-2.66667*z + x*y)*dt 
  glBegin(GL_POINTS) 
  glVertex2f(n,y) 
  glEnd() 
  glFlush() 
   
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
def main(): 
 global width 
 global height 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
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 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("Lorenz") 
 glutDisplayFunc(plotlorenz) 
 glutKeyboardFunc(keyboard) 
  
 init()  
 glutMainLoop() 
 
main()     
 
# End Program 
 
 When you run this program, you’ll notice that the red plot and the blue plot 
coincide for a short distance, with the red overwriting the blue (red is the second plot 
color).  But then the two colors begin to diverge about one-third of the way across the 
window.  By the time the end of the plot is reached, both systems are following 
completely different paths even though they are using the exact same equations and 
differ in starting values by only 0.00002!  Figure 7.1 below illustrates this strange, but 
very interesting behavior.   
 

  
            Figure 7.1 
 
 What this means is that with any differences or errors in initial weather 
measurements, no matter how small, completely different weather forecasts will result 
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over a relatively short time.  Since all measurements contain some amount of error,8 it is 
effectively impossible to predict the weather for any significant time in the future.  In fact, 
we can get two completely different computer weather forecasts for the same place at 
the same time simply by using data (temperature, pressure, humidity, wind speed, etc.) 
that differ only in the 3rd or 4th decimal place.  Compound this with the knowledge that we 
don’t even know what the weather measurements are between weather stations and you 
can see how startling this revelation was to a meteorologist such as Lorenz.9 
 
 The three equations in def plotlorenz(): are the heart of the program and 
are indented in the for loop. 
 
 for n in arange(-30,30, 0.0005): 
  x = x + (-10*x + 10*y)*dt 
  y = y + (28*x - y - x*z)*dt 
  z = z + (-2.66667*z + x*y)*dt 
 
 We are letting n range from -30.0 to 30.0, stepping by 0.0005.  There is no 
magic in choosing n as a variable name; it could have been something else as long as 
we avoid using the variables that we are calculating in the loop (why?).  In all three 
equations we are setting the new values for x, y, and z equal to their previous values 
plus the product of the Lorenz equations and the time increment dt.  Notice how each 
equation depends on the results of the other equations in order to calculate new values.  
If you consider that we are calculating a position for a point in space,10 then the 
equations become similar to the familiar (hopefully)  distance = current 
position + rate*time that you learned in science.  The rate for each variable is 
simply the Lorenz equation for that variable.  We plotted n versus x in figure 7.1, but you 
can just as easily plot n versus y or z with the same effect.  Try it!  Consider n to 
represent the passage of time in each plot. 
 
 Now we are going to make some changes to the pylorenz.py program and view 
the resulting graphic in a more classic form.  Change the def plotlorenz(): 
subroutine as follows: 
 
def plotlorenz(): 
 glClear(GL_COLOR_BUFFER_BIT) 
  
 # Initial values for x, y, and z 
 x = 0.50000 
 y = 0.50000 
 z = 0.50000 
 dt = 0.0005 

                                            
8 OK, say you measure the temperature of the atmosphere in St. Louis on riverfront and find it to 
be 37.35o Celcius in July.  That’s a fairly precise measurement to 4 significant figures.  But is the 
measurement accurate?  What about the thousandths decimal place?  We don’t know anything 
about it, do we?  And how about the temperature one block to the west?  Remember that the 
Lorenz graph we plotted diverged wildly when the difference in starting values was 0.00002! 
9 Even if you placed weather stations every square meter across the globe, the uncertainty of 
measurement and the unknown weather in the small space between the stations would still result 
in the unpredictability of the weather over anything other than a very short time period. 
10 This x, y, and z position represents the condition of the system at any point in time. 
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 glColor3f(1.0,0.0,0.0) 
  
 for n in arange(-30,30, 0.0005): 
  x = x + (-10*x + 10*y)*dt 
  y = y + (28*x - y - x*z)*dt 
  z = z + (-2.66667*z + x*y)*dt 
   
  # Plot x versus y 
  glBegin(GL_POINTS)  
  glVertex2f(x,y) 
  glEnd() 
  glFlush() 
 
 # End function 
 
 Essentially we’ve simplified the code by removing one of the plotting sections 
and changing the glVertex2f statement to plot x versus y rather than n versus y.  
This is a parametric plot and the result is shown in figure x vs. y below.  This figure is 
a shadow or projection of the 3D Lorenz attractor onto the x-y coordinate plane.  In 3D 
space, we have a z-axis which comes out of the monitor toward us and goes into the 
monitor away from us.  Since we are not viewing a 3D screen at this point, all we can do 
is project the 3D object on one of the 3 planes represented by the 3D coordinate system.  
This is really no different than viewing a normal picture in a magazine where you see a 
3D object (such as a human face) projected onto a flat page.  Note:  We could have 
used a different loop structure since we no longer need the variable n to plot the Lorenz 
attractor.  Can you think of a different loop method that would work here? 
 
 Each point on the projected attractor displays a particular set of atmospheric 
conditions represented by the values for x, y, and z.  These atmospheric conditions 
continuously “flow” through 3D space as time passes.  We can also look at projections of 
the attractor on the x-z and y-z planes as shown in figures x vs. z and y vs. z 
below.  Both the x vs. z and y vs. z plots have a correction factor in the 
glVertex2f statement.  This correction factor lowers the plot so that we can see it 
properly in the window.  To program this correction, use glVertex2f(x,z-20) and 
glVertex2f(y,z-20) respectively. 
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   x vs. y        x vs. z 
 

    
   y vs. z     x vs. z orig 
 
 The x vs. y plot is a view of the Lorenz attractor from along the positive z-axis, 
while the other plots are “side” views along the y and x axes respectively.  The view 
from the z-axis is centered properly in the window, but the side views (if not corrected) 
show an attractor that is elevated above the x-y reference coordinate plane.  The z-20 
correction we applied in the glVertex2f statement lowers the plot in each window so 
that we can see the full shape of the attractor.  To see this lowering effect, change the 
z-20 parameter to simply z in each statement.  You can see the uncorrected original 
form in the figure x vs. z orig.  I like the corrected views much better!  If you are 
taking CAD drafting, these pictures are orthographic11 projections of the 3D Lorenz 
attractor.  Using your mental imagery skills, see if you can picture what the Lorenz 

                                            
11 In an orthographic projection, there is no foreshortening with distance. 



 162

attractor would look like in 3D space.  We will revisit this attractor later in the text when 
we encounter 3D graphics and animation. 
 
 The Lorenz attractor is called a “strange attractor”.  A strange attractor is an 
attractor12 that is not simply a fixed point or a simple shape like a circle.  Strange 
attractors may or may not be visually interesting like the Lorenz attractor, but they tend 
to signify very complex and often mysterious dynamics.  We have already encountered 
strange attractors in the last chapter with the Sierpinski Gasket and Barnsley Fern and 
we’ll see a few more examples in the next section.   
 
NOTE:  Edward Lorenz passed away on April 16, 2008 at the age of 90. 
 

Exercises 
 
1) You should Google for Lorenz, Lorenz Attractor, and Butterfly Attractor and see what 

you can find.  This is a classic computer simulation and examples can be found 
written in nearly every computer language with graphics capabilities. 

 
2) Explore different starting values for x, y, and z and see if these values make any 

noticeable difference in the shape of the attractor.  Use the parametric plots of the 
“Butterfly Attractor” rather than the line graph plot in the beginning of this section.  If 
you notice no discernible difference, what does this say about the definition or nature 
of an attractor? 

 
3) We can use the varying values of x, y, and z to color the graph with the glColor3f 

statement.  We have used the glColor3f statement as a function of variables in 
the previous chapters, so let’s try it here as well.  Make the following changes in the 
plotlorenz function: 

 
 glColor3f(x/8.0,0.20,0.20) 
 
 and then  
 
 glVertex2f(y,z-20) 
 
 This plot is a y-z projection of the Lorenz attractor.  We are colorizing the position of 

the x parameter by using x/8.0 in the glColor3f statement.  The resulting graph 
hints at the 3D nature of the Lorenz attractor by showing in red the portion of the 
graph that is closest to the observer.  This is illustrated in figure Faux-3D at the end 
of the exercises.  Experiment with this concept and see if you can come up with 
other interesting color schemes.  Change the projection so that you are plotting 
(x,z-20) and (x,y).  What changes should you make in the glColor3f 
statement to achieve the most effective plot colors when you change the projection? 

 
4) Try changing the parameters of the equations themselves.  For example, in the y = 

y + (28*x - y - x*z)*dt equation, try 24*x instead of 28*x.  Try 25*x next.  

                                            
12 An attractor “attracts” all nearby points and orbits to it. 
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See if you can determine the critical value between 24 and 25 which marks the 
beginning of chaotic behavior. 

 
5) Return the equations to their original state and then modify the x = x + (-10*x + 

10*y)*dt equation by using different values in place of -10 and 10.  Can you find 
areas of stability or is chaos present regardless of the values you use? 

 
6) Again, return the equations to their original state and modify the z = z + (-

2.66667*z + x*y)*dt equation by changing 2.66667 to different values.  What 
effect does this have on the resulting plots? 

 
7) Make certain you have a saved version of the original program.  Now you should 

take some time to alter Lorenz’s equations.  As an example, you may want to change 
the equation x = x + (-10*x + 10*y)*dt to something on the order of x = x 
+ (-10*x – 4.5*z + 10*y)*dt.  When you modify the equations, be prepared 
to alter the size of the graphics window using the gluOrtho2D command.  You may 
need to enlarge or shrink the plot dimension accordingly.  For a more interesting plot, 
try altering the equation z = z + (-2.66667*z + x*y)*dt to z = z + (-
0.5*z + x*x)*dt.  You should probably change glVertex2f(x,z-20) to 
glVertex2f(x,z-30) to center the plot.  You can also change the gluOrtho2D 
statement to enlarge the graphic plot window.  This equation change is illustrated in 
figure z-change at the end of the exercises.  The glColor3f statement as a 
function of x, y, and z was left intact from exercise 3 to provide some indication of 
the 3D nature of this plot. 

 
8) Another famous strange attractor similar in equation structure to the Lorenz system 

is the Roessler attractor.  The Roessler attractor is also a 3D attractor, but we are 
going to project it in 2 dimensions similar to the Lorenz attractor.  We’ll explore the 
true 3D nature of both attractors later.  To create the Roessler attractor, we’ll change 
the plotlorenz function to plotroessler as follows: 

 
 def plotroessler(): 
 glClear(GL_COLOR_BUFFER_BIT) 
  
 # Initial values 
 x = 1.0 
 y = 1.0 
 z = 1.0 
 dt = 0.0005 
  
 glColor3f(1.0,0.0,0.0) 
   
 for n in arange(-90.0, 90.0, 0.0001): 
  x = x - (y + z)*dt 
  y = y + (x + 0.2*y)*dt 
  z = z + (0.2 + x*z - 5.7*z)*dt 
  
  glColor3f(sin(z),cos(x),sin(y)) 
  glBegin(GL_POINTS) 
  glVertex2f(x,z-10) 
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  glEnd() 
  glFlush() 
  
 # End Function 
 
 Don't forget to change the glutDisplayFunc in the def main(): function to 
 reflect the change in the display function name!  Change the gluOrtho2D function 
 to gluOrtho2D(-15.0, 15.0, -15.0, 15.0) to shrink the viewing window.  
 The Roessler attractor generated with the above code is shown in the figure 
 Roessler x-z.  You should also try projecting the Roessler attractor on the y-z 
 plane using glVertex2f(y, z-10) and the x-y plane using 
 glVertex2f(x,y).  The x-y plane projection is shown in figure Roessler x-y 
 at the end of the exercises.  The color scheme is arbitrary and may be changed to fit 
 your tastes.  Notice again that the glColor3f statement is written as a function 
 of the x, y, and z values. 
 
 Both the Lorenz and Roessler strange attractors are similar in that they trace the 

continuous path or orbit of a point in 3D space subject to a set of 3 differential 
equations.  In the next section we will study 2D strange attractors that are visualized 
as a slice or cross-section of a more complex dynamic system. 

 
9)  An additional twist to the coloration of either the Lorenz or the Roessler attractors can 

be accomplished by using the distance formula from coordinate geometry.  As an 
example, you can use: 

 
  glColor3f(sqrt(x*x+y*y)/15,sqrt(x*x+z*z)/15,sqrt(y*y+z*z)/15) 
 
 and color each point based on the distance of that point from the origin.  The division 

by 15 is based on the window dimensions specified in the gluOrtho2D command.  
You can also provide coloration based on a distance from an arbitrary point by using 
the equation for a circle.  For example, you could try: 

 
  glColor3f(sqrt((x+1)**2 + (y-3)**2)/15 ,0.0 ,0.0) 
 
 to provide a red shading effect based on the distance from the point x = -1, y = 3.  

You can experiment with this effect using y-z coordinates, x-z coordinates or all 3 
coordinates at once.  The distance formula works in 3D too! 

 
10) The Rikitake attractor13 is an interesting fractal in both form and function.  See if you 

can write most of this program on your own with the following hints.  The equations 
are relatively simple: 

  
  x = x + (-2*x + z*y)*dt 
  y = y + (-2*y + (z - 5)*x)*dt 
  z = z + (1 - x*y)*dt 
 
 The axis ranges in gluOrtho2D are as follows: 
 

                                            
13 Look up the Rikitake attractor online.  It isn't as "famous" as the Lorenz or Roessler attractors. 
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  gluOrtho2D(-7.5, 7.5, -7.5, 7.5) 
 
 The initial values of x, y, and z should equal 1.0 and let dt = 0.001.  In addition, 

modify glVertex2f to glVertex2f(x, z-5).  Example plots are found in figures 
Rikitake x, z-5 and Rikitake y, z-5 on page 160.  Rikitake y, z-5 
uses gluOrtho2D(-5.0, 5.0, -5.0, 5.0) for axis ranges and 
glVertex2f(y, z-5) to properly display the points.  The Rikitake attractor is 
similar to the Lorenz attractor in appearance, but the dynamics in the equations are 
different.  Feel free to change the coloration scheme.  These attractors will be more 
"attractive" in 3D a bit later!   

 
11) Look up the Rainey System attractor and see if you can plot this simple set of 

equations.  If you are successful, do you think the system is chaotic?  This exercise 
will be challenging!  You may have to experiment a bit to get an interesting plot. 

 
 

   
   Faux-3D      z-change 
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     Roessler x-z    Roessler x-y 

   
        Rikitake x, z-5   Rikitake y, z-5 
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Section 7.2 Phase Portraits and Paint Swirls 
 
 It should come as no surprise that Time magazine chose Isaac Newton as the 2nd 
most influential person of the last millennium, behind only Gutenberg.  After all, Newton 
discovered the basic laws that govern the motion of the stars and planets themselves.  
We still use these laws of motion to send orbiters to Mars and spacecraft to visit the 
giant planets at the edge of our solar system and beyond.  It was thought that by using 
Newton’s laws, we could, with enough information, predict the entire future of the 
universe with exquisite precision.  Fast forward from Newton to the present time.  
Imagine that on the desk in front of you is a pendulum.  This pendulum is ideal in that it 
does not suffer from friction.  Once in motion, it will continue to oscillate forever (or until 
you get tired of watching it swing back and forth).  Now let’s also imagine that the 
pendulum bob is a powerful magnet and on the desk in front of you, beneath the 
pendulum, are three equally powerful magnets at the vertices of an equilateral triangle.  
The table magnets are of the same polarity as the pendulum bob, so they repel the 
pendulum.  At rest, the pendulum hangs vertically over the center of the triangle.  Now 
displace the pendulum outside the triangle and let it fall toward one of the vertices.  The 
repelling forces of the magnets will cause the pendulum to swing and bounce erratically 
from one point to another… and all the bounces and swinging are governed by Newton’s 
Laws of motion.  You would think that it should be easy to calculate and predict the 
future motion of such a device.  And you would be wrong.  Not only is it NOT easy, it’s 
impossible.  We find ourselves back in the world of chaos once again. 
 
 Until the advent of the computer, it was truly difficult to study chaotic motion.  
Using computer graphics, though, we can qualitatively visualize the dynamics of chaotic 
behavior and at least gather some indication of the behavior of such systems.  What we 
tend to find is that the long-term behavior of a system that appears to be random actually 
has some structure to it.  There is a constrained or deterministic randomness, which is, 
of course, the hallmark of chaos.  In the last section we looked at the continuous14 orbits 
of 3D attractors and such orbits are certainly interesting.  Each 3D point in space on the 
Lorenz attractor, for example, represents 3 conditions of the atmosphere at that point.  
One of the conditions (the x variable) is the convective motion of the atmosphere and 
the other two variables represent horizontal and vertical temperature gradients.  Taken 
together with the right equation parameters, we get the fascinating Lorenz “Butterfly” as 
a result of the 3 difference equations.  There are other ways to visual chaotic behavior, 
though.  Are you hungry?  Think of a doughnut.  A mathematical doughnut is called a 
torus.  A torus can be made by taking a circle at the origin, moving the circle to the right 
a few units, and then have the circle orbit the origin at a fixed radius.  It turns out that 
much chaotic behavior can be thought of as orbits inside a torus or donut.  The orbit 
goes around and around inside the donut, always changing its path a bit so that it never 
follows the same orbit.  Yet the path never leaves the torus or donut, either.  We could 
visualize the whole (hole?) dynamics by looking at the 3D donut/torus,15 but there is 

                                            
14 Not continuous in the strict mathematical sense.  Remember that we must simulate the 
continuous behavior of nature by using time slices or steps in our computer simulations.  In the 
Lorenz and Roessler attractors, time steps were simulated using the variable dt. 
15 We are not limited to 3D space.  We can have 4D, 5D, or nD space as well.  It’s just a little 
more difficult to visualize such dynamics.  You can also think of the orbits of asteroids in the 
asteroid belt.  The belt is a rough torus-shaped region of space between Mars and Jupiter.  If you 
followed a single asteroid around its orbit for several years, you would find that when it crossed a 
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another possibility.  Why not cut the donut and look at a cross-section of the paths or 
orbits?  The cross-section of the donut is a circle and when the orbit crosses the circle, it 
will plot a point.  The collection of orbit points in cross-section is called a “phase portrait”, 
“Poincaire Section”, or “Poincaire Map” of the dynamical system.  What will the collection 
of orbit points look like over time?  That’s the $64000 question!16  We’ll choose a simple 
system and see.  The system we’ll start with is called the Ikeda attractor and it looks a lot 
like the swirl you see when mixing paint.17 
 
# PyIkedaAttractor.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from random import * 
from numpy import * 
import sys 
 
#  Initial values of width and height 
width = 600 
height = 600 
     
def init(): 
 # White background 
 glClearColor(1.0, 1.0, 1.0, 0.0) 
  
 # Ugly Purple Plot 
 glColor3f(0.45, 0.3, 0.5) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 #  Set the plot window range 
 gluOrtho2D(-0.75, 2.0, -2.25, 1.25) 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
 
def plotikeda(): 
  
 # Choose an initial point... any point 
 x = 0.5 
 y = 0.5 
  

                                                                                                                                  
particular region of space… a circular cross-section of space, that it would be in a different 
location each orbit. 
16 I think this used to be the title of a game show on television.  I’m too young to remember such 
distant happenings, though.  From what I understand, the show was “fixed” and was the focus of 
several investigations. 
17 Mixing is an important concept in chaos theory. 
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 glClear(GL_COLOR_BUFFER_BIT) 
   
 for n in range(0,100000): 
  temp = 0.4 - 7.7/(1+x*x + y*y) 
  xx = 1 + 0.9*(x*cos(temp) - y*sin(temp)) 
  y = 0.9*(x*sin(temp) + y*cos(temp)) 
  x = xx 
   
  #glColor3f(cos(x), sin(y), tan(x)) 
  glBegin(GL_POINTS) 
  glVertex2f(x,y) 
  glEnd() 
  glFlush() 
   
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
def main(): 
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("The Ikeda Attractor") 
 glutDisplayFunc(plotikeda) 
 glutKeyboardFunc(keyboard) 
  
 init()  
 glutMainLoop() 
 
main()     
 
# End Program 
 
 The resulting plot is shown in figure Ikeda below.  It does indeed look like a swirl 
of paint.  The simplicity of the overall shape of the plot reveals structure in the attractor 
that would not be apparent from the numerical values generated by the equations for the 
system.  The individual points are plotted, seemingly at random times and locations, yet 
the shape of the graph is distinct and does not change from run to run.  You should be 
able to tell by now that we are plotting 100000 points (how do you know this?) using the 
Ikeda system of equations.  The equations are a bit more complex than the Roessler or 
Lorenz, but they are wired together in much the same fashion.  You can uncomment the 
glColor3f statement to provide a bit more spice to the graph if you wish.  Also notice 
that the gluOrtho2D(-0.75, 2.0, -2.25, 1.25) statement is not centered on 
the origin and is not "square" even though the graphics window IS square.  You might try 
modifying this to gluOrtho2D(-2.25, 2.25, -2.25, 2.25) and see how the new 
windows dimensions alter the view of the attractor. 
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 What does the Ikeda attractor represent?  It represents the time evolution of an 
optical cavity containing a nonlinear dielectric subjected to a periodic string of light 
pulses.18  I’m not certain what that means, either, but it sounds important.  What we 
need to understand, though, is that prior to computers we would have had a difficult time 
analyzing any chaotic system, much less this one.  A scientist familiar with the physics 
represented here would no doubt have an “Aha!” moment when viewing this graph. 
 
 

  
          Ikeda 
 
Note:  You may be wondering about the absence of global variables?  Any variable 
defined outside a function, such as width and height in this program, can be "seen" 
throughout the entire program so we can automatically assume that such variables are 
global "read-only" variables.  However, if you want to change the value of a global 
variable in a function, you MUST declare the variable as global both outside the 
function and inside the function as we have previously seen.  In this program, we do not 
intend to change the value of width and height.  We only need to use those values to 
initialize the window dimensions. 
 

Exercises 
 
1) Google the Ikeda attractor and look at its history and definition. 
 
2) As in other topics we have studied, experiment with the parameters and equations in 

this program and see if you can find other attractor shapes.  Make certain you keep a 
copy of the original program for reference. 

 

                                            
18 http://www-chaos.umd.edu/misc/attractorpics.html 
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3) Try plotting more or fewer points and see how the attractor is affected.  Also 
experiment with the color as a function of the variables in the equations. 
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Section 7.3 Mira (Look?) 
 
 Another attractor that displays enormous sensitivity to the initial values of the 
parameters is the Gumowski-Mira attractor.  We can use most of the skeleton code 
(remember pyskel.py?) from the Ikeda attractor to create the Mira attractor.  The 
changes are as follows.  In the def init(): function: 
 
 gluOrtho2D(-20.0, 20.0, -20.0, 20.0) 
 
The plotmira display function is listed below: 
 
def plotmira(): 
 glClear(GL_COLOR_BUFFER_BIT) 
  
 # Initial values for parameters 
 # This attractor is very sensitive 
 # To the values for x, y, a, and b 
 x = 12 
 y = 0 
 a = 0.301 
 b = 0.9998 
 c = 2 - 2*a 
 w = a*x + c*x*x/(1+x*x) 
  
 # Plot a significant number of points 
 for n in arange(0,100000): 
  z = x 
  x = b*y + w 
  u = x*x 
  w = a*x + c*u/(1 + u) 
  y = w - z 
   
  # Don't plot anything until we've hit the attractor 
  if n > 100: 
    # How does this color statement work? 
    glColor3f(sqrt(x*x + y*y)/15, 0.0, 0.0) 
    glBegin(GL_POINTS) 
    glVertex2f(x,y) 
    glEnd() 
    glFlush() 
 
 # End function 
 
 You must also remember to change the glutDisplayFunc() statement in def 
main(): to glutDisplayFunc(plotmira) to reflect the renaming of the display 
function to def plotmira():.  You should also change the display window caption to 
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something like "The Mira Attractor".19  The Mira attractor generated by this particular 
code and set of parameters is displayed in figure Mira below. 
 

  
            Mira 
 
 The patterns you can create with the Mira code are amazing and are extremely 
sensitive to each of the parameters listed.  For example, change the initial x,y point 
from x = 12 and y = 0 to x = 15 and y = 0 and change parameter a from a = 
0.301 to a = 0.7 and see what happens.  Different, right?  Now try a = 0.107.  You 
may want to change the gluOrtho2D statement to something similar to 
gluOrtho2D(-15.0, 15.0, -15.0, 15.0) to shrink the window and enlarge the 
attractor.20  This latest version of the Mira attractor is displayed in the figure Mira a = 
0.107. at the end of the exercises.   
 
 The equations for the Gumowski-Mira attractor originated in the particle physics 
experiments conducted at CERN in Switzerland.  The orbits of high energy particles 
such as protons must be stable within the accelerator ring.  Gumowski and Mira 
developed their attractor model to explore the paths these elementary particles take at 
high energies.21  The result was apparently useful to physics, but certainly beautiful to 
those of us who are not professional physicists. 
 
 

                                            
19 Where and how do you accomplish this task? 
20 Be prepared to do this anytime you need to change the size of a drawing.  There are two ways 
to increase the size of an object:  you can simply increase the size of the object or you can shrink 
the display window.  Both work equally well and result in the same effect. 
21 Lauwerier, Hans (1991).  "Fractals:  Endlessly Repeated Geometrical Figures”.  Princeton 
Science Library.  pp. 136-137. 
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Exercises 
 
1) Google the Gumowski-Mira attractor.  What is the gingerbread attractor?  Can you 

create the gingerbread attractor on your computer? 
 

2) Continue to explore various starting values for x and y.  Also explore different 
parameter values for a and b.  Try plotting more or fewer points and see how this 
affects the resulting graph. 
 

3) Change the equations and see if you can create your own attractor.  If so, you can 
name it after yourself. 

 
 

  
   Mira a = 0.107 
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Section 7.4 The 3-Body Problem  
 
 When Isaac Newton discovered the laws of motion, he quickly found the solution 
to the problem of the gravitational effects and resulting paths of two bodies in orbit 
around each other.  From this success, he reasoned that there were similar “easy” 
solutions for the gravitational motion of any number of objects.  However, when others,22 
particularly Henri Poincaire, attempted to find an analytical solution for Newton's 
equations involving just 3 bodies, the problem was impossible to solve.  Poincaire had 
discovered chaos in a relatively simple orbital model.   
 
 As a result of work by Henon,23 a system of equations was developed to explore 
the phase portrait or Poincaire map of the 3-body problem.  Remember that we can 
consider a phase portrait to be a cross-section in time of the orbit of a system around the 
interior of a torus... in other words, a view of the face of a donut slice.  The phase portrait 
plotted in this section shows that far from being completely random, the motion of 3 
bodies in space is chaotic, but definitely under the influence of deterministic equations.  
There is structure in the phase portrait!  As in the Mira attractor, we can use much of the 
code in the Ikeda program as a template for this section.  First, modify the gluOrtho2D 
statement as follows: 
 
 gluOrtho2D(-1.0, 1.0, -1.0, 1.0) 
 
and change the def plotfunc(): function to: 
 
def plot3Body(): 
 a = 1.16 
  
 glClear(GL_COLOR_BUFFER_BIT) 
  
 for x in arange(0,1.0, 0.05): 
  for y in arange(0,1.0, 0.05): 
   for i in arange(1,1000): 
     xx = x*cos(a) - (y-x*x)*sin(a) 
     y = x*sin(a) + (y-x*x)*cos(a)  
     x = xx 
     
     if x > 1.0 or x < -1.0 or y > 1.0 or y < -1.0: 
    break 
     glColor3f(cos(i),sin(i),tan(i)) 
     glBegin(GL_POINTS)  
     glVertex2f(x,y) 
     glEnd() 
     glFlush() 
 
 # End Function 
 

                                            
22 Stewart, Ian (2002). “Does God Play Dice?  The New Mathematics of Chaos”. Blackwell 
Publishing, Second Edition. pp. 49-63 
23 Ibid pp. 140-142, also Lauwerier pp. 128-133 
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 Make certain you the change the glutDisplayFunc() statement in def 
main(): to glutDisplayFunc(plot3Body) to reflect the renaming of the display 
function to def plot3Body():.   There are some new concepts in this program that 
need some explanation.  Let’s start with the complicated conditional statement in the 
def plot3Body(): function.  In the course of running this program, the values for x 
and y can exceed the limits of the glVertex2f command and an error will occur.  To 
see this firsthand, comment out the following statements as follows: 
 
 # if x > 1.0 or x < -1.0 or y > 1.0 or y < -1.0: 
 # break 
 
 The error that is eventually generated stops program execution immediately and 
we do not see the complete plot of the attractor.  The purpose of the if conditional and 
subsequent break statements is to catch the error before it occurs.  If we exceed the 
plot limits we specified in the gluOrtho2D(-1.0, 1.0, -1.0, 1.0), then we want 
to skip that particular point.  In other words, if x is greater than 1.0 or x is less than -1.0 
or if y is greater than 1.0 or y is less then -1.0, the plot would be outside the screen 
limits and we couldn’t see it at all.  Why even try to plot that point?  Also, the values 
generated for x and y actually exceed the limitations of the glVertex2f statement 
during some calculations.  We need to either correct this behavior or catch it so that it 
doesn’t affect program execution.  What happens in the conditional statement is that 
when the problem occurs, we immediately break out of the current loop and try the next 
value for x or y.  This prevents the program error from occurring.  Remember this little 
trick in your own projects when errors occur!  NOTE:  The latest version of Python (2.5) 
and numpy did not generate an error in this section of code.  However, remember this tip 
to circumvent errors should they occur in any of your programs.  We could also write the 
if conditional as follows: 
 
 if abs(x) > 1.0 or abs(y) > 1.0: 
  break 
 
Why would this work?  What is the purpose of the abs() function? 
 
 The next and most important explanation concerns the series of nested loops: 
 
 for x in arange(0,1.0, 0.05): 
  for y in arange(0,1.0, 0.05): 
   for i in arange(1,1000): 
 
 One difference in this program when compared with previous examples is that in 
previous plots, we’ve taken a single point (as in the Mira attractor) or a random series of 
points (as in the Barnsley Fern) as input into our equation system.  In this program, we 
are actually systematically sampling every24 (x,y) point in quadrant I of the standard 
Cartesian coordinate system (stepping by 0.05) and using these points as our initial 
equation input values.  This is the purpose of the nested loop structure; to provide us 
                                            
24 Obviously not EVERY point.  In this example, we are sampling every 0.05 points from 0.0 to 
0.95.  The idea is that we are looking at a series of points that cover the coordinate system and 
running those points through our equations.  We’ll be doing this again in the fractal sections of 
this chapter. 
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with all (x,y) ordered pairs within the limits of our loop statements.  In the outer loop, 
we start by assigning x = 0.0 (how?) and sample each 0.05 units until x = 0.95.  
For each value of x, we use the nested y loop to sample every y value from 0.0 to 0.95, 
stepping again by 0.05.  This will result in the series of coordinates  
 
 (0.0, 0.0) 
 (0.0, 0.05) 
 (0.0, 0.10) 
 . 
 . 
 (0.0, 0.95) 
 (0.05, 0.0) 
 (0.05, 0.05) 
 (0.05, 0.10) 
 . 
 . 
 (0.90, 0.95) 
 (0.95, 0.0) 
 (0.95, 0.05) 
 . 
 . 
 (0.95, 0.90) 
 (0.95, 0.95) 
 
 You can visualize this by imagining a matrix of dots in the graphics window, with 
each “dot” representing an (x,y) ordered pair from the nested loops.  Once we’ve 
chosen an ordered pair with our x and y loops, we use the i loop to iterate the ordered 
pair 1000 times in our equations to see what happens.  The resulting plot is shown in the 
Figure 3-Body at the end of the exercises.  Notice the chaotic behavior in the outer 
fringes of the plot! 
 
 You can easily see the effect of the nested loops by simply choosing a single 
(x,y) ordered pair rather than taking a systematic sampling.  Alter the def 
plot3body(): function as follows: 
 
def plot3Body(): 
 a = 1.16 
 
 # A fixed x,y point 
 x = 0.475 
 y = 0.455 
  
 glClear(GL_COLOR_BUFFER_BIT) 
  
 #for x in arange(0,1.0,.05): 
 # for y in arange(0,1.0,.05): 
 for i in arange(1,1000): 
  xx = x*cos(a) - (y-x*x)*sin(a) 
  y = x*sin(a) + (y-x*x)*cos(a)  
  x = xx 
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  if x > 1.0 or x < -1.0 or y > 1.0 or y < -1.0: 
   break 
  glColor3f(cos(i),sin(i),tan(i)) 
  glBegin(GL_POINTS) 
    glVertex2f(x,y) 
  glEnd() 
  glFlush() 
 
 # End Function 
 
 Pay close attention to the change in the indentations after commenting both outer 
for loops!  This indentation modification is necessary for this program to run.  
Remember that Python is very strict about indenting.  If you run the program with the 
changes above, you’ll see something like figure Fixed Init x-y after the exercises.  
This illustrates the orbit of a single fixed point, the ordered pair (0.475,  0.455).  Notice 
this orbit is NOT chaotic and represents a stable pattern of motion over time.  The 
attractor illustrated in Figure 3-Body is the result of adding ALL of the plots from the 
systematic sampling of each (x,y) ordered pair in the nested loop structure. 
 

Exercises 
 
1) There are a number of explorations that we can perform with this program.  First, 

make certain that the program listing for the def plot3Body(): function is in its 
original configuration.  Now experiment with changing the a parameter.  Here are 
some values you can try one at a time.  Which values for a lead to chaotic regimes?  
Can you predict what values for a will result in chaos?  The results of each of these 
initial a parameters are found in the appropriate figures at the end of the exercises. 

 
a = 1.33 
a = 1.58 
a = 2.0 
a = 2.04 
a = 2.21 
a = 2.71 
 

 Now try some of your own values for a.  What happens if a > 3.0?  a < 1.0? 
 
2) Try changing the number of iterations in the for i loop to something other than 

1000.  What does the plot look like with 100 iterations?  How about 10000 
iterations? 

 
3) In the example program for this section, we started both the x and y loops at 0.  

What happens if you start at 0.5 for both loops?  How about 0.75?  You may have to 
adjust the step to get a plot that is pleasing to the eye.  Look at exercise 4 for details. 

 
4) What happens if you step by something other than 0.05 in the for x and for y 

loops?  Try stepping by 0.1 and then by 0.001.  What is the difference in the plots? 
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5) The coloration of the 3-Body plot is provided by the sin(i) function within the 
glColor3f statement in def plot3Body():.  Explore different functions (trig or 
otherwise) for coloration.  Try using x, y, and i as indices for any functions you 
create.  Remember that if you want the coloration to vary within the plot, you must 
provide some variables or parameters that vary.  In this program, x, y, and i vary 
accordingly.  x and y vary according to the equations and i varies according to the 
for i loop.  Invent some functions using these variables for unique color schemes. 

 
6) The GingerBread Man Fractal is interesting in that the plot actually looks humanoid.  

In order to create the fractal, first modify the gluOrtho2D function as follows: 
 
 gluOrtho2D(-8.0, 10.0, -8.0, 10.0) 
 

Then make certain your def plotfunc(): function looks like the following: 
 
 def plotfunc(): 
  glClear(GL_COLOR_BUFFER_BIT) 
  
  # Initial values for parameters 
  # This attractor is very sensitive 
  # To the values for x, y, a, and b 
  x = -0.1 
  y = 0 
  
  # Plot a significant number of points 
  for n in arange(0,50000): 
   xx = 1 - y + abs(x) 
   y = x 
   x = xx 
   
   # Don't plot until we've hit the attractor 
   if n > 100: 
    # How does this color statement work? 
    glColor3f(sqrt(x*x+y*y)/15, 0.0, 0.0) 
    glBegin(GL_POINTS) 
    glVertex2f(x,y) 
    glEnd() 
    glFlush() 

 
 The result can be seen in the GingerBread Man figure at the end of the 
exercises.  Feel free to experiment with this fractal!  Who knows what monstrosities 
you might create? 

 
7) This exercise is a challenge.  Google for the Henon strange attractor.  Your 

assignment is to write a program that displays the Henon strange attractor.  You may 
use the programs we’ve written in this chapter as models if that helps.  Pay particular 
attention to the equations and starting parameters (a, b, c, etc) needed to plot the 
Henon attractor.  See figure Henon at the end of the figure set for an example of a 
Henon attractor plot.  It doesn't appear very impressive, but this is attractor is famous 
in the history of chaos theory. 
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  a = 1.33       a = 1.58 
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  a = 2.0      a = 2.04 
 
 

  
  a = 2.21       a = 2.71 
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  Henon         GingerBread Man 
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Section 7.5 Newton’s Method and the Complex Plane 
 
 As stated earlier in the text, it is almost impossible to overstate the importance of 
Isaac Newton in the fields of mathematics and physics.  Newton is responsible for the 
invention (or discovery?) of the calculus and its applications in the sciences.25  In this 
section we are going to explore Newton’s method for finding the roots of a polynomial 
equation and we are going to apply the method in the complex plane to generate some 
remarkable fractal images.  Newton’s method uses the concept of a derivative to 
calculate the roots of a polynomial equation via the process of iteration.  You already 
know that you can easily solve equations such as 3x – 7 = 2.  Equations such as x2 – 3x 
+ 1 = 0 may be solved by factoring or by using the quadratic formula.  Cubic equations 
such as x3 –  3x2 + 5x - 1 are a bit more difficult, but there does exist a cubic formula for 
this purpose.  However, the quartic formula is a nasty thing26 and the quintic formula 
(and above) does not exist.  So how can we find the roots to such equations?  One 
answer is by Newton’s method. 
 
 Newton’s method is an iterative equation that is represented as follows: 
 

    )('
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 In order to use Newton’s method, we must supply an initial seed or “guess” 
concerning the root of the equation (this is x0) and subtract from this seed value the 
quotient of the function at x0 divided by the derivative of the function at x0.  This results in 
a new value x1, which is then used as input for the next calculation.  In most cases the 
iteration of this equation will converge on one of the roots of the polynomial function you 
are working with.  To find all the roots of a higher order polynomial would require a seed 
value near each root, but in most cases this can be accomplished, especially if the 
function has been plotted and the roots approximated.  There are some instances where 
Newton’s method does not converge to a root.  This can be caused by a poor initial 
guess or by a function that has no real roots. 
 
 An example of Newton’s method at work can be seen in the simple square root 
function.  Let’s assume that we wish to calculate the square root of 5.  We can express 
this as an equation, x2 = 5 or x2 – 5 = 0.  The derivative27 of x2 – 5 is 2x, so we can 
rewrite Newton’s equation as: 
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25 Leibniz also invented/discovered the calculus independently of Newton at about the same time. 
26 http://planetmath.org/encyclopedia/QuarticFormula.html 
27 Finding derivatives is a large portion of a first semester calculus class.  In this text, I’ll supply 
them for you.  You really should take calculus… it’s an amazing subject and is the gateway to 
higher mathematics. 
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 Now let’s use this equation to find the square root of 5.  First, we’ll choose an 
initial guess of 2 for the square root of 5.  Plugging 2 into the equation as follows: 
 

    )2(2
522

2

1
−

−=x  

 
results in a value of 2.25 for x1.  Using 2.25 as the next value for x0 yields 
2.23611111111.  Iterating twice more will provide a stable solution of 2.2360679775, 
which isn’t the exact square root of 5,28 but it’s accurate to 10 decimal places!  Since x2 – 
5 = 0 is a function of degree 2, from your algebra classes you know that it has two roots.  
In this example, both roots are real and we can find the other root by using -2.00 as the 
initial seed.  After just a few iterations we find a value -2.2360679775 for the second 
root.  When using Newton’s method, it helps to know a little bit about the function you 
are studying29 so that you can choose initial root values that have a good chance of 
converging to a stable value. 
 
 Some functions, though, do not have real roots or have a combination of real and 
complex30 roots.  Examples are x2 + 1 = 0, which has no real roots and two complex 
roots31 and x3 – 1 = 0 which has one real root and two complex roots.  We can directly 
view the real root of this equation by using the function plotting program from section 
5.2.  Figure x3 – 1 = 0 on the next page displays this function.  Setting $axrng = 
2.0 in this plot, we can see that the function crosses the x axis at 1.0, the only real root 
of this function.  There are also two complex roots for this equation.  Can we use 
Newton’s method to visualize these roots?  Perhaps we can, but we need to bring in 
some additional information first.  You should be familiar with the concept of a number 
line.  All real numbers can be placed on a number line with zero in the center and 
extending to negative infinity on the left and positive infinity on the right.  Let’s expand 
the number line to include the complex numbers.  We’ll do this by using the traditional 
Cartesian x-y coordinate plane and placing the complex numbers on the y axis.  Any 
complex number such as 4 + 3i can be plotted in this new coordinate system by an 
ordered pair, in this case by (4, 3i).  The x-i coordinate system can be called the complex 
coordinate plane and figure 7.2 illustrates this plane and the (4, 3i) example point. 
 
 Doing arithmetic with complex numbers can be a bit tricky.  Addition and 
subtraction is simple and is exactly like the addition and subtraction of regular ordered 
pairs of numbers, for example (3 + 4i) + (5 - 2i) = (8 + 2i).  Multiplication and division are 
a bit more difficult.  First, we need to remember that i2 = -1, i3 = -i, and i4 = 1.  Multiplying 
(3 + 4i) (5 - 2i) yields (15 + 20i - 6i -8i2), which simplifies to (15 + 14i -8(-1)) = (23 + 14i).  
With division, we multiply both the complex numerator and the complex denominator by 
the complex conjugate of the denominator.  This produces a real number in the 
denominator and division then becomes possible.  An example would be (3 + 4i) / (5 - 
2i).  Multiplying both the numerator and denominator by (5 + 2i) gives us [(3 + 4i)(5 + 
2i)/(5 - 2i)(5 + 2i)].  This simplifies to (7 + 26i)/29 or after dividing both 7 and 26i by 29, 
                                            
28 Why? 
29 Hint:  Plot the function! 
30 You may have heard the phrase “imaginary roots” in reference sqrt(-1).  This is an unfortunate 
usage.  There is NOTHING imaginary about sqrt(-1) as we’ll soon find out! 
31 Remember, there will be the same number of roots as the degree of the function regardless of 
whether the roots are real or complex. 
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(0.241379 + 0.896552i).32  We can also find the distance from any complex ordered pair 
to the origin (or any other complex ordered pair) by using the Pythagorean Theorem or 
distance formula.  The distance from (4 + 3i) to the origin is simply sqrt(42 + 32).  We 
will be using these concepts to create the amazing (literally!) fractals in this and the next 
two sections. 
 

 
             x3 – 1 = 0 
 
 
 

                                            
32 Whew!  Don't worry about this overmuch.  Python handles complex arithmetic automatically! 
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          Figure 7.2 
 
 So what does all this have to do with Newton's method?  Let's see by using a 
computer program to display the complex roots of x2 + 1 = 0.  We are going to substitute 
the variable z33 for x in this equation, so we'll be looking at the function z2 + 1 = 0.  Here 
is the listing.  Some explanations will be required, so hang in there! 
 
# PyNewton.py 
# Newton's Method in the complex plane 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
# If psyco isn't installed, delete the next two lines! 
import psyco 
psyco.full() 
 
# Global variables for screen dimensions, axis range 
# and loop step size 
width = 400 
height = 400 
axrng = 2.0 
hstep = 2*axrng/width 
vstep = 2*axrng/height 
 

                                            
33 "z" is a traditional variable used to represent complex numbers. 
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def init(): 
 # Black background 
 glClearColor(0.0, 0.0, 0.0, 0.0)   
 gluOrtho2D(-axrng,axrng,-axrng,axrng) 
 
def drawnewton(): 
 glClear(GL_COLOR_BUFFER_BIT) 
   
 y = axrng 
 while y > -axrng: 
  y -= vstep 
  x = -axrng 
  while x < axrng: 
   x += hstep 
    
   n = 0 
 
   # define the current complex number 
   # using the x,y pixel values 
   z = complex(x,y) 
 
   endit = 0 
    
   # 1000 iterations at maximum 

while n < 1000 and endit == 0: 
    n+=1 
    old = z 
 
    # Newton's Method Equation 
    z = z - (z**2 + 1)/(2*z) 
 
    if abs(z - old) < 0.000001: 
     endit = 1 
    
   # Pick color parameters based on quadrant 

if z.imag >= 0 and z.real < 1: 
    c1 = 6 
    c2 = 12 
    c3 = 18 
 
   elif z.imag < 0 and z.real < 1: 
    c1 = 18 
    c2 = 6 
    c3 = 12 
 
   if z.real > 0: 
    c1 = 12 
    c2 = 18 
    c3 = 6 
    
   glColor3ub(n*c1,n*c2,n*c3)  
   glBegin(GL_POINTS) 



 188

   glVertex2f(x,y) 
   glEnd() 
   glFlush() 
    
def main(): 
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(width, height) 
 glutInit(sys.argv) 
 glutCreateWindow("Newton's Madness") 
 glutDisplayFunc(drawnewton) 
 init() 
 glutMainLoop() 
  
main() 
 
# End Program  
 
 The Python numpy module also contains complex34 arithmetical routines.  This is 
absolutely great for our purposes!  Now for a short aside… It is my hope that by seeing 
the fantastic graphics we have been plotting (and will continue to create… the best is yet 
to be!), that you will become more interested in the mathematics behind the graphics.  
For this reason, the focus of this course is more on the "pretty pictures" and how to 
make them rather than on theory.  As you continue to study mathematics, perhaps you 
will be able to fill in the background material and say "So that's how it works!"  Anyway, 
with the numpy module loaded, we can perform complex arithmetic, including complex 
trig functions without worrying about whether we have the mathematical details of 
complex functions correct. 
 
 The creation of fractal drawings is very calculation intensive, so be prepared to 
wait for these plots to complete.  Sometimes several minutes may pass before the plot is 
finished.  This seems like an eternity while you are watching the screen update line by 
line, but remember that just a few short years ago, such plots would have taken hours or 
even days to finish! 
 
 The two lines: 
 
import psyco 
psyco.full() 
 
are optional.  The psyco module, if installed, will speed up Python program execution 
noticeably in most instances.  As stated previously, the creation of fractal drawings is 
very calculation intensive, so any increase in speed is welcome.  This module is free and 
is available for downloading on the internet.  If you don’t have the psyco module, omit 
both of these lines from your program. 
 
 Next we define some variables for use within the program. 
 
width = 400 

                                            
34 Not “complex” as in complicated, but complex as in sqrt(-1). 
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height = 400 
axrng = 2.0 
hstep = 2*axrng/width 
vstep = 2*axrng/height 
 
 The window width and height are self-explanatory.  We are using a smaller value 
here (400) in order to speed up the plot somewhat.  If you have the patience, you can 
increase this value to 500 or 600.  The beauty of the fractal is more evident at this larger 
window size, but it takes considerably more time to plot the graphic display!  The 
variable axrng allows us to set the viewing window virtual size from –axrng to axrng 
in the gluOrtho2D statement.  In this case, we are using 2.0, which will give us x and 
y35 ranges from -2.00 to 2.00.  In this and subsequent programs in this chapter, we need 
to look at or calculate values for every single pixel in the viewing window.  The hstep 
and vstep assignment statements automatically do this for us.  We calculate the hstep 
and vstep values by first doubling axrng, which serves to encompass the entire width 
of the x axis and height of the y axis.  We then divide by the width and height of the 
window in pixels.  The values obtained assure us that we “visit” each pixel in the window.  
We can then change the window dimensions and axrng and be certain that we’ll still 
have the proper pixel step.  By the way, if we were to increase the window size to 
1000x1000, we would have to perform calculations on 1 million individual pixels! 
 
 The def init(): statement is similar to past programs.  You may have 
wondered what happened to the def reshape(): function?  You may add that 
subroutine if you like, but remember to add a glutReshapeFunc(reshape) to your 
def main(): program listing.  For now, though, I’m trying to keep the program listings 
as short and simple as possible due to the complexity of the fractal programs. 
 
 In the def drawnewton(): function, we see a new kind of loop structure. 
 
 y = axrng 
 while y > -axrng: 
  y -= vstep 
  x = -axrng 
  while x < axrng: 
   x += hstep 
  
 This is an example of a nested loop similar to the for nested loops in the last 
section.36  Our goal in this program is to visit every pixel in the display window, so we 
start y at the value for axrng.  In this example program the initial value for y would be 
2.0.  The while y > -axrng: statement can be interpreted loosely as follows:  “as 
long as y is greater than –axrng, keep doing the indented stuff below.”  We decrease y 
each loop iteration by the vstep value (in y -= vstep) and then we encounter the 
while x < axrng: loop, which can be interpreted in a similar fashion as the y loop.  
For each single value of the y loop, we traverse the entire x loop.  What this means is 

                                            
35 Or “i” range, since we are using the complex plane. 
36 So why not use for loops?  We could, but part of the purpose of this text is to learn some 
programming skills, hence the use of another looping method.  If you want, see if you can rewrite 
this program using only for loops. 
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that we start with the upper left hand pixel (y = axrng) and one row of pixels at a time, 
we cover the entire window.  Pay VERY close attention to the indentations in this listing.  
Again, indentation errors are a major source of problems in Python programs. 
 
 Once we begin the loop process, we initialize two "flag" variables and define our 
complex number seed or initial root guess based on the current x,y pixel value.  The 
pertinent program statements are: 
 
 n = 0 
 
 # define the current complex number 
 # using the x,y pixel values 
 z = complex(x,y) 
 
 endit = 0 
 
We will use the variable n to count the number of iterations used for Newton’s method.  
The endit variable, which we’ll discuss in more detail in a moment, provides an early 
escape from the loop if certain conditions are met.  The critical line is the z = 
complex(x,y) statement.  This line takes the current values of x and y (starting with x 
= -2.0 and y = 2.0) and converts the ordered pair for each pixel to a complex 
number.  The complex(x,y) command is provided by the numpy module at the 
beginning of the program. 
 
 Newton’s method is implemented in the next section: 
 
 # 1000 iterations at maximum 
 while n < 1000 and endit == 0: 
  n+=1 
  old = z 
 
  # Newton's Method Equation 
  z = z - (z**2 + 1)/(2*z) 
 
  if abs(z - old) < 0.000001: 
   endit = 1 
 
 Using another while loop, we arbitrarily decided to allow 1000 iterations as a 
maximum number37 and also to provide an early exit from the loop if the variable endit 
is anything other than zero.  Notice that the loop continues only if BOTH conditions (n < 
1000 AND endit == 0) are true.  After the while statement, we increment the 
counter variable n (add 1 to n) and set the variable old equal to the last value for z, 
which holds the previous root calculation.  We need the variable old so that we can 
compare the last value for the root of the equation to the new calculated value.  The line 
z = z - (z**2 + 1)/(2*z) holds the equation (x2 + 1) and its derivative (2*x) 
converted to complex expressions involving the variable z and written according to 
Newton’s formula.  The z variables on the right of the = sign hold the initial root seed 

                                            
37 100 iterations is probably more than enough to allow convergence to a root.  You can 
experiment with fewer iterations (or more) if you wish. 
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and all subsequent iterations.  The calculation based on the previous value of z is then 
stored as the new z on the left side of the = sign. 
 
 Finally, we check to see if the difference between the latest z value and the last z 
value (stored in old) is small, in this case less than one millionth.  If so, then we’ve 
probably converged to a root and we can end the iterations for this particular pixel and 
associated complex ordered pair.  When endit = 1, the while loop stops and we can 
then plot the result.  In other words, all the loop structures take each pixel in the graphics 
window, convert each pixel’s ordered pair to a complex number, and run the resulting 
complex number through Newton’s method to see what happens.  We then plot the 
result in the next section: 
 
 # Pick color parameters based on quadrant 

if z.imag >= 0 and z.real < 1: 
  c1 = 6 
  c2 = 12 
  c3 = 18 
 
 elif z.imag < 0 and z.real < 1: 
  c1 = 18 
  c2 = 6 
  c3 = 12 
    
 if z.real > 0: 
  c1 = 12 
  c2 = 18 
  c3 = 6 
    
 glColor3ub(n*c1,n*c2,n*c3) 
 glBegin(GL_POINTS)  
 glVertex2f(x,y) 
 glEnd() 
 glFlush() 
 
The z.real and z.imag variables represent the vertical and horizontal complex plane 
coordinates, analogous to the x and y variables in the standard Cartesian coordinate 
system.  You can think of these variables as x and y values respectively.  We are basing 
the plot coloration on both of the x (z.real) and y (z.imag) values.  The signs of these 
values determine the quadrant we are in (I, II, III, or IV) and we are basing the coloration 
on the quadrant.  Finally, the def main(): function is basically the same as in 
previous programs, reflecting only the changes in function names.  Notice the slight 
difference in the glColor statement.  The “ub” ending stands for “unsigned byte” and is 
essentially an integer from 0-255 rather than a floating point value from 0-1.0.  This 
means that you can also assign color based on a statement such as 
glColor3ub(200, 125, 98) as well as glColor3f(0.88, 0.56, 1.0). 
 
 If everything worked properly, you should see something like figure z2 + 1 
below. 
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       z2 + 1 
 
 The two circular basins of attraction on the y or complex i axis represent the two 
complex roots for this equation.  Now that we know a bit more about Newton's Method 
and complex numbers, let's return to the more interesting equation x3 – 1 = 0, which 
is another way of expressing the cube root of one and we will represent as z3 – 1 = 0 
in the program.  We discussed this function earlier in this section and now we'll see what 
we can find out about the roots of the equation.  Remember that this equation has one 
real root and two complex roots.  To enter this function into our Python program, we 
need the derivative of z3 – 1.  Using the power rule in calculus, we find the derivative to 
be 3z2.  All we need to do is change the statement z = z - (z**2 + 1)/(2*z) in 
the above example to  z = z - (z**3 - 1)/(3*z**2) to reflect the new z3 – 1 
function and then run the program again.  Please be patient!  This plot will take several 
minutes to complete even on a fast computer.  Eventually, you should see something 
like figure z3 – 1 below. 
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         z3 – 1 
 
 This is the classic plot generally used to display Newton’s method in the complex 
plane.  This plot is amazing in both its complexity and its beauty!  Notice the basin of 
attraction on the x or real axis and the two basins representing the complex roots to the 
left of the origin and above and below the x axis.  Each of the three basins represents a 
root of the equation z3 – 1 = 0.  The roots are found on a circle of radius 1.0 around 
the origin and are respectively:  z = +1.0, z = (-0.5 + i*sqrt(3)/2), and z = 
(-0.5 – i*sqrt(3)/2) in clockwise order.  The intricate color shades are linked.  
Any seed, that is, any pixel (representing a complex ordered pair) that is blue converges 
to the blue basin.  Likewise the other colors converge to their respective basins.  The 
complexity of this fractal is infinite.  Regardless of how much we magnify the convoluted 
regions, we never reach the end of the intricate patterns.  All three basins of attraction 
are closely packed together.  We are beginning to get a glimpse of the marvelous 
fractals the complex plane can produce! 
 
 In the next section, we’ll explore another type of fractal based on an iterative 
process.  This fractal is called the Julia set.  But first, let’s try some exercises.  Pay 
particular attention to Exercise 5.  We’ll be using the concept of “zooming” in the next 
two sections.  One final note:  Some of these fractal images take a long time to draw.  
Be patient… I think the wait is worth your time.  What takes a few minutes to plot on the 
computers in our lab would have taken days on the old Apple II’s! 
 

Exercises 
 
1) There is a tremendous amount of detail in any fractal drawing.  Let’s zoom in on the 

center region of the z3-1 plot.  The easiest way to accomplish this would be to 
change the axrng variable.  Try axrng = 0.5 and see what happens.  The result 
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should look something like the figure Exercise 1 at the end of these exercises.  
We’ll explore a more refined zooming technique in Exercise 5. 

 
2) Using different polynomial functions with Newton’s method will result in different 

plots.  First, set axrng = 2.0 and then change the  z = z - (z**2 + 
1)/(2*z) statement38 to z = z - (z**5 - 1)/(5*z**4).  This is the same as 
finding the roots of the equation z5-1.  The result is shown in the figure Exercise 
2 below.  Note the 5 basins of attraction corresponding to the 5 roots for this 
equation.  How many real and complex roots are there? 

 
3) Using the same equation as in exercise 2, set axrng = 0.5 and run the program 

again.  You should see something like the figure Exercise 3 at the end of this 
problem set.  What happens if you zoom in even further?  Try axrng = 0.05.  Now 
try axrng = 0.01.  Why do you think an error was generated?  The smaller the 
axrng, the more finely divided is the graph.  Could it be that we are reaching the 
point where z = 0 (or almost) and that causes the overflow error?  How could we fix 
this problem?  NOTE:  Similar to an earlier exercise, the latest version of Python did 
not generate an error on this exercise. 

 
4) Change the 1000 value in while n < 1000 and endit == 0: to larger and 

smaller values.  Does the plot change?  Also change the 0.000001 in if abs(z-
old) < 0.000001: to larger and smaller values.  Again, does the plot change? 

 
5) Coloration is always and important consideration when it comes to graphing or 

plotting fractals.  In this section, we are coding the coloration based on quadrant 
position.  What happens if you comment out the code block: 

 
if z.imag >= 0 and z.real < 1: 

  c1 = 6 
  c2 = 12 
  c3 = 18 
 
 elif z.imag < 0 and z.real < 1: 
  c1 = 18 
  c2 = 6 
  c3 = 12 
    
 if z.real > 0: 
  c1 = 12 
  c2 = 18 
  c3 = 6 
    
 glColor3ub(n*c1,n*c2,n*c3)  
 
 statements and change the glColor3ub statement to something like 

glColor3f(sin(abs(z)),cos(n),sin(z.real)).  The results are shown in 
figure Exercise 4.  Let axrng = 0.5.  Experiment with coloration as you have 
done in previous exercises. 

                                            
38 Or the equivalent “z =” statement. 



 195

 
6) Until this exercise, we have centered the picture about the origin using a symmetrical 

window.  What happens if you want to view a portion of the graph that is not centered 
about the origin?  We would have to change our gluOrtho2D statement and adjust 
our vstep and hstep calculations to visit every pixel in the new window.  First, let’s 
return the Newton’s method program back to its initial state.  See the program listing 
in this section if you forgot to save the original version.  Change the variable 
initializations at the beginning of the program as follows: 

   
 width = 400 
 height = 400 
 hcenter = 0.0 
 vcenter = 0.0 
 axrng = 2.0 
 hstep = 2*axrng/width 
 vstep = 2*axrng/height 
 
 In the def init(): function, change the gluOrtho2D statement to: 
 
gluOrtho2D(hcenter-axrng, hcenter+axrng, vcenter-axrng, vcenter+axrng) 
 
 and then modify the while loops according to the following in the def 

drawnewton(): function: 
 
  y = vcenter + axrng 
  while y > vcenter - axrng: 
   y-= vstep 
   x = hcenter – axrng 
   while x < hcenter + axrng: 
    x+= hstep 
 
  These modifications will allow us to choose any point as a “zoom center” and an 

axrng on either side of this center to magnify selected portions of our fractal 
window.  In the example above, we have chosen the origin (hcenter = 0.0, 
vcenter = 0.0) as our new “zoom center” and have defined an axrng = 2.0 on 
all sides of the new center.  In this particular case, we have created a virtual graphics 
window with an upper left coordinate of (-2.0, 2.0) and a lower right coordinate of 
(2.0, -2.0).  The while loop modifications make certain we visit each point in the 
corresponding graphics window based on the axrng parameter and the new origin 
we specified with the hcenter and vcenter coordinates.  We also needed to 
modify the gluOrtho2D statement in def init(): to gluOrtho2D(hcenter-
axrng, hcenter+axrng, vcenter-axrng, vcenter+axrng) in order for the 
plot will fill the entire graphics window.  If we run this program as is, we’ll get the 
figure Exercise 5a, which is exactly the same as the output from figure z3 – 1.  
This is what we would expect to get!  Now let’s choose a different zoom center.  Let’s 
let hcenter = 1.0 and vcenter = 1.0, keeping axrng = 2.0.  The resulting 
plot is in figure Exercise 5b.  Is this what you would expect?  We now have a new 
“origin” for the graph and it’s centered at (1.0, 1.0) with the same +/-2.0 range in both 
the horizontal and vertical directions. 
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  Now try hcenter = 1.1, vcenter = 1.45, and axrng = 0.1.  You should 
see something like the figure Exercise 5c.  Can you tell where this object is 
located in the original Exercise 5a plot?  So, in conclusion, the use of the global 
variables hcenter and vcenter, coupled with the axis range variable axrng will 
literally allow us to move around and explore various regions of a fractal image AND 
zoom into or away from each region.  Make certain you understand this concept 
before you go further! 

 
7) We can also “zoom out” for a larger perspective.  Set hcenter = 0.0 and 

vcenter = 0.0 and then let axrng = 6.0 and see what happens.  The figure 
Exercise 6 illustrates the “zoom out” feature. 

 
8) The following is a list of new equations to try.  I recommend that you return the 

program to its original state as presented in the first part of this section, but include 
the zoom modifications we made in Exercise 5 (hcenter and vcenter).  The 
expression under the “/” sign is the derivative of the expression in the numerator.  
You can try zooming and/or changing the origin of the graph.  Experiment!  Although 
it probably won’t be Newton’s method, you may also make up your own equation 
expressions.  Remember that most of these fractals take a long time to plot, so be 
patient.  If you find that the program generates an overflow or math range error, see 
if you can figure out what is causing the error and either fix or trap the error so it 
does not occur.  Figures representing each equation can be found at the end of the 
exercises and labeled Exercise 7a through Exercise 7f.  Hint:  You can enter 
several equations into your program at the same time.  Simply comment out all of the 
equations except the one you want to plot. 

 
# Newton's Method Equations 
a) z = z - sin(z)/cos(z) 
b) z = z - (z**3 + z**2 + z - 2)/(3*z**2 + 2*z + 1) 
c) z = z - (z**4 + .84*z**3 + .16*z - 2)/(4*z**3 + 2.52*z**2 + .16) 
d) z = z - (z**4 + .84*z**2 - .16)/(4*z**3 + 1.68*z) 
e) z = z - log(z)/(1/z) 
f) z = z - (z**3 - 5*z)/(3*z**2 - 5) 
 
DON'T type the a, b, c, d, etc.  Those letters are there to help you find the 
appropriate figures after the exercises! 
 
If you find that errors are generated during a plot and you can't fix or trap them, you 
can have Python ignore the error completely!  Here's how:   
 
try: 
 z = z – log(z)/(1/z) 
 # other equations here 
 # and here 
except: 
 pass 

 
Essentially, this code block says "try the following statement and if an error occurs, 
do whatever is after the except statement".  In this case, we simply pass to the next 
line of code.  So, if you place try: above the equation set (indenting the equations!) 
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and except: after the equation set (with an indented pass below except:) we 
should be able to use any of these equations without the fear of generating an error. 
 

9) We are going to take a closer look at the function z = z - sin(z)/cos(z) from 
exercise 8.  The figure that represents this plot is found in figure Exercise 7a.  
Uncomment the equation for this function (commenting all others!) into your 
Newton’s method program and modify hcenter to hcenter = 1.55 and axrng to 
axrng = 0.50.  These modifications should center and zoom into the interesting 
figure on the right side of the graphics window.  Your plot should look something like 
the plot shown in figure Exercise 9a.  Now set axrng = 0.30 and run the 
program again.  You should see something like figure Exercise 9b. 

 
10) We don’t have to use integer powers when using Newton’s Method.  We can find the 

complex iteration of z3.5 – 1 just as easily as we can an integer power.  Modify the 
equation line as follows (or simply add this equation to your list): 

   
 z = z - (z**3.5 - 1)/(3.5*z**2.5) 
  
 Using the color code block from the original Newton’s Method program, we will get a 

plot similar to the one shown in figure Exercise 10a.  A somewhat more 
interesting plot can be found by comment out the original color code block (as we did 
in exercise 4) and substituting this color assignment prior to the glVertex2f 
statement: 

 
  if z.imag < 0: 
   glColor3f(sin(n),cos(n),sin(z.real)) 
  else: 
   glColor3ub(5*abs(z),cos(z.real),1.5*abs(z)) 
 
 The resulting plot is found in figure Exercise 10b.  I didn’t say it was pretty! 
  
 You can also try other z equations (with any color scheme) such as: 
   
  z = z - (z**4.5 - 1)/(4.5*z**3.5) 
  z = z – (z**4.8 – 1)/(4.8*z**3.8) 
  z = z – (z**3.75 – 1)/(3.75*z**2.75) 
 
 By now you may have some idea of how to find the derivative of a simple polynomial 

function?  If so, you might try making up some of your own z equations. 
 
11) Here is a "small" list of equations you may want to try in your program.  Make certain 

that you comment out every equation except the one you want to try! 
 
# Newton's Method Equation 
#z = z - (sin(z)/cos(z) - 1)/(1/((cos(z)*cos(z)))) 
#z = z - (z**4 + .84*z**2 - .16)/(4*z**3 + 1.68*z) 
#z = z - (z**3 - 1)/(3*z**2) 
#z = z - sin(z)/cos(z) 
z = z - (z**5 - 1)/(5*z**4) 
#z = z - log(z)/(1/z) 
#z = z - (z**3 + z**2 + z - 2)/(3*z**2 + 2*z + 1) 
#z = z - (z**4 + .84*z**3 + .16*z - 2)/(4*z**3 + 2.52*z**2 + .16) 
#z = z - (z**4 + .84*z**2 - .16)/(4*z**3 + 1.68*z) 
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#z = z - (z**3 - 5*z)/(3*z**2 - 5) 
#z = z - (sin(z*z) - z*z + 1)/(2*z*cos(z*z) - 2*z) 
#z = z - (z**3.7 - 1)/(3.7*z**2.7) 
#z = z - (sin(z*z) - z*z*z + cos(z*z*z))/(2*z*cos(z*z) - 3*z*z - 3*z*z*sin(z*z*z)) 
#z = z - (z**z - 3**z - z**3 - 1)/((1+log(z))*z**z - log(3)*3**z - 3*z**2) 

 
Can you tell which equation we are trying to plot? 

 
One final modification you might try is to uncomment TWO equations at the same 
time.  What will happen?  I don't know... try it!  Here's what I THINK will happen.  z 
will be calculated using the first equation and then the complex value for z will be 
"fed" to the second equation for calculation/iteration.  Certainly the plot will take 
longer to create.  What is uncertain is how interesting the final result will be.  This is 
an excellent opportunity for you to experiment!   

 
12) There are some excellent freeware fractal programs available online.  I would 

recommend that you Google for “fractals” and “freeware” and see what you can find.  
Some of the current programs that you might find very interesting are “Xaos”, 
“Chaospro”, and “Fractint”.  There may be others as well.  What we are programming 
here can hardly be termed a professional application, but hopefully you will get the 
flavor of fractals and find them interesting enough to explore them further on your 
own.  Another interesting program is Gnofract 4D, which runs on linux.  You also 
should definitely look up "Newton's Method Fractals" and see what you find.  You 
may be able to take the information you find online and convert the equations to a 
Python program.  Give yourself extra credit if you can do so! 

 
13) One of the most important aspects of a computer program is interactivity.  In a future 

section we will explore mouse interaction with our graphics window.  In this exercise 
we are going to add some additional keyboard options.  Until now, in order to view a 
different Newton's Method fractal we had to comment and uncomment specific 
equations.  What if we could simply press a number key and have the equations 
automatically change for us?  Here's how we might do that.  First, add a new global 
variable, global newtfrac, to the variable section at the beginning of the program 
and set its initial value equal to 1 (How?).  Add the following def keyboard 
function to your program: 

 
 def keyboard(key, x, y): 
  global newtfrac 
  if key == chr(27) or key == "q": 
   sys.exit() 
  else: 
   newtfrac = eval(key) 
   if newtfrac > 0 and newtfrac < 10: 
    glutPostRedisplay() 

 
Since we are going to change the value of the newtfrac variable, we need to 
declare it as global in this def keyboard function.  The program will end if we 
press the "q" or "Esc" keys.  If we press any other key, its numeric value will be 
stored in newtfrac by the eval(key) function.  If this value is between 0 and 10 
(in other words, 1 through 9), then we update the display.  Note:  What statement 
must we add to def main() in order for the keyboard function to work?  The real 
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work is done in the display function.  Modify your display function by changing/adding 
the following: 
 
 while n < 1000 and endit == 0: 
   n+=1 
  old = z 
  
  # Newton's Method Equation 
  try: 
   if newtfrac == 1: 
    z = z - (z**3 - 1)/(3*z**2) 
   elif newtfrac == 2: 
    z = z - (z**4 + .84*z**2)/(4*z**3 + 1.68*z) 
   elif newtfrac == 3: 
    z = z - (z**5.4-1)/(5.4*z**4.4) 
   elif newtfrac == 4: 
    z = z - sin(z)/cos(z) 
   elif newtfrac == 5: 
    z = z - (z**5 - 1)/(5*z**4) 
   elif newtfrac == 6: 
    z = z - log(z)/(1/z) 
   elif newtfrac == 7: 
    z = z - (z**3.7 - 1)/(3.7*z**2.7) 
   elif newtfrac == 8: 
    z = z - (3**z - 1)/(log(3)*3**z) 
   else: 
    z = z - (z**3 - 5*z)/(3*z**2 - 5) 
  except: 
   pass 
 
  if abs(z - old) < 0.000001: 
   endit = 1 

 
 
The above is not completely new, obviously.  Simply modify the appropriate section 
of code in the def drawnewton() function to match what you see here.  Run the 
program.  Once the original Newton's Method fractal has finished drawing, press any 
number key other than 1 or 0 and see what happens.  How does this work?  Look 
carefully at the if...elif...else code block and see if you can understand the 
logic.  How does this particular block of code work with the keyboard function?  Why 
did I not need to specifically check for the number "9"?  If 9 works, why doesn't the 
number "0" trigger the else statement? 
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Addendum: 
 
 I want to encourage you to explore some of these (and other) fractals on your 
own.  Try zooming in on various locations and see what happens.  If you generate an 
error message, what might be causing the error?  Are you dividing by zero?  Figure 
glitch on the next page illustrates another type of error.  In this figure, hcenter = 
1.925 and axrng = 0.10 using the same equation as in Exercise 8.  What caused 
the dark vertical lines to appear?  How might you fix this problem?  Figure Fixed used 
hcenter = 1.92 and axrng = 0.05.  Hint:  Add 1 to each denominator in the 
hstep and vstep global variable assignments, i.e. (width+1). 
 
 

   
  Glitch     Fixed 
 

Addendum II: 
 
 One final modification you can attempt.  In your ORIGINAL pynewton.py 
program, change the: 
 
 z = complex(x,y) 
 
statement to: 
 
 z = complex(y,x)  #rotates the plot 90 degrees c-clockwise 
 
and then try the following two equations ONE at a time: 
 
 z = z - (z*z - 2**z - 1)/(2*z - 2**z*log(2)) 
 z = z - (z**3 - 3**z - 1)/(3*z**2 - 3**z*log(3)) 
 
In order, the 2 figures below illustrate the respective results.  Stunning! 
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Section 7.6  The Julia Set 
 

What would happen if you take a function such as x = x2 + 1 and iterate the 
function, starting at x = 0?  You would get the following results in the first 6 iterations: 
 
 x = (0)2 + 1    x = 1 
 x = (1) 2 + 1    x = 2 
 x = (2) 2 + 1    x = 5 
 x = (5) 2 + 1    x = 26 
 x = (26) 2 + 1   x = 677 
 x = (677) 2 + 1   x = 458330 
 
 As you can see, the value for x quickly becomes very large and will grow toward 
infinity as the iterations continue.  Devaney39 defined the sequence of values calculated 
from iterating a function the “orbit” of that function.  Now let’s change the function to x = 
x2 – 1 and see what happens to the orbit over 6 iterations.   
 
 x = (0)2 - 1    x = -1 
 x = (-1) 2 - 1    x = 0 
 x = (0) 2 - 1    x = -1 
 x = (-1) 2 - 1    x = 0 
 x = (0) 2 - 1   x = -1 
 x = (-1) 2 - 1   x = 0 
 
 This is an example of a nicely behaved periodic oscillation.  We will always get 
these same two values no matter how long we iterate the function.  You would probably 
guess that if we use a function such as x = x2 + 0.5, we’ll eventually see the values 
for x “run away” toward infinity and you would be correct!  But what about x = x2 – 
0.5?  The result is not at all obvious.  Here are the first 6 iterations using a hand-held 
calculator: 
 
 x = (0)2 - 0.5      x = -0.5 
 x = (-0.5) 2 – 0.5     x = -0.25 
 x = (-0.25) 2 – 0.5    x = -0.4375 
 x = (-0.4375) 2 – 0.5     x = -0.30859375 
 x = (-0.30859375) 2 – 0.5   x = -0.404769897 
 x = (-0.404769897) 2 – 0.5   x = -0.33516133 
 
 After many iterations40 the value settles down to -0.3660254037844386 and 
oscillates back and forth between a 6 and 7 in the final decimal place.  Finally, what 
about the function x = x2 – 1.57?  When iterating this equation 1 million times, the 
orbit never seems to settle down at all.  The final 5 iterations are: 
 
 
 

                                            
39 Devaney, R. L. (1992).  “A First Course in Chaotic Dynamical Systems”.  Perseus Books:  
Cambridge, MA. Pages 17-32. 
40 1000 iterations using a short Python program.  Can you write a program to check this? 
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 Iter.  x-value 
 
 999996 0.002339993752693938 
 999997 -1.569994576881325 
 999998 0.8948829189846828 
 999999 -0.7691846137615411 
 1000000 -0.9783550824045962 
 
 What would be the value for x after the 1000001st iteration?  I don’t know without 
checking the results of my Python program.  You could even write a program to check 
my work if you wish, but chances are you would not get the same results I have listed 
unless you use exactly the same precision arithmetic I used41… remember chaos?  Very 
tiny differences in precision between our programs (or perhaps even our computers?) 
would feedback and the errors would grow until our two orbits would not even be close 
to each other. 
 
 So, what’s the point of this lesson?  It appears that iterated functions can do one 
of 3 things.  They can head toward infinity (either positive or negative), they can find a 
steady state (a single value such as zero, or a sequence of repeating values), or they 
can appear to behave randomly, dare I say chaotically, without any pattern at all.  Things 
get even more interesting if we consider complex functions.  What would happen if we 
were to choose a complex number such as (-0.74543, 0.11301i) and iterate this 
number using at every point in the complex plane while using the same unique function?  
We could set some limitations on the function such that if the function’s modulus 
(distance from the calculated complex point and the origin) goes beyond a certain 
distance, then we plot the point using a particular color scheme.  If the point does not 
stray far from the origin, then we either leave the point alone (don't plot the point) or we 
use a different color scheme.  The resulting plot is called a Julia Set in honor of Gaston 
Julia42, a mathematician who worked with such sets prior to the advent of the computer.  
Julia could only imagine what incredible "monsters" he discovered!  It took the invention 
of the computer for us to actually visual these sets and their incredible beauty. 
 
 To plot a Julia Set for the complex number (-0.74543, 0.11301i), use the 
following program listing: 
 
# PyJulia.py 
# Plot a Julia set 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
# If psyco isn't installed, delete the next two lines! 
import psyco 

                                            
41 I wrote a very short QBasic program using double-precision arithmetic to calculate the orbit of 
this function.  If you didn’t use double-precision arithmetic and/or QBasic, you would NOT get the 
same results I did.  Chaos in action! 
42 http://www.fractovia.org/people/julia.html 



 207

psyco.full() 
 
# Initalize screen dimensions and the screen origin 
width = 400 
height = 400 
hcenter = 0.0 
vcenter = 0.0 
axrng = 1.5 
hstep = 2*axrng/width 
vstep = 2*axrng/height 
 
def init(): 
 # White background 
 glClearColor(1.0, 1.0, 1.0, 1.0)  
 
 # The next statement is all one line!!! 
 gluOrtho2D(hcenter-axrng,hcenter+axrng,vcenter-
 axrng,vcenter+axrng) 
 
def drawjulia(): 
 glClear(GL_COLOR_BUFFER_BIT) 
   
 # Julia set complex number 
 z = complex(-0.74543, 0.11301) 
  
 y = vcenter + axrng 
 while y > vcenter - axrng: 
 y-= vstep 
 x = hcenter - axrng 
 while x < hcenter + axrng: 
  x+= hstep 
    
  n = 0 
  a = complex(x,y) 
   
  # n < 100 is the number of iterations 
  # Increase this value to show finer detail 
  # Decrease the value if nothing shows on the screen 
  while n < 100: 
   n+=1  
   a = a**2 + z 
   zz = abs(a) 
 
   # zz > 2 is the critical escape value 
   # Some functions require larger escape values 
   # This zz > 2 conditional provides coloration for  
   # points outside the Julia set 
   if zz > 2: 
     #glColor3f(sin(2*zz),cos(zz),sin(4*zz)) 
     #glBegin(GL_POINTS) 
     #glVertex2f(x,y) 
     #glEnd() 
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     #glFlush() 
     n = 5001 
   
  # This zz < 2 conditional provides coloration for 
   # points inside the Julia set. 
  if zz < 2: 
   glColor3f(cos(5*zz),sin(4*zz)*cos(4*zz),sin(2*zz)) 
   glBegin(GL_POINTS)  
   glVertex2f(x,y) 
    glEnd() 
    glFlush() 
    
def main(): 
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(width, height) 
 glutInit(sys.argv) 
 glutCreateWindow("Julia Set") 
 glutDisplayFunc(drawjulia) 
 init() 
 glutMainLoop() 
  
main() 
 
# End Program  
 
 The Julia Set plot from the above listing is shown in figure Julia 1 below.  If 
we uncomment the lines below the if zz > 2: 
 
 #glColor3f(sin(2*zz),cos(zz),(sin(4*zz)) 
 #glBegin(GL_POINTS) 
 #glVertex2f(x,y) 
 #glEnd() 
 #glFlush() 
 
In the def drawjulia(): function we’ll get something similar to figure Julia 2. 
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  Julia 1      Julia 2 
 
  
 The code for the Julia Set does not differ greatly from the code for Newton’s 
method in the last section.  The major difference is found in the display routine: 
 
def drawjulia(): 
 glClear(GL_COLOR_BUFFER_BIT) 
   
 # Julia set complex number 
 z = complex(-0.74543, 0.11301) 
  
 y = vcenter + axrng 
 while y > vcenter - axrng: 
 y-= vstep 
 x = hcenter - axrng 
 while x < hcenter + axrng: 
  x+= hstep 
    
  n = 0 
  a = complex(x,y) 
   
  # n < 100 is the number of iterations 
  # Increase this value to show finer detail 
  # Decrease the value if nothing shows on the screen  
  while n < 100: 
   n+=1  
   a = a**2 + z 
   zz = abs(a) 
 
   # zz > 2 is the critical escape value 
   # Some functions require larger escape values 
   # This zz > 2 conditional provides coloration for  
   # points outside the Julia set 
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   if zz > 2: 
     #glColor3f(sin(2*zz),cos(zz),(sin(4*zz)) 
     #glBegin(GL_POINTS) 
     #glVertex2f(x,y) 
     #glEnd() 
     #glFlush() 
     n = 5001 
   
  # This zz < 2 conditional provides coloration for 
   # points inside the Julia set. 
  if zz < 2: 
   glColor3f(cos(5*zz),sin(4*zz)*cos(4*zz),sin(2*zz)) 
   glBegin(GL_POINTS)  
   glVertex2f(x,y) 
   glEnd() 
   glFlush() 
 
 # End Function 
 
 Notice that we are choosing a complex number in the  
 
 z = complex(-0.74543, 0.11301)  
 
line near the beginning of the def drawjulia(): function.  If we change the complex 
number, we’ll change the appearance of the Julia Set… already we have something we 
can experiment with!  We then choose every single pixel in the graphics window and 
change each pixel to a complex number a within the nested while loop structure using: 
 
 a = complex(x,y) 
 
 The Julia Set is iterated in the while n < 100: loop using the a = a**2 + z 
statement.  The variable z contains the original Julia Set seed and the variable a 
represents the complex number corresponding to each pixel in the graphics window.  
We iterate EACH pixels complex number representation until a predetermined number of 
iterations is reached OR the value of the complex function exceeds a certain number or 
modulus.  It is known that if the orbit of the Julia Set ever exceeds a modulus43 of 2, then 
the orbit will escape to infinity.  That is the purpose of the lines: 
 
  zz = abs(a) 
  if zz > 2: 
 
 If the orbit distance or modulus, which we represent with the abs(a) function, 
exceeds 2, then we want to stop the iteration process and either do nothing or plot the 
point, subject to the coloration functions in the glColor3f statement.  Such points that 
"run away to infinity" are NOT in the Julia Set.  If we iterate the function 100 times and 

                                            
43 Remember the modulus is the distance from the complex point to the origin.  It is found by 
using the Pythagorean theorem.  Python takes care of the calculation for you in the abs(a) 
function, where a is a complex number. 
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the modulus does NOT exceed 2, then we know (or we think we know44) that this 
particular complex number (pixel) is IN the Julia Set and we plot that point.  The end 
result of iterating all pixels in the window subject to the original complex number  
(-0.74543, 0.11301i) is the Julia Set.  I think you will agree that Julia Sets are 
striking in their appearance! 
 
 We’ll explore Julia Sets and the Julia Set code more thoroughly in the Exercises.  
In the next section, we’ll end our formal 2D non-animation instruction with the 
grandfather of all fractals, the Mandelbrot Set.  The Mandelbrot Set serves as a catalog 
of all possible Julia Sets and has been termed the most complicated mathematical 
object ever discovered.  Whether this is true or not is probably open to interpretation, but 
the Mandelbrot Set is unforgettable in its appearance and infinitely detailed.45  As 
mentioned in exercise 9 in the previous section, I strongly recommend that you obtain a 
fractal freeware program to explore and create your own fractals and fractal types. 
 

Exercises 
 
1) Among the more obvious modifications to the Julia Set program is to change the 

initial complex number.  You can experiment with this on your own.  Just to get you 
started, try z = complex(-0.5, 0.6).  I also recommend that you change the 
background color to black using the glClearColor statement in def init():.  
The plot from the complex number in this exercise is shown in figure Exercise 1 
at the end of these exercises.  Keep the range of values for both the real and the 
complex numbers between -1.0 and +1.0. 

 
2) You can create a more detailed plot by increasing the number of iterations in the 

while n < 100: loop.  Change the 100 to 500 and see what happens.  Using the 
complex number from exercise 1, the plot with 500 possible iterations is shown in 
figure Exercise 2.  There isn’t much difference at this zoom level, but we’ll explore 
this concept more in exercise 3.  What else do you notice about the creation of this 
new 500 maximum iteration Julia Set?  Obtaining more detail in a drawing isn’t free!  
If you want, you can increase the width and height of the graphic window, but 
again, a larger Julia Set plot isn't free.  

 
3) Let’s zoom into a portion of the Julia Set we created in exercise 1 and illustrate the 

concept in exercise 2 a bit more explicitly.  First, set the number of iterations to a low 
number by changing the iteration loop to while n < 10:.  Also, set hcenter = 
1.0, vcenter = -0.5, and axrng = 0.1.  The resulting plot is shown in figure 
Exercise 3:  n<10.  Not very appealing, is it?  Now change the number of 
iterations to 50.  The difference in plots is huge and is demonstrated in figure 
Exercise 3:  n<50.  Now change the number of iterations to 1000 (be patient!).  
The result is shown in figure Exercise 3:  n<1000.  When creating fractal 
images there is usually a trade-off between speed and the viewing of details.  Notice 

                                            
44 100 iterations is NOT enough to make such decisions.  In order to refine the Julia Set, we need 
to iterate much more than this number.  500, 1000, 10000 iterations would be better, but we don't 
have that much time, do we?  Actually, an infinite number of iterations would be required to 
decide whether some points on the border of the Julia Set actually belonged to the set. 
45 As are most (all?) fractals, including the ones generated by Newton’s Method and the Julia Set. 
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in the upper right hand portion of the Exercise 3: n<50 and Exercise 3: 
n<1000 plots.  You can easily see that that n<1000 plot displays a finer level of 
detail, but you have to look closely to notice the difference from the n<50 plot.  
Generally, the larger the plot window, the more detailed your plot should be.  
Remember, however, that the plot time will be longer.  If you notice some dark 
vertical line artifacts, remember how we fixed this in the last section by adding 1 to 
each denominator in the hstep and vstep statements at the beginning of the 
program. 

 
There is a limit to how precisely we can draw a fractal.  While fractals themselves are 
infinitely defined, your computer screen is not.  Details of any fractal that are less 
than the size of a single pixel can't be displayed.  This is why we must seek a 
compromise between the number of iterations (which determines the fineness of 
fractal details) and speed of drawing.  Try while n<5000: and see if you can tell 
the difference between 5000 iterations and 1000 iterations on your monitor.  The 
result of 5000 iterations is shown in figure Exercise 3: n<5000 at the end of 
these exercises. 

 
4) Adding extra color to fractal plots usually creates some interesting effects.  Usually 

we color fractals such as Julia and Mandelbrot sets by escape time, that is, by how 
many iterations it takes for the complex point being examined to escape to infinity.  
We can also color a fractal based on the distance the iterated point is from the origin 
when the maximum number of iterations is reached.  Look at the following Julia set 
code again (# comment statements omitted): 

  
 while n < 100: 
   n+=1  
   a = a**2 + z 
   zz = abs(a) 
   if zz > 2: 
     #glColor3f(sin(2*zz),cos(zz),(sin(4*zz)) 
     #glBegin(GL_POINTS) 
     #glVertex2f(x,y) 
     #glEnd() 
     #glFlush() 
     n = 5001 
 
  if zz < 2: 
   glColor3f(cos(5*zz),sin(4*zz)*cos(4*zz),sin(2*zz)) 
   glBegin(GL_POINTS)  
   glVertex2f(x,y) 
   glEnd() 
   glFlush() 
 
  Uncomment the two lines under the if zz > 2: statement and change the 

glColor3f statement under the if zz < 2: to the following: 
 
  glColor3f(sin(n)*zz,sin(n)*zz,cos(n)*tan(zz)) 
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  The coloration is now based on n, the number of iterations, and zz, the 
distance of the iterated point from the origin.  The first glColor3f statement colors 
the points that escape to infinity46 and the second glColor3f statement colors the 
points that are inside the Julia Set.47  The result of these changes is shown in figure 
Exercise 4 below this exercise set.  Experiment with these color statements and 
see what you can create.  Also, remember that you can use various axrng (zoom) 
values as well as changing the initial complex number and the hcenter and 
vcenter parameters.  The number of possible Julia Set fractals is literally infinite! 

 
5) In this exercise, we are going to explore a few interesting initial complex numbers 

that lead to some classic Julia Sets.  First, return the initial parameters back to their 
starting values: 

 
 hcenter = 0.0 
 vcenter = 0.0 
 axrng = 1.5 
 
 which will return the screen center to the origin and set the axis ranges to +/- 1.5.  

Also, return the remainder of the program back to its original state, including 
commenting out the glColor3f and glVertex2f statements we uncommented in 
the last exercise.  Keep the background color black by using glClearColor(0.0, 
0.0, 0.0, 1.0) in the def init(): function.  Also use the original Julia Set 
complex number z = complex(-.75,.1).  Now change the glColor3f 
statement under the if zz < 2: conditional to: 

 
  glColor3f(tan(zz),zz*sin(zz),tan(zz)) 
 
  The resulting plot can be viewed in figure Exercise 5a.  Now try the following 

initial complex Julia Set seeds (each plot can be viewed in the corresponding 
Exercise 5 (x,yi) figures following the exercises: 

 
   z = complex(-1, 0.0) 
   z = complex(-0.4, -0.6) 
   z = complex(-1.5, 0.0) 
   z = complex(-0.8, 0.0) 
   z = complex(-0.1, 0.8) 
   z = complex(0.3, -0.4) 
   z = complex(-0.5, 0.57) 
   z = complex(-0.11, 0.86) 
   z = complex(0.28, 0.53) 
   z = complex(-0.1, 0.75) 
 
  What happens to the plots if you switch or change the signs of these complex 

numbers?  Do you see any patterns based on the initial complex coordinates?  If you 
try your own initial points and nothing appears, change the glColor3f statement or 

                                            
46 As stated earlier, we stop iteration if the distance from the origin to the point is greater than 2.  
Once the orbit of a Julia or Mandelbrot set exceeds 2, then the orbit always goes to infinity. 
47 The Julia Set is actually the boundary between the interior points and the points that escape to 
infinity. 
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uncomment the glColor2f statement and its corresponding glVertex2f under 
the if zz > 2: statement.  You might research the glColor3ub statement and 
see if you can use this command for coloration.  The “ub” ending, as stated earlier, 
stands for “unsigned byte” and the parameters within the glColor3ub statement 
should be integers from 0-255.  Coloration is critical in these fractals! 

 
6) The main Julia Set engine for generating the unique fractal images displayed thus far 

is found in the line: 
 
 a = a**2 + z 
 
 within the while n < 100: iteration loop.  We are not limited to this expression 

and can find the Julia Set of many different equation forms if we wish.  To begin this 
exercise, set z = complex(-0.75, 0.05) and change the second glColor3f 
statement to glColor3f(tan(zz)*zz,cos(zz)*zz,tan(zz)*zz).  With a 
white background color, the resulting plot should resemble figure Exercise 6a 
below.  Now change the Julia Set equation to: 

 
  a = sin(a) + z 
 
 and run the program again.  Be patient… trig functions take time.  You should get a 

plot that resembles the blobby structure in figure Exercise 6b.  Not very 
interesting, is it?  OK, let’s experiment.  First change the escape time values found in 
the if zz statements from 2 to 50 in each.  Run the plot again (be patient!).  You 
should see something like figure Exercise 6c.  Hmmm… there’s some structure, 
but not much else.  OK, let’s zoom out.  Set axrng = 5.0.  Figure Exercise 6d 
illustrates the result.  That’s a bit better, but the colors are terrible!  I’ll let you adjust 
the coloration… see what you can do to make this plot more interesting.  You should 
also attempt to use a = cos(a) + z.  What difference, if any, do you see between 
the sin(a) and cos(a) plots.  Look closely!  How about a = tan(a) + z 

 
7) As a continuation of exercise 6, let’s try some additional Julia Set functions.   Set 

axrng = 2.0, hcenter = 0, and vcenter = 0.   Make the following 
modifications to the appropriate portion of the def drawjulia(): function.    

    
  while n < 200: 
   n+=1  
   a = exp(a) + z 
   zz = abs(a) 
   if zz > 200: 
    glColor3f(cos(zz),sin(zz)*cos(zz),sin(zz)) 
    glVertex2f(x,y) 
    glEnd() 
    glFlush() 
    n = 5001 
  if zz < 200: 
   glColor3f(tan(n),sin(zz),cos(n))  
   glBegin(GL_POINTS) 
   glVertex2f(x,y) 
   glEnd() 
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   glFlush() 
 
  Notice the change in the conditional values in the while loop.  We may be able 

to use smaller escape time values.  You can experiment with escape time if you 
wish.  The second glColor3f statement has also been changed.  The new Julia 
Set equation is a = exp(a) + z.  This is the exponential function.  The resulting 
plot from these modifications is shown in figure Exercise 7. 

 
8) Try this modification, keeping axrng, hcenter, and vcenter the same as in 

exercise 7: 
 
 while n < 200: 
  n+=1  
  a = a**3 + z 
  zz = abs(a) 
  if zz > 2: 
   glColor3f(cos(zz),sin(zz)*cos(zz),sin(zz)) 
   glBegin(GL_POINTS) 
   glVertex2f(x,y) 
   glEnd() 
   glFlush() 
   n = 5001 
 if zz < 200: 
  glColor3f(tan(zz),sin(zz),cos(n))  
  glBegin(GL_POINTS) 
  glVertex2f(x,y)    
  glEnd() 
  glFlush()     
 
  The resulting plot is found in figure Exercise 8 below.  By now you should 

have the idea that the number of different possibilities is infinite!  Explore!  Create!  
Don’t be afraid to try something new and/or different.         

 
9) A rather beautiful Julia Set can be found by using the complex number (-0.780737, -

0.105882i).  You can see this set by changing the Julia Set seed to:  
   
  z = complex(-0.780737,-0.105882)   
 
 and the equation back to a = a**2 + z.  Also, comment out the glColor3f and 

the glVertex2f statements under the if z > 2: statement and modifying the 
glColor3f statement under the if z < 2: statement as follows: 

 
  glColor3f(3/sin(3*zz),cos(3*z.real),2*sin(zz)) 
 
 The resulting plot can be seen in figure Exercise 9. You might need to change 

the number of iterations to if n < 200: or higher to get the best plot. 
 
10) There is another method for creating a Julia Set.  This method is called the inverse 

iteration method.  Until this exercise, we have used a Julia Set complex number seed 
and iterated each pixel point in the graphics window to see if the iteration escapes to 
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infinity or not.  The general equation we used was a = a2 + z where z was the 
constant complex seed used to generate the Julia Set.  We can also generate a Julia 
Set by taking the inverse of this equation; the complex square root.  In this iteration 
method, the pixel points rapidly converge to the Julia Set.  The advantages of the 
inverse iteration method are that we can quickly generate a Julia Set.  The 
disadvantage is that the Julia Set is not filled and can be somewhat incomplete.  The 
listing for an inverse iteration method is as follows: 

 
 # PyInverseJulia.py 
 # Plot a Julia set 
 # Using inverse iteration 
 
 from OpenGL.GL import * 
 from OpenGL.GLU import * 
 from OpenGL.GLUT import * 
 from random import * 
 from numpy import * 
 import sys 
 
 # If psyco isn't installed, delete the next two lines! 
 import psyco 
 psyco.full() 
 
 axrng = 2.0 
 width = 400 
 height = 400 
 
 def init(): 
  glClearColor(0.0, 0.0, 0.0, 0.0) 
  gluOrtho2D(-axrng,axrng,-axrng,axrng) 
 
 def drawinvjulia(): 
  glClear(GL_COLOR_BUFFER_BIT) 
  
  # complex seed point... same as exercise 9 
  a = complex(-0.780737,-0.105882) 
 
  # plot 10000 points, one for each iteration 
  for i in range(0,10000): 
   x = 2*axrng*random()-2 
   y = 2*axrng*random()-2 
    
   n = 0 
   z = complex(x,y) 
    
   # since there are two square roots 
   # we randomly choose between them 
   while n < 10: 
    n+=1  
    if random() < 0.5: 
     z = sqrt(z-a) 
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    else: 
     z = -sqrt(z-a) 
    zz = abs(z) 
     
   glColor3f(3/sin(3*zz),cos(3*z.real),2*sin(zz)) 
   glBegin(GL_POINTS) 
   glVertex2f(z.real,z.imag) 
   glEnd() 
   glFlush() 
    
 def main(): 
  glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE) 
  glutInitWindowPosition(50, 50) 
  glutInitWindowSize(width, height) 
  glutInit(sys.argv) 
  glutCreateWindow("Julia Set") 
  glutDisplayFunc(drawinvjulia) 
  init() 
  glutMainLoop() 
  
 main()  
 
 # End Program 
 
 Figure Exercise 10 illustrates this program.  You may notice some stray points 

inside the Julia Set.  You can eliminate these points at the expense of program 
speed by increasing the value in the while n < 10: loop to while n < 50:.  
Try using different complex seeds and changing the number iterations (and points!).  
You can also experiment with coloration and see the effects on the plot. 

   
   Exercise 1           Exercise 2 
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 Exercise 3: n<10     Exercise 3: n<50 
 

   
 Exercise 3: n<1000   Exercise 3: n<5000 
 

   
    Exercise 4       Exercise 5a 
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   Exercise 5: (-1.0,0.0)    Exercise 5: (-0.4, -0.6) 
 

   
   Exercise 5: (-1.5,0.0)     Exercise 5: (-0.8,0.0) 

   
   Exercise 5: (-0.1,0.8)     Exercise 5: (0.3,-0.4) 
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  Exercise 5: (-0.5, 0.57)   Exercise 5: (-0.11, 0.86) 
 

   
  Exercise 5: (0.28, 0.53)    Exercise 5: (-0.1, 0.75) 

   
   Exercise 6a      Exercise 6b 
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   Exercise 6c      Exercise 6d 
 

   
    Exercise 7       Exercise 8 
 

   
    Exercise 9       Exercise 10 



 222

Section 7.7 Explorations with the Mandelbrot Set 
 
 In the last section we explored the basics of the Julia Set and the iterated 
function, a = a**2 + z, which leads to the determination of how the set will be 
plotted.  In this section, we are going to explore the Mandelbrot Set (M-Set), the parent 
of the Julia Set family, on two levels.  First, we are going to see how the M-Set is 
created, and second, we are going to include a “cheesy” mouse routine48 that will 
hopefully allow us to explore the M-Set “live” without having to change the hcenter, 
vcenter, and axrng values prior to each program execution. 
 
 The M-Set is similar to the Julia Set in that we are going to iterate all the complex 
numbers found in the graphics window pane to see if those numbers escape to infinity or 
remain constrained.  The difference is that with the Julia Set, we chose an initial complex 
number seed and then iterated each pixel after converting the coordinates of that pixel to 
a complex number.  With the M-Set, we are not going to pre-choose an initial complex 
number seed.  Rather, we are going to use each pixel in the graphics window as its own 
seed and plot the results.  Based on this reasoning, since each pixel in the graphics 
window is a unique complex number, the M-Set is a catalog of all possible Julia Sets, 
one unique Julia Set for each pixel!49  This makes the M-Set infinitely complex and 
certainly worthy of our attention.  The M-Set is also quite beautiful regardless of the level 
of magnification.  Before we go any further, though, take the time to Google the 
Mandelbrot Set on the web.  You’ll find a multitude of sources, so look at only a few.  I 
would recommend choosing sites that have “.edu” endings.  As you’ll discover (or have 
already discovered), the M-Set is named after Benoit Mandelbrot, who wrote one of the 
pioneering texts on fractals.50 
 
 Here is the listing of the M-Set program for this section.  It is a bit more involved 
than previous listings because it includes some additional mouse and keyboard 
functions.  After the listing I’ll attempt to clarify the new sections of code. 
 
# PyMandelBrot.py 
# Plot a Mandelbrot set 
# And include a mouse zoom 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
# If psyco isn't installed, delete the next two lines! 
import psyco 
psyco.full() 
 
# Set initial window width and height 
# Declare global variables 
                                            
48 I can hear the groans.  Yes, pun intended. 
49 We will attempt to demonstrate this idea in an exercise. 
50 Mandelbrot, B. (1982). “The Fractal Geometry of Nature”.  W. H. Freeman 
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global width 
global height 
global hcenter 
global vcenter 
global axrng 
global hstep 
global vstep 
global yinit 
global xinit 
 
width = 400 
height = 400 
 
def zap(): 
 global hcenter 
 global vcenter 
 global axrng 
 hcenter = 0.0 
 vcenter = 0.0 
 axrng = 2.0 
 init() 
 
def init(): 
 # Identify the globals 
 global hcenter 
 global vcenter 
 global axrng 
 global hstep 
 global vstep 
 global yinit 
 global xinit 
 global yfinal 
 global xfinal 
  
 # Set the screen plotting coordinates and the step 
 glClearColor(0.0, 0.0, 0.0, 0.0) 
 hstep = 2*axrng/(width) 
 vstep = 2*axrng/(height) 
 yinit = vcenter + axrng 
 xinit = hcenter - axrng 
 yfinal = vcenter - axrng 
 xfinal = hcenter + axrng 
  
 #  Fill the entire graphics window! 
 glViewport(0, 0, width, height) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 # Set the window plot coordinates 
 gluOrtho2D(xinit,xfinal,yfinal,yinit) 



 224

   
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
 glutPostRedisplay() 
  
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "z": 
  zap() 
 if key == "q": 
  sys.exit() 
  
def drawmandel(): 
 glClear(GL_COLOR_BUFFER_BIT) 
 
 y = yinit 
 while y > yfinal: 
  y -= vstep 
  x = xinit 
  while x < xfinal: 
  x += hstep 
    
  n = 0 
  z = a = complex(x,y) 
   
 # n < 200 is the number of iterations 
 # Increase this value to show finer detail 
 # However finer detail results in slower execution 
  while n < 200: 
   n+=1  
   z = z**2 + a 
   zz = abs(z) 
 
  # zz > 2 is the critical escape value 
  # Some functions require larger escape values 
  # This zz > 2 conditional provides coloration for  
  # points outside the M-Set set 
   if zz > 2: 
   # Weird colors around the M-Set    
   #glColor3f(3*sin(3*z.real),cos(3/z.real),4*cos(zz)) 
   #glBegin(GL_POINTS) 
   #glVertex2f(x,y) 
   #glEnd() 
   #glFlush() 
   n = 5001 
    
 # This zz < 2 conditional provides coloration for 
 # points inside the M-Set. 
   if zz < 2: 
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    # Coloration in the M-Set      
    #glColor3f(3/sin(3*zz),cos(3*z.real),2*sin(zz)) 
    glColor3f(0.9, 0.2, 0.5) 
    glBegin(GL_POINTS) 
    glVertex2f(x,y) 
   glEnd() 
   glFlush() 
    
def mouse(button, state, x, y): 
 global hcenter 
 global vcenter 
 global axrng 
  
 # Detect the left/right mouse buttons and the click 
 # Followed by resetting the origin 
 # Left mouse button zooms in, right button zooms out 
 if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN: 
  axrng = axrng/2 
 if button == GLUT_RIGHT_BUTTON and state == GLUT_DOWN: 
  axrng = 2*axrng 
 if state == GLUT_DOWN: 
  hcenter = xinit + (xfinal - xinit)*x/width 
  vcenter = yinit + (yfinal - yinit)*y/height 
  print hcenter, vcenter 
  init() 
    
def main(): 
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(width, height) 
 glutCreateWindow("Mandelbrot Set") 
 glutDisplayFunc(drawmandel) 
 glutMouseFunc(mouse) 
 glutKeyboardFunc(keyboard) 
 zap() 
 glutMainLoop() 
  
main() 
 
# End Program 
 
 Before any explanations are given, let’s look at the one-color plot shown in figure 
M-Set on the next page.  If you haven’t already done so, run the program.  Remember 
to be patient.  Fractals take time to draw!  Notice the shape of the M-Set.  Do you see a 
Cardiod?  Now left-click your mouse pointer on a point on the edge of the M-Set and see 
if you can display a zoomed version.  Keep zooming until you see vertical and/or 
horizontal line artifacts.51  Now right-click on a portion of the graph to zoom out again.  
See how small you can make the M-Set while still retaining an identifiable shape.  If you 

                                            
51 We’ll try to fix these artifacts in an exercise. 
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want to return to the original state of the M-Set, make certain the graphics window has 
focus52 and press the “z” key (for “zap”).  Explore the M-Set by clicking on interesting 
portions of the graph.  Can you find M-Set miniatures hiding within the edges of the full-
size Mandelbrot Set?  This plot was created by using glColor3f(0.9, 0.2, 0.5).   
If you comment this statement and uncomment: 
 
  glColor3f(3/sin(3*zz),cos(3*z.real),2*sin(zz))  
 
you’ll see something like figure M-Set a below.  Uncommenting the lines under # 
Weird colors around the M-Set statement will result in figure M-Set b.  Nice! 
 

 One color is OK… but look below! 
       M-Set 
 

   

                                            
52 Click on the caption bar or make certain the caption bar is highlighted. 
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     M-Set a        M-Set b 
 
 We start the M-Set program with the usual gang of import statements, followed 
by a few global variables as shown below: 
 
# Set initial window width and height 
# Declare global variables 
global width 
global height 
global hcenter 
global vcenter 
global axrng 
global hstep 
global vstep 
global yinit 
global xinit 
 
width = 400 
height = 400 
 
 We are going to actually declare these variables as global because we want to 
have the capability of changing their values during the program execution.  The initial 
window width and height is set to 400 as in the Newton’s Method and Julia Set 
programs, but you may need to make this a bit smaller (or larger) depending on your 
display resolution. 
 
 The first function encountered is "called" from within the def main(): function 
and is named def zap(): 
 
def zap(): 
 global hcenter 
 global vcenter 
 global axrng 
 hcenter = 0.0 
 vcenter = 0.0 
 axrng = 2.0 
 init() 
 
 # End Function 
 
 The purpose of def zap(): is to provide a method of returning a zoomed M-
Set back to its original state by setting both hcenter and vcenter back to 0.0 and 
setting axrng = 2.0 or its original value.  The last line of def zap(): calls the def 
init(): function just as if we've restarted the program. 
 
def init(): 
 # Identify the globals 
 global hcenter 
 global vcenter 
 global axrng 
 global hstep 
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 global vstep 
 global yinit 
 global xinit 
 global yfinal 
 global xfinal 
 global count 
  
 # Set the screen plotting coordinates and the step 
 glClearColor(0.0, 0.0, 0.0, 0.0) 
 hstep = 2*axrng/(width+1) 
 vstep = 2*axrng/(height+1) 
 yinit = vcenter + axrng 
 xinit = hcenter - axrng 
 yfinal = vcenter - axrng 
 xfinal = hcenter + axrng 
  
 #  Fill the entire graphics window! 
 glViewport(0, 0, width, height) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 # Set the window plot coordinates 
 gluOrtho2D(xinit,xfinal,yfinal,yinit) 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
 glutPostRedisplay() 
 
 # End Function 
 
 The def init(): function first declares the global variables53 found at the 
beginning of the program and defines two additional globals, yfinal and xfinal.  
After declaring the global variables can we clear the screen.  The next six lines calculate 
the hstep and vstep for the current window based on the axrng (multiplied by 2 to 
encompass the entire range from –axrng to +axrng) divided by the appropriate 
(width + 1) and (height + 1) values.  Adding 1 to width and height helps 
alleviate some of the glitches or vertical lines that appear in the graphics window when 
zooming.  We then calculate the initial and final x and y values (xinit, yinit, 
xfinal, yfinal) for the gluOrtho2D statement based on the current hcenter, 
vcenter, and axrng settings.  Think about this!  Read the preceding sentences again 
until you understand what is happening with the graphics display!  The remainder of the 
function sets the viewport and the virtual window dimensions.  The final 
glutPostRedisplay() causes a screen refresh using the new settings.  The value of 
this def init(): function is in its ability to redefine the screen viewing dimensions 

                                            
53 This is necessary IF we want to change the values of the variables in the def init(): 
function. 
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when zooming, while repositioning the center of the viewing window using the mouse.54  
It is the screen redefinition calculations and their use in gluOrtho2D that allow us to 
zoom into the M-Set. 
 
 The keyboard function has been expanded slightly to allow us the ability to 
“zap” all the global variables back to their initial values, thereby returning the M-Set to its 
original state. 
 
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "z": 
  zap() 
 if key == "q": 
  sys.exit() 
 
 # End Function 
 
 The “z” key calls the def zap(): function, which resets the global variables 
and then calls the def init(): function as described above.  The def init(): 
function then sets the viewing window to its initial coordinates and refreshes the screen 
with the original M-Set, again as described previously. 
 
 The def drawmandel(): function is very similar to the def drawjulia(): 
function in the previous section of the text.  The differences are that we do NOT define a 
particular complex number prior to entering the while y > yfinal: loop.  Remember 
that in calculating the M-Set we are testing EVERY pixel point in the graphics window to 
see if that point escapes to infinity or not.  Therefore we do not require or want an initial 
complex number seed to use in our iteration loop.  The critical statement then becomes: 
 
 z = a = complex(x,y) 
 
 This double assignment statement sets both z and a to the same complex 
number initially, based on the current x and y coordinates.  The program then enters the 
while n iteration loop where a is kept constant (a is the current point we are testing) 
and z is iterated in the z = z**2 + a statement to see if it tends to escape toward 
infinity or not.  If after an arbitrary number of iterations (n < 200 in this example 
program) the distance (modulus) of z (calculated by zz = abs(z)) is greater than 2, 
we know the point is outside the M-Set and we can color it accordingly (or not).  If after 
200 iterations zz < 2, we know the point is within the M-Set and we can color those 
points (or not) accordingly.  The M-Set is actually the boundary between these two 
regions, the exterior region where all points escape to infinity and the interior region 
where all points are constrained.  The M-Set is on the edge of chaos, so to speak! 
 
 The function which handles the mouse behavior is new and is properly identified 
in def main(): using the glutMouseFunc(mouse) statement.  It is the mouse 
function that allows us to choose a pixel for zooming and repositioning the M-Set.  The 
                                            
54 See the def mouse(button, state, x, y): function section. 
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"chosen pixel" has x and y coordinates which are sent to the mouse function for 
processing.  The mouse function is shown and explained below: 
 
def mouse(button, state, x, y): 
 global hcenter 
 global vcenter 
 global axrng 
  
 # Detect the left/right mouse buttons and the click 
 # Followed by resetting the origin 
 # Left mouse button zooms in, right button zooms out 
 if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN: 
  axrng = axrng/2 
 if button == GLUT_RIGHT_BUTTON and state == GLUT_DOWN: 
  axrng = 2*axrng 
 if state == GLUT_DOWN: 
  hcenter = xinit + (xfinal - xinit)*x/width 
  vcenter = yinit + (yfinal - yinit)*y/height 
  print hcenter, vcenter 
  init() 
  
# End Function 
  
 The def mouse(button, state, x, y): statement contains the name55 of 
the function and some variables or parameters within the parentheses.  These variables 
must always be present in the mouse function defined with the glutMouseFunc() 
statement, although you may choose to use different variable names.  The first variable, 
button,  stores the specific mouse button used to trigger or call the mouse function.  
Possible values are GLUT_LEFT_BUTTON, GLUT_RIGHT_BUTTON, or 
GLUT_MIDDLE_BUTTON depending on which mouse button was clicked to call the 
mouse function.  The second variable, state, holds the status of the mouse button.  
The possible values are GLUT_DOWN and GLUT_UP.  Each state will trigger or call the 
mouse function.56  This means that you can perform a specific operation when the 
mouse button is clicked (GLUT_DOWN) and another specific operation when the mouse 
button is released (GLUT_UP).  The final two variables, x and y, store the window pixel 
coordinates of the mouse pointer when the mouse button is clicked. 
 
 Within the def mouse(button, state, x, y): function are three 
conditional statement blocks.  The first: 
 
 if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN: 
  axrng = axrng/2 
 

                                            
55 Again, we don't have to call the mouse function "mouse".  We can name it whatever we please 
as long as we use the name in the glutMouseFunc() statement. 
56 If you forget this fact, some interesting behavior can result.  If you do not want an event to 
occur when the mouse button is released, place the desired “mouse-triggered” behavior within 
the GLUT_DOWN conditional block of code as shown in this program. 
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is executed when the LEFT mouse button state is the DOWN position.57  The second 
conditional statement: 
 
 if button == GLUT_RIGHT_BUTTON and state == GLUT_DOWN: 
  axrng = 2*axrng 
 
catches the right mouse button click. 
The third conditional statement: 
 
 if state == GLUT_DOWN: 
  hcenter = xinit + (xfinal - xinit)*x/width 
  vcenter = yinit + (yfinal - yinit)*y/height 
  print hcenter, vcenter 
  init() 
 
is executed ONLY when one of the mouse buttons is clicked. 
 
 In either case, left or right button, new screen center coordinates are calculated 
based on the old screen coordinate ranges and the current mouse pointer position 
coordinates.  The intent of the left mouse button click is to zoom in on the M-Set, so we 
halve the axrng variable.  If this seems contrary to common sense, think of it as a 
microscope.  When we move to higher magnifications, we are looking at a much smaller 
field of view.  If the magnification power is doubled, the field of view is halved.  We are 
accomplishing the same effect here by halving the axrng field of view, thereby doubling 
the magnification.   
  
 The right button click allows us to zoom out by doubling the size of the axrng 
variable (doubling the field of view halves the magnification).  If either mouse button is 
clicked (if state == GLUT_DOWN is true), we calculate the new hcenter and 
vcenter origin and then def init(): is called to implement the changes.  The 
print hcenter, vcenter statement prints the current screen center coordinates in 
the console window for reference (these coordinates would correspond to Julia Set 
"seeds").  This print statement line is not crucial to the operation of the program, but 
may be useful for debugging purposes.   
 
 The def main(): function is similar to previous programs with the exception of 
the glutMouseFunc(mouse) statement. 
 
 When you look at the M-Set you are literally looking at infinity.  It is possible 
(theoretically) to magnify the M-Set until it is the size of the known universe… and even 
then the detailed swirls never end.  You can still zoom further!  Literally mountains of 
papers and texts have been written about this beautiful mathematical object and still we 
do not know everything there is to know about the M-Set fractal.  Countless hours of 
computer time have been spent58 plotting the M-Set on everything from super-computers 
to hand held devices.  When you explore the M-Set by zooming into specific areas it is 
quite possible that after several magnifications you will be viewing something never 

                                            
57 How do you know this? 
58 Some might say “wasted”, but it depends on your point of view and who is paying your salary. 
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before seen by human eyes.  I think you will agree that this is a remarkable object 
indeed! 
 
 As stated previously, the M-Set represents a catalog of Julia Sets.  If you recall, 
we had to explicitly provide a complex number seed to the Julia Set program in order to 
calculate and plot a Julia Set.  The M-Set, in contrast, is created by testing every point in 
the complex plane (well… at least every point represented by a pixel and within the 
axrng boundaries) and plotting those points based on whether or not the iterations 
escape to infinity or stay bounded.  Each pixel in the M-Set thus represents a complex 
seed for a unique Julia Set.  It would be interesting if we could simply point and click on 
a screen pixel in and around the M-Set and plot the Julia Set for that pixel.  It would also 
be nice to have the capability of zooming into and out of the Julia Set and then return to 
the same M-Set from which we started.  Such a program would be more complex than 
anything we’ve done thus far, but that shouldn’t be a hindrance.  Using the M-Set 
program from this section as a skeleton, compare it to the following listing and make the 
changes where necessary.  Make certain you save this program under a new name so 
that you can preserve the old M-Set program!  Comments have been liberally applied to 
the code to explain the purpose of each section of program. 
 
# PyMandelJulia.py 
# Plot a Mandelbrot set 
# And include a mouse zoom with 
# Julia Set option enabled 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
# If psyco isn't installed, delete the next two lines! 
 
import psyco 
psyco.full() 
 
# Set initial window width and height 
# Declare global variables 
 
global width 
global height 
global hcenter 
global vcenter 
global axrng 
global hstep 
global vstep 
global yinit 
global xinit 
 
# The following globals allow for the 
# Julia Set options 
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global mandel 
global tmprng 
global julhcenter 
global julvcenter 
global julflag 
global julx 
global july 
 
width = 400 
height = 400 
 
# mandel = 1 for M-Set 
# mandel = 0 for Julia Set 
# Start with the M-Set 
 
mandel = 1 
 
def zap(): 
 # Reset everything 
 
 global hcenter 
 global vcenter 
 global axrng 
 global mandel 
 global julflag 
 hcenter = 0.0 
 vcenter = 0.0 
 axrng = 2.0 
 mandel = 1 
 julflag = 0 
 init() 
 
def init(): 
 # Identify the globals 
 
 global hcenter 
 global vcenter 
 global axrng 
 global hstep 
 global vstep 
 global yinit 
 global xinit 
 global yfinal 
 global xfinal 
 global mandel 
 global julhcenter 
 global julvcenter 
  
 # Set the screen plotting coordinates and the step 
 
 glClearColor(0.0, 0.0, 0.0, 0.0) 
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 # Dividing by (width+1) and (height+1) delays 
 # the onset of screen glitches or artifacts when 
 # zooming by making the hstep and vstep slightly smaller 
  
 hstep = 2*axrng/(width+1) 
 vstep = 2*axrng/(height+1) 
  
 # if mandel == 1 then we are plotting the M-Set 
 if mandel == 1: 
  yinit = vcenter + axrng 
  xinit = hcenter - axrng 
  yfinal = vcenter - axrng 
  xfinal = hcenter + axrng 
 else: 
  # if mandel <> 1 then we plot Julia 
  # the Julia Set uses different 
  # global variables so we don’t forget 
  # the M-Set parameters 
 
  yinit = julvcenter + axrng 
  xinit = julhcenter - axrng 
  yfinal = julvcenter - axrng 
  xfinal = julhcenter + axrng 
   
 #  Fill the entire graphics window! 
 
 glViewport(0, 0, width, height) 
  
 #  Set the projection matrix... our "view" 
 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 # Set the window plot coordinates 
 
 gluOrtho2D(xinit,xfinal,yfinal,yinit) 
  
 #  Set the matrix for the object we are drawing 
 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
 glutPostRedisplay() 
  
def keyboard(key, x, y): 
 global mandel 
 global tmprng 
 global axrng 
 global hcenter 
 global vcenter 
 global julflag 
  
 if mandel == 1: 
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  # We are working with the M-Set  
  # Store the M-Set axrng zoom factor 
  # So that we can restore it later if needed 
 
  tmprng = axrng 
  
 #  Allows us to quit by pressing 'Esc' or 'q' 
 
 if key == chr(27): 
  sys.exit() 
 
 if key == "z": 
  zap() 
 
 if key == "j": 
  # Toggle the Julia Set 
  # and set axrng to original zoom 
 
  mandel = 0 
  axrng = 2.0 
 
 if key == "m": 
  # Toggle M-Set and restore the last 
  # M-Set axrng value so the M-Set looks 
  # the same as it did when we left it 
 
  mandel = 1 
  axrng = tmprng 
  julflag = 0 
  init() 
 
 if key == "q": 
  sys.exit() 
  
def drawmandel(): 
 glClear(GL_COLOR_BUFFER_BIT) 
 y = yinit 
  
 # toggle Julia Set or M-Set 
 # mandel == 0 is the Julia Set 
 # julx and july contain the Julia Set 
 # seed coordinates 
 
 if mandel == 0: 
  a = complex(julx, july) 
   
 while y > yfinal: 
 y-= vstep 
 x = xinit 
 while x < xfinal: 
  x+= hstep 
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  n = 0 
    
  # Choose M-Set or Julia Set 
  # If Julia Set is toggled, “a” already contains 
  # the complex number seed 
 
  if mandel == 1: 
   z = a = complex(x,y) 
  else: 
   z = complex(x,y) 
     
  # Escape time… increase this value above 25 
  # for a more detailed plot.  Decrease 
  # this value for more speed. 
 
  while n < 25: 
   n+=1  
   z = z**2 + a 
   zz = abs(z) 
 
   # This is the escape distance.  For some 
   # M-Set/Julia Sets such as sin() or exp() you 
   # may need to set this value higher than 2 
   # 50 works well for sin() functions 
 
   if zz > 2: 
    # Weird colors outside the M-Set    
          #glColor3f(3*sin(3*z.real),cos(3*z.real),4*cos(zz)) 
    #glBegin(GL_POINTS) 
    #glVertex2f(x,y) 
    #glEnd() 
    #glFlush() 
    n = 5001 
   
  # The same goes for this zz < 2 statement as above 
 
  if zz < 2: 
   # Coloration inside the M-Set  
    
   glColor3f(3*sin(3*zz),cos(3*z.real),2*sin(zz)) 
   glBegin(GL_POINTS) 
   glVertex2f(x,y) 
   glEnd() 
       glFlush() 
    
def mouse(button, state, x, y): 
 global hcenter 
 global vcenter 
 global axrng 
 global julhcenter 
 global julvcenter 
 global julflag 
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 global julx 
 global july 
  
 # Detect the left/right mouse buttons and the click 
 # Followed by resetting the origin 
 # Left mouse button zooms in, right button zooms out 
 
 if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN: 
  if mandel == 1: 
   hcenter = xinit + (xfinal - xinit)*x/width 
   vcenter = yinit + (yfinal - yinit)*y/height 
   axrng = axrng/2 
   init() 
  else: 
   # We use different center point variables here 
   # to keep the Julia Set and M-Set calculations 
   # separate 
 
   julhcenter = xinit + (xfinal - xinit)*x/width 
   julvcenter = yinit + (yfinal - yinit)*y/height 
    
   # We use a flag variable here so that the first 
   # Julia Set plot is normal size regardless of the 
   # Zoom factor on the M-Set.  We don’t want to  
   # cause a zoom on the first Julia Set 
 
   if julflag == 0: 
    # Print the value of the Julia Set seed 
 
    print "Julia", julhcenter, julvcenter 
     
    # Store the pixel coordinates in julx and july 
    # for the Julia Set seed 
 
    julx = julhcenter 
    july = julvcenter 
 
    # Set the following variables to zero 
    # so the first Julia Set is centered in 
    # the graphics display window 
 
    julhcenter = 0.0 
    julvcenter = 0.0 
 
    # Show the Julia Set! 
    init() 
 
   else: 
    # NOW we can zoom on the Julia Set 
 
    julhcenter = xinit + (xfinal - xinit)*x/width 
    julvcenter = yinit + (yfinal - yinit)*y/height 
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    axrng = axrng/2 
    init() 
 
   # Set the flag so subsequent mouse clicks zoom 
   # into the Julia Set 
 
   julflag = 1 
    
 if button == GLUT_RIGHT_BUTTON and state == GLUT_DOWN: 
  # This section is similar to the previous 
  # Section except that here we zoom out! 
 
  if mandel == 1: 
   hcenter = xinit + (xfinal - xinit)*x/width 
   vcenter = yinit + (yfinal - yinit)*y/height 
   axrng = 2*axrng 
   init() 
 
  else: 
   julhcenter = xinit + (xfinal - xinit)*x/width 
   julvcenter = yinit + (yfinal - yinit)*y/height 
 
   # Again, we don't want to initially zoom into 
   # the Julia Set... we want a "normal" Julia First 
   if julflag == 0: 
    print "Julia", julhcenter, julvcenter 
    julx = julhcenter 
    july = julvcenter 
    julhcenter = 0.0 
    julvcenter = 0.0 
    init() 
 
   else: 
    julhcenter = xinit + (xfinal - xinit)*x/width 
    julvcenter = yinit + (yfinal - yinit)*y/height 
    axrng = 2*axrng 
    init() 
 
   julflag = 1 
 
def main(): 
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(width, height) 
 glutCreateWindow("Mandelbrot Set") 
 glutDisplayFunc(drawmandel) 
 glutMouseFunc(mouse) 
 glutKeyboardFunc(keyboard) 
 zap() 
 glutMainLoop() 
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main() 
 
# End Program  
 
 This program functions in much the same fashion as the previous M-Set program 
with the exception of the added Julia Set option.  To display the Julia Set of any pixel 
point in the M-Set graphics window, press the "j" key on the keyboard and then click on 
the pixel using either mouse button.  Once the Julia Set has displayed, you can then 
zoom in or out just as with the M-Set program.  To return the M-Set you were viewing 
prior to the Julia Set, press the "m" key.  Remember that EACH pixel59 in the M-Set 
graphics window represents a different Julia Set.  You could spend a LOT of time with 
this program exploring the various Julia Sets associated with different locations in the M-
Set!   
 
 An example of this program’s execution is shown in figures M-Set and J-Set 
below and on the next page.  An escape time value of 200 was used instead of 25 in 
order to show more detail in both sets.  The M-Set figure is shown after 3 zoom clicks in 
the seahorse valley.60  Be patient when increasing the escape time value.  The beauty of 
the final fractal image is usually worth the wait!  In the M-Set figure, a cross-hair is 
positioned in an area of the M-Set known as the upper seahorse valley.  The 
corresponding Julia Set for this location is displayed in the J-Set figure.  You may not 
be able to exactly hit the point shown in the M-Set figure, but you should be able to get 
fairly close.  Even so, your Julia Set may be a bit different than the one displayed here. 
 

   
Figure M-Set after 3 zooms.  Note the cross! 
 
 The Julia Set on the next page corresponds to the complex seed point  
(-0.753333333333, 0.0316666666667i).  You can now zoom in on the Julia Set by 
clicking on any region or point of interest.  To return to the M-Set, simply press the "m" 
key. 
                                            
59 Actually EACH POINT in the M-Set corresponds to a different Julia Set.  Since points have no 
dimension, there are an infinite number of Julia Sets possible from the M-Set! 
60 Believe it or not, each area of the Mandelbrot Set has been named after the shapes of the 
"whorls and swirls" inside the set in that region. 
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 The beauty and uniqueness of the M-Set (and the subsequent Julia Sets!) are 
striking to behold.  There have been (and continue to be) an amazing number of papers, 
articles, and texts based on explorations and research about the M-Set.  Not only can 
you find interesting shapes in the M-Set, but we can make associations with prime 
numbers and PI.  We are now going to work with some exercises based on the 
programs we’ve written in this section.  Make certain that you save any modifications to 
the programs (particularly the last pymandeljulia.py program!) under a new filename 
to preserve the original program listings.  Oh, by the way… do you see the Cardiod in 
the M-Set?  Hmmm…. 
 

   
Figure J-Set from the cross region in the M-Set above.   
 

Exercises 
 
1) The coloration of the M-Set is one of the aspects that make the exploration of the M-

Set so striking.  Experiment with the glColor statements and see what you can 
accomplish. 

 
2) Details of the M-Set can be amazing to view.  In order to provide finer details, we 

need to increase the value of the escape time.  Find this code section in the listing (it 
is commented) and increase the value.  See if you can find an optimum value for 
both speed of execution and detail. 

 
3) Zoom, zoom, zoom!  Choose various regions of the M-Set and simply zoom.  How 

far can you zoom before screen glitches appear?  Can you fix those glitches?  How 
might you include something in the code so that you would know the level of 
magnification?  Where would you print this magnification level?  One of the 
interesting things about the M-Set is that after a few zooms, it is quite possible that 
you are looking at something never before seen by human eyes.  That makes you an 
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explorer!  Where can you change the zoom factor (both in and out) so that you can 
increase the zoom increment more quickly?  Figure Exercise 3 illustrates a 9 
"click" zoom into the seahorse valley region.  You may need to change coloration or 
increase the escape time to get an optimally detailed plot.  The resulting plot is 
usually worth the increased wait time! 

 
4) Can you find some mini M-Sets around the main M-Set?  Where are these located?  

Are they identical to the main M-Set?  How are they alike and different?  Figure 
Exercise 4 shows one such “mini” M-Set.  Can you find where this one is located? 

 
5) Explore the M-Set and Julia Set connections.  Is there a difference in appearance 

between Julia Sets within the M-Set, on the border of the M-Set, and external to the 
M-Set?  Can you use the appearance of the M-Set in a particular region to predict 
the appearance of the Julia Set? 

 
6) Explore different equations for the M-Set such as: 
  
 a)   z = z**3 + a 
 b)  z = exp(z) + a  (escape distance zz < 50) 
 c) z = sin(z) + a  (escape distance zz < 50) 
 d) z = cos(z) + a  (escape distance zz < 50) 
 e) z = z**4 + a   
 
 You may need to increase the escape distance value (commented in the code) to 

achieve a decent plot.  You might have to change axrng to a different (probably 
larger) value to entirely encompass the plot.  Make up your own equations and see 
what happens!  The equations above are shown in figures Exercise 6a through 
Exercise 6e.  Zoom in and out to achieve interesting results.  With the exp() and 
trig functions, plotting time is increased, so have some patience.  You can decrease 
the escape time value (commented in the code) to increase the speed of the plot at 
the sacrifice of detail.  Sometimes, though, coloration is more important than detail 
so experiment there as well.  ** Try to plot some Julia Sets in and around these M-
Sets!  Amazing! 

  
7) Can you figure out how to add a timing feature to the M-Set program to calculate 

how long it takes to plot the M-Set?  If not, look at the next exercise for a possible 
solution. 

 
8) Unfortunately there is no inverse iteration method for the M-Set.  However, we can 

use a method that scans for the boundary of the M-Set and only plots those points 
that are on the boundary.  This method quickly draws the outline of the M-Set.  The 
following listing is an implementation of the boundary scanning method. 

 
# PyBoundMSet.py 
# Plot an M-Set 
# Using boundary scanning 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
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from random import * 
from numpy import * 
from time import * 
import sys 
 
# If psyco isn't installed, delete the next two lines! 
import psyco 
psyco.full() 
 
axrng = 2.0 
width = 400 
height = 400 
hstep = 2.0*axrng/width 
vstep = 2.0*axrng/height 
 
def init(): 
 glClearColor(0.0, 0.0, 0.0, 0.0) 
 gluOrtho2D(-axrng,axrng,-axrng,axrng) 
 
def drawboundmandel(): 
 global escape 
 glClear(GL_COLOR_BUFFER_BIT) 
 
 # for a timer! 
 tim = time() 
 
 # Chooses the number of random pixels to check 
 # Increase this number for a more dense plot. 
 for i in range(0,100000): 
    
   # limits the M-Set ranges 
   # to speed up execution 
   # and choose random pixels in 
   # this more limited range 
   x = -2*axrng*random()+.5 
   y = 1.25*axrng*random()-1.25 
    
   # draws a triangle around the M-Set 
   # So we have fewer points to choose from 
   if y < .625*x + 1.25 and y > -.625*x - 1.25: 
    
    bound = 0 
     
    # check pixels at North, South, 
    # East, and West locations to see 
    # if these points escape to infinity 
    # If so, add 1 to bound variable 
    leng = escapetime(x+hstep,y) 
    if leng < 2: 
     bound += 1 
    leng = escapetime(x-hstep,y) 
    if leng < 2: 
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     bound += 1 
    leng = escapetime(x,y-vstep) 
    if leng < 2: 
     bound += 1 
    leng = escapetime(x,y+vstep) 
    if leng < 2: 
     bound += 1 
     
    # If any, but not ALL neighboring  
    # pixels escape, then the current pixel 
    # is on the border of the M-Set so plot it!  
    # 
    # Change second bound to bound < 5 for  
    # an interesting effect! 
    if bound > 0 and bound < 4: 
     glColor3ub(85*bound,50*bound,90*bound) 
     glBegin(GL_POINTS) 
     glVertex2f(x,y) 
     glEnd() 
     glFlush() 
 
 # Print the elapsed time in the console window 
 print time() - tim 
   
def escapetime(x,y): 
 n = 0 
 z = a = complex(x,y) 
 
 # Low escape time for a quick plot 
 while n < 25: 
   
  # M-Set equation 
  z = z**2 + a 
  zz = abs(z) 
 
  # escape distance 
  if zz > 2: 
   n = 5001 
  n += 1 
 return zz 
    
def main(): 
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(width, height) 
 glutCreateWindow("Julia Set") 
 glutDisplayFunc(drawboundmandel) 
 init() 
 glutMainLoop() 
  
main() 
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# End Program  
 
 The resulting plot for this program is shown in figure Exercise 8a.  Notice how 
quickly we see an outline of the M-Set!  As we did with the normal escape time M-
Set program, try experimenting with escape time and try different M-Set equations to 
see what happens.61  Also, increase the number of pixels to plot (commented in the 
program) and change the second bound conditional variable to a value greater than 
4 for an interesting effect (also commented).  Figure Exercise 8b illustrates an 
escape time of 250.  The M-Set plot is more detailed, but takes longer to display. 

 
 

   
      Exercise 3       Exercise 4 
 

   
    Exercise 6b      Exercise 6c 
 

                                            
61 You will have to alter the x and y ranges at the beginning of the plotting loop to see the 
complete plots of other equations.  These ranges are for the M-Set only.  You can experiment to 
see what works in each new equation. 
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   Exercise 6d      Exercise 6e 
 

   
   Exercise 8a      Exercise 8b



Chapter 8 2D Animation 
 
 How do we make something move?  Perhaps before we ask that question, we 
should ask "How do we know when an object is moving?"  In order to determine whether 
or not motion is occurring we must first establish a reference point that we define to be 
stationary.  Then, any difference in the relative positions of the object in question and the 
reference point would signify object movement or motion.  The earth serves as an 
excellent reference point for everyday situations.  We assume that the earth is 
stationary, so any change in the position of an object on the earth is easily interpreted as 
motion by that object.  Sometimes if we move the "stationary" reference point and keep 
the object in place, we can trick our brain into believing that an object is in motion.  For 
example, in cartoon animation we can hold an object such as an airplane stationary with 
respect to the drawing frame, but at the same time move the background scenery from 
right to left.  This gives the appearance of an airplane flying from left to right!  Many older 
computer games involved this form of background movement to simulate the motion of a 
spaceship or aircraft.  Another form of cartoon style animation involves drawing an 
object in a particular location, then in the next frame, erasing and redrawing the object in 
a slightly different location.  If we do this drawing, erasing, and redrawing sequence 
enough times at a relatively high speed, we can create the illusion or appearance of 
motion.  We will use this method to approach animation in Python. 
 

Section 8.1 Follow the Bouncing Ball 
 
 For our first example of animation we are going to have a sphere or ball bounce 
around the confines of a graphics window.  This task is not as simple as it sounds.  First, 
we have to draw a ball... that's not too difficult.  Then we have to erase the ball and draw 
it in a different location.  Again, not an insurmountable challenge.  Finally, we have to 
figure out how to have the ball realize that it has hit the side of the graphics window so 
that it can bounce off the "wall" and reverse its movement.  Collision detection can be 
somewhat tricky!  Not only must we detect when the ball has collided with the wall, we 
must also make certain that its rebound is realistic.  In other words, we must make every 
attempt to insure that the ball follows the laws of physics.  Without further ado, here is a 
first attempt at animation. 
 
# PyBounce.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
import sys 
 
# uncomment these lines later 
# to see if there is any difference 
# in the speed of the ball 
# import psyco 
# psyco.full() 
 
#  globals for animation, ball position 
#  and direction of motion 
global anim, x, y ,dx, dy 
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# initial position of the ball 
x = -0.67 
y = 0.34 
 
# Direction "sign" of the ball's motion 
dx = dy = 1 
 
# Window dimensions 
width = height = 500 
axrng = 1.0 
 
# No animation to start 
anim = 0 
 
def init(): 
 glClearColor(0.0, 0.0, 0.0, 1.0) 
 glColor3ub(255, 0, 0) 
  
 # Dimensions of the screen 
 # Make axrng larger and see what happens! 
 gluOrtho2D(-axrng, axrng, -axrng, axrng) 
 
def idle(): 
 # We animate only if anim == 1, otherwise 
 # the ball doesn't move 
 if anim == 1: 
  glutPostRedisplay() 
 
def bounce(): 
 global x, y, dx, dy 
 glClear(GL_COLOR_BUFFER_BIT) 
 
 # changes x and y 
 x += 0.001*dx 
 y += 0.001*dy 
  
 # Keep the motion mathematics 
 # Safe from harm and then 
 # Move the ball location based on x and y 
 glPushMatrix() 
 glTranslate(x,y,0) 
 glutSolidSphere(0.1, 50, 50) 
 glPopMatrix() 
  
 # Collision detection! 
 # What happens here and why does this work? 
 if x >= axrng or x <= -axrng: 
  dx = -1*dx 
 if y >= axrng or y <= -axrng: 
  dy = -1*dy 
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 glFlush() 
  
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 #  We can animate by "a" and stop by "s" 
 global anim 
 if key == chr(27): 
  sys.exit() 
 if key == "a": 
  # Notice we are making anim = 1 
  # What does this mean?  Look at the idle function 
  anim = 1 
 if key == "s": 
  # STOP the ball! 
  anim = 0 
 if key == "q": 
  sys.exit() 
 
def main(): 
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("PyBounce") 
 glutDisplayFunc(bounce) 
 glutKeyboardFunc(keyboard) 
 glutIdleFunc(idle) 
  
 init()  
 glutMainLoop() 
 
main()   
 
# End of program 
 
 When you run this program, you should first see a window that looks like Figure 
8.1 on the next page.  Press "a" and see what happens.  You should see the ball 
bouncing around the screen, but it doesn't look very smooth.  You may even notice that 
the ball is sinking into the sides of the screen prior to rebounding.  We will fix these 
problems in a moment, but for now let's look at the code a bit more closely. 
 
# PyBounce.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
import sys 
 
# uncomment these lines later 
# to see if there is any difference 
# in the speed of the ball 
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# import psyco 
# psyco.full() 
 
 There is nothing mysterious about the beginning lines of the program.  We've 
seen this code before.  We don't need the numpy module at this point, so we do not 
import it.  Once the program is running properly, you may uncomment the psyco code to 
see if your program runs a bit more smoothly.  However, you may want to wait until we 
fix the animation issues first.   
 

 
  Figure 8.1 
 
 The next section declares some global variables and sets some initial values for 
those variables: 
 
#  globals for animation, ball position 
#  and direction of motion 
global anim, x, y ,dx, dy 
 
# initial position of the ball 
x = -0.67 
y = 0.34 
 
# Direction "sign" of the ball's motion 
dx = dy = 1 
 
# Window dimensions 
width = height = 500 
axrng = 1.0 
 
# No animation to start 
anim = 0 
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 The global declaration statement looks a bit different, doesn't it?  We can 
declare all global variables using one statement if we wish.  This single line declaration 
has not been used in previous programs because my goal was clarity rather than 
efficiency.  We have advanced to the point now where we can begin to take a few 
shortcuts as long as we retain the meaning of the code construction.   
 
 The x and y variables provide the initial position of the center of the ball.  The 
direction variables, dx and dy, are both initialized to +1.  We will use these two variables 
to establish the direction that the ball is traveling.  When the ball collides with a wall, 
changing the sign of dx or dy will allow us to change the direction of the ball's motion as 
we shall soon see.  There is nothing new about the width and height variables other 
than the format of how we are assigning their initial values.  The global variable anim 
will be used to toggle the animation of the ball on or off by using the "a" key. 
 
 The def init(): function is nearly identical to earlier programs, but following 
the init function, we see a new function called def idle():.  The def idle(): 
function is called when GLUT is "idling" or not responding to mouse or keyboard input.  
Similar to the GLUT mouse and keyboard functions,  we must declare the def 
idle(): function in the def main(): code block by using glutIdleFunc(idle).  
Of course, we could name this function anything we wish as long as we declared the 
identical name in the glutIdleFunc() statement.  However, using the name "idle" 
seems to make sense for our first program.  It is the idle function that allows animation 
to occur.  As long as GLUT is NOT responding to keystrokes or mouse input, it "idles" for 
us by executing the following code: 
 
def idle(): 
 # We animate only if anim == 1, otherwise 
 # the ball doesn't move 
 if anim == 1: 
  glutPostRedisplay() 
 
 In this code block, IF the global variable anim == 1, then Python simply keeps 
calling the display function by issuing a glutPostRedisplay() command.  This 
continuous calling of the display function may not seem important, but the result in our 
current program is animation!  If anim <> 1, then animation stops.  Of course, the 
actual animation procedures occurs in the display function def bounce(): 
 
# display function 
 
def bounce(): 
 global x, y, dx, dy 
 glClear(GL_COLOR_BUFFER_BIT) 
 
 # changes x and y coordinates 
 x += 0.001*dx 
 y += 0.001*dy 
  
 # Keep the origin in safe keeping 
 # for glTranslate! 
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 glPushMatrix() 
  
 # Move the ball location based on x and y 
 glTranslate(x,y,0) 
 glutSolidSphere(0.1, 50, 50) 
 glPopMatrix() 
  
 # Collision detection! 
 # What happens here and why does this work? 
 if x >= axrng or x <= -axrng: 
  dx = -1*dx 
 if y >= axrng or y <= -axrng: 
  dy = -1*dy 
 
 glFlush() 
 
 It is important to understand the purpose of the glClear statement.  Comment 
this statement and run the program (make sure you press "a" to start the animation).  
Uncomment glClear after you have seen the results.  What purpose does the 
glClear function serve?  That's correct!  glClear allows for the erasing and 
subsequent redrawing needed for proper animation.  The following statements: 
 
 x += 0.001*dx 
 y += 0.001*dy 
 
continuously increment the x and y coordinates by 0.001.1  The direction or sign of the 
0.001 value in each equation is determined by the value of dx and dy respectively.2  
Initially, dx and dy are both +1 (how do you know?) and the x and y coordinates 
increase by +0.001 each iteration.  This change in x and y coordinates along with the 
erasing and redrawing of the ball results in the appearance of motion.  If we change dx 
and/or dy to a value of -1, we will change the horizontal and vertical directions of the x 
and y motions by subtracting 0.001 from x and/or y.   So, the values of dx and dy 
together determine which direction the ball will move in the graphics display window.  
 

The next section is definitely mysterious (preceding comments have been 
removed): 
 
 glPushMatrix() 
 glTranslate(x,y,0) 
 glutSolidSphere(0.1, 50, 50) 
 glPopMatrix() 
 

                                            
1 Remember what += means!  It is equivalent to x = x + 0.001*dx. 
2 When we write a program to simulate the dynamics of star movements, we will call such 
direction routines unit vectors.  A vector has both magnitude and direction.  In this case, we do 
not want to change the magnitude of the motion using dx and dy, only the direction of motion.  
Hence, we multiply 0.001 by -1 or +1, which changes the direction sign, but not the absolute 
value of the velocity of the ball.. 
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What is glPushMatrix() and why do I have to use it?  First, you MUST 
remember that for every glPushMatrix(), you must have a matching 
glPopMatrix().  Every code statement between these two matrix commands is 
"protected" from inadvertent changes in the screen origin or reference point.  What do I 
mean by inadvertent changes in the current graphics reference point?  The 
glTranslate(x,y,0)3 statement allows us to move to any x,y coordinate location in 
the graphics window (and beyond!).4  However, issuing a simple unprotected 
glTranslate() command also changes the "origin" or the reference point of the x,y 
coordinates within the glTranslate statement.  Every future point we select will be 
relative to the last point we specified in glTranslate.  We don't want that behavior in 
our program!  Here is an example:  Say I issue an initial glTranslate(0.5, 0.5, 0) 
command and then draw a circle.  As expected, the circle will be centered at (0.5, 0.5) 
on the screen.  If I issue the same glTranslate command again, you might expect 
that the circle will not move... after all, we are using the same coordinates of (0.5, 0.5) 
and we should draw a new circle in the same location.  In actuality, though, a new circle 
will be drawn (0.5, 0.5) units away from the previous circle!  If we continue to issue the 
same glTranslate command, we will create a line of individual circles on the y = x 
diagonal.  Even though we issue the SAME glTranslate command, each new circle 
will be plotted relative to the previous circle.  While the effect may be interesting, this line 
of identical circles is probably not what we want!   
 
 So, effectively glTranslate will create a NEW origin or reference point every 
time we issue the command.  This is NOT what we want.  We want the origin to stay in 
the CENTER of our screen and have the coordinates (0, 0) like we and Descartes 
expect.5  We want to be able to use glTranslate and plot individual circles wherever 
we like using the traditional x and y coordinate system.  We do NOT want our circles to 
march merrily off into the void!  This is the reason we use glPushMatrix() and 
glPopMatrix().  Using these commands as bookends to our plotting statements, we 
"freeze" the origin in the correct location and we are able to use glTranslate exactly 
as expected.  If you don't quite understand this concept, simply comment out both 
glPushMatrix() and glPopMatrix() statements and run the program again.  What 
happens when you press "a".  See what I mean?  The ball takes off on a diagonal and 
never returns.  You should uncomment the "matrix" statements before someone gets 
hurt! 
 
 In the process of explaining the glPushMatrix() and glPopMatrix() 
statements, I couldn't avoid discussing glTranslate, so hopefully you understand the 
purpose of this command.  A translation is a lateral movement in a plane or in space, 
hence the name glTranslate.  We used glVertex2f (and later we will use 
glVertex3f) to plot points ONLY.  If we want to position objects other than points 
(such as spheres), we must use glTranslate to move the object to the desired 
location.  Finally, the line after glTranslate plots a sphere using the appropriate 
GLUT command.  The format of this command is as follows: 

                                            
3 So, what does the "0" in glTranslate(x,y,0) do?  OpenGL is a 3D graphics environment 
by nature, so the 0 holds a place for the z-axis, which we'll be using later on. 
4 In geometry, a translation is a movement from one (x, y) location to another (x', y') location in a 
linear direction.  I use the phrase 'lateral movement' in the text.  
5 Ah, yes... look up René Descartes and see what he did for algebra and geometry! 
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 glutSolidSphere(radius, slices, stacks) 
 
 The meaning of radius is obvious and its value should be chosen to fit the axis 
range of your graphics window.  If you have set axrng = 1.0, then you should choose 
a radius much smaller than this value or the sphere (ball) will be much too large.  The 
slices and stacks parameters are analogous to longitude and latitude lines.  The 
higher these values, the more smooth the sphere, but it will take longer to draw.  If your 
animation is much too slow or "jerky", then choose smaller values for slices and 
stacks.  I used 50 for both values, but you can get a pleasing sphere/ball using 10 or 
20 for slices and stacks.  One question you might pose is "Why are you plotting a 
sphere when we are using 2D graphics?"  Good question.  The short answer is that the 
cross-section of a sphere is a circle, which looks like a "ball" on the graphics screen and 
serves our purpose nicely.  GLUT spheres are very easy to plot! 
 
 The next section of code is for simple collision detection.6  Without this code, the 
ball will move off the screen (similar to what happened when we commented the 
glPushMatrix() and glPopMatrix() commands) never to return.  Here are the 
magic collision detection statements: 
 
 if x >= axrng or x <= -axrng: 
  dx = -1*dx 
 if y >= axrng or y <= -axrng: 
  dy = -1*dy 
 
 That is all it takes!  If the x location of our ball is at or outside the +/- limits of 
axrng, then we multiply dx by -1, effectively changing the sign of dx and hence the 
direction sign of 0.001!  The same reasoning may be used for the y location of the ball.  
Essentially, if the ball reaches any screen boundary as set by axrng, then the ball will 
reverse its direction.  This is a rudimentary, yet effective form of collision detection.  Look 
once again at: 
 
 x += 0.001*dx 
 y += 0.001*dy 
 
to see how the signs of dx and dy affect the values of 0.001, x, and y, and thus the 
motion of the ball.  Finally, we use glFlush() (perhaps for the last time...) to draw the 
new location of the ball. 
 
 The keyboard function is a bit more complex than in previous programs 
because we are adding two new key options: 
 
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 #  We can animate by "a" and stop by "s" 
 global anim 
 if key == chr(27): 

                                            
6 Collision detection can become not so simple for complex objects.  Collision response can be 
even more complicated if we want the physics to be accurate! 
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  sys.exit() 
 if key == "a": 
  # Notice we are making anim = 1 
  # What does this mean?  Look at the idle function 
  anim = 1 
 if key == "s": 
  # STOP the ball! 
  anim = 0 
 if key == "q": 
  sys.exit() 
 
 In addition to the usual "Esc" and "q" keys, we are allowing the user to start 
animation by pressing the "a" key (how does this start animation?) and to stop animation 
by pressing the "s" key (again, how does this stop animation?).  Note the global anim 
statement.  This statement allows us to change the value of anim within the keyboard 
function so the entire program can use the new value of anim. 
 
 The only modification to the def main(): function is the addition of the 
glutIdleFunc(idle) statement, which is needed in order to define the GLUT idle 
function. 
 
 The animation provided by this particular program has an annoying flicker and is 
not pleasing to the eye.  Let's fix that visual problem.  First, we must deal with the 
flickering effect.  Ideally, we would want to see much smoother animation.  Fortunately, 
the "fix" is simple.  Make the following changes to your program listing: 
In def main(): replace:  
 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
 
with: 
 
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE) 
 
and in def bounce(): replace our good friend: 
 
 glFlush() 
 
with: 
 
 glutSwapBuffers() 
 
 Remember to keep the same level of indentation when you make the 
modifications above and then run the program again.  See how much smoother the 
animation is!  This is called "double-buffering" and the concept is rather simple.  Imagine 
two graphics windows (called "buffers"), one in front of the other.  While we draw on the 
back window, we display the front window.  We then "swap buffers" and exchange the 
windows, again drawing on the "hidden" window/buffer while displaying the new recently 
drawn buffer.  We continue to repeat this process and the result is smooth animation.  
This technique is much more efficient than the original drawing-erasing-drawing strategy, 
which caused flickering. 
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 The second issue is a bit more difficult to treat.  The bouncing ball is sinking into 
the walls of the screen.  We don't want that behavior, so what do we do?  Before we can 
fix the problem, we must understand why the ball behaves as it does.  Remember that 
the position of the ball as set by glTranslate is based on the center of the ball.  So, 
while we want the ball to change direction based on contact with its outer border and the 
wall, it actually changes its direction when the center point hits a wall.  The fix is not 
difficult, though, and is illustrated by the following statements: 
 
 if x >= axrng - 0.1 or x <= -axrng + 0.1: 
  dx = -1*dx 
 if y >= axrng - 0.1 or y <= -axrng + 0.1: 
  dy = -1*dy 
 
What is the significance of the -0.1 and +0.1 modifications?  These represent the 
radius of the ball!  By using these values, we take into consideration the radial size of the 
ball and can detect a window border collision with the outside boundary of the ball.  If 
you haven't done so, run the program and watch what happens.  This is much better 
animation than the original pybounce.py program and we've not had to expend much 
additional effort.  You should understand that it would be more efficient to use a variable 
to represent the radius of the ball/sphere everywhere in the program that the radius is 
needed.  How might you do that?  See Exercise 2! 
 
 In the following exercises, be prepared to invent, experiment, and discover 
additional features and behaviors dealing with simple animation. 
 

Exercises 
 
1) Try animating the different GLUT shapes listed below!  Does the collision mechanism 

still work properly for each? 
   
 glutSolidCone(base, height, slices, stacks) 
 glutSolidCube(size) 
 glutSoliddodecahedron() 
 glutSolidIcosahedron() 
 glutSolidOctahedron() 
 glutSolidTetrahedron() 
 glutSolidTorus(inner_radius, outer_radius, sides, rings) 
 glutSolidTeapot(radius) 
 

Can you fix the collision mechanism if it is not working?  How?  Some of the GLUT 
shapes take no parameters (which ones?) so how can you set their size?  There is 
an OpenGL function, glScalef(x, y, z), which will allow you to change the size 
of the object you are drawing.  If you place glScalef(2.0, 2.0, 2.0) 
immediately above the GLUT shape command, then you will be multiplying the 
size/scale of the shape by 2.0 on all three axes, (x, y, z).  The effect would be a 
doubling of the linear dimensions of the shape.  Likewise, placing glScalef(0.5, 
0.5, 0.5) prior to issuing a GLUT shape command will scale each of the axes by 
0.5, effectively shrinking the image.  What happens if you use unequal values for the 
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axes?  Try it!  Also, you can substitute the word "Wire" for "Solid" in each of the 
GLUT shape commands with the expected result. 
 

2) We have "hard-coded" the radius of the sphere/ball in the example program by using 
0.1 in glutSolidSphere and in the collision detection code.  Replace this 0.1 
value with an appropriate variable so that when you wish to change the radius of the 
sphere, you can do so in only one place and the change will be reflected throughout 
the program.  Can you say "global"? 

 
3) Try different initial values for the position and velocities of the bouncing ball.  Also, try 

increasing axrng to a much larger number.  What happens to the apparent size of 
the ball?  Why does this happen?  Do you notice any other effects as the size of 
axrng increases?  Does the ball ever become a ring?  Why do you think this 
happens? 

 
4) If you change the dimension of the graphics window while the program is running by 

dragging the lower right corner or by maximizing the window, what happens to the 
bouncing ball?  What are we missing in this program that might fix this problem?  If 
you thought "a reshape function", then give yourself a pat on the back.  However, 
simply using the reshape function from previous programs will not suffice.  We must 
take into consideration the graphics axis ranges for collision detection.  Here is an 
example of the steps needed to add a reshape function to the pybounce.py 
program: 

 
 First add: 
 
 global xborder, yborder 
 

to the global variable section.  We will use these two variables, xborder and 
yborder, to establish virtual "walls" within the graphics window.  Then initialize 
these variables to the value for axrng as follows: 
 
 xborder = yborder = axrng 
 
Why must you place this line AFTER you set the value for axrng?  Next, add the 
following def reshape(w, h): function: 
 
def reshape(  w,  h): 
 global xborder, yborder 
 # To insure we don't have a zero height 
 if h==0: 
  h = 1 
  
 #  Fill the entire graphics window! 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
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 #  Set the aspect ratio of the plot so that it 
 #  Always looks "OK" and never distorted. 
 if w <= h: 
  gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w) 
  yborder = axrng*h/w 
  xborder = axrng 
 else: 
  gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng) 
  xborder = axrng*w/h 
  yborder = axrng 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 

 
# End Function 
 
Note the: 
 
 yborder = axrng*h/w 
 xborder = axrng 
 
and 
 
 xborder = axrng*w/h 
 yborder = axrng 
 
 
statements in the if w <=h:... else: conditional block of code.  These 
statements will establish the new "reshaped" boundaries for the walls of the graphics 
window based on axrng and the aspect ratio (h/w or w/h) of the reshaped window.  
What must you do in def main(): to let Python know that this reshape function 
exists?  That's correct, you must add a glutReshapeFunc(reshape) statement. 
 
 Finally, we must make some minor changes to the collision conditional 
statements in the def bounce(): display function: 
 
 if x >= xborder-radius or x <= -xborder+radius: 
  dx = -1*dx 
 if y >= yborder-radius or y <= -yborder+radius: 
  dy = -1*dy 
 
 We are using the new xborder and yborder global variables to detect wall 
collisions.  You DID implement a radius variable for the ball in exercise 2, didn't 
you? 
 
 Perhaps a good question to ask would be "Why would I want to change the 
window dimensions while the program is running?"  Good question...  however, try 
resizing the window and watch how the path of the bouncing ball changes.   
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 One caveat:  If you resize the window more than once, it is possible to "trap" the 
ball outside the graphics windows boundaries and the ball will never reappear.  Try it!  
See if you can "break" the simulation by making the ball disappear.  How might we 
fix this problem?  Once solution would be to detect the location of the ball using the 
x,y coordinates and place the ball "back into play".  Type the following code 
immediately after the if w<=h: block (and indented at the same level as the if 
w<=h: statement!) within the def reshape function: 
 
 if x <= -xborder: 
  x = -xborder + (2*radius) 
 if x >= xborder: 
  x = xborder - (2*radius) 
 if y <= -yborder: 
  y = -yborder + (2*radius) 
 if y >= yborder: 
  y = yborder - (2*radius) 
 
You will also have to add x and y to the global variable statement in the first line of 
the reshape function.  This if code block is fairly crude, but it seems to work.  
Basically the code tests the position of the ball's (x, y) coordinates against the +/-
xborder and +/- yborder graphics window "walls".  If the ball is outside those 
boundaries, then it resets the position of the ball within the graphics window by an 
arbitrary value of 2*radius or a single ball diameter.  Experiment with this code by 
resizing the graphics window during animation and see what happens. 
 

5) How would we add some interactive capability to this bouncing ball simulation?  In 
other words, how can we control the motion of the ball by using key presses?  We 
already know how to implement a key press to end a program and to start and stop 
animation in this simulation.  Let's learn something new and add the arrow or cursor 
keys to our keyboard interaction choices.  In order to accomplish this task, we can 
not simply use the current keyboard function.  The arrow or cursor keys are a bit 
different and we must access them through a "special" key function.  Try the 
following changes in your pybounce.py program: 

 
Add the following new function to your code listing, remembering to have NO 
indentation for the def statement: 
 
def specialkey(key , x, y): 
 global hvel, vvel 
 if key == GLUT_KEY_LEFT: 
  hvel -= 0.001 
 if key == GLUT_KEY_RIGHT: 
  hvel += 0.001 
 if key == GLUT_KEY_UP: 
  vvel += 0.001 
 if key == GLUT_KEY_DOWN: 
  vvel -= 0.001 
 
# End specialkey function 
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 You probably can gather from the structure of this code that we are going to use 
the LEFT, RIGHT, UP, and DOWN keys depending on the value stored in the variable 
key.  We will need to register this function with Python and OpenGL/GLUT by 
adding the following line to def main(): immediately above the idle() 
statement. 
 
 glutSpecialFunc(specialkey) 
 
We need to change the initial global variable statements as follows: 
 
 global width, height, axrng, anim, x, y 
 global xborder, yborder, radius, hvel, vvel 
 
Note the deletion of the dx and dy variables and the addition of our old friends (from 
the physics pycannon.py program) hvel and vvel.  Now add: 
 
 hvel = vvel = 0.000 
 
to the variable initialization section of your program following the global variable 
statements.  Three changes need to be made in the def bounce(): display 
function.  First, change the global variable statement to: 
 
 global x, y, hvel, vvel 
 
and then modify the position/motion equations as follows: 
 
 x = x + hvel 
 y = y + vvel 
 
Since we are going to control the motion of the ball using the arrow keys, we no 
longer need to designate a constant speed (which used to be 0.005) nor do we 
need dx and dy to change directions after a wall collision.  We will use hvel and 
vvel for both purposes.  Finally, change the collision detection statements to: 
 
 if x >= xborder-radius or x <= -xborder+radius: 
  hvel = -1*hvel 
 if y >= yborder-radius or y <= -yborder+radius: 
  vvel = -1*vvel 
 
Notice the addition/substitution of the hvel and vvel variables in place of dx and 
dy.  At this point you should be able to run your program.  Press the 'a' key to start 
the animation and then see if you can move the ball using the arrow keys.  Can you 
add an additional key press that will set both hvel and vvel to zero, effectively 
stopping the ball?  You might think that pressing the 's' key will serve this purpose.  It 
is true that animation ceases with the 's' key, but as soon as the 'a' key is pressed, 
the ball will resume the motion it had prior to stopping.  Not only that, but you can 
change the stored values for hvel and vvel while the ball is in a state of suspended 
animation!  What we need is a method of actually bringing the velocity of the ball to 
zero or to the rest state.  See if you can figure out how to do bring the velocity of the 
ball to zero on your own. 
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6) As a final exercise in this section, can you add friction to this simulation so that the 

motion of the ball will eventually come to a halt without additional force (arrow key 
presses) being added?  See the pycannon.py program in Section 5.4, Exercise 12 
for a hint. 
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Section 8.2 A Little Gravity! 
 
 In this section, let's expand the model that we created in the last program and 
add some gravity to the simulation.  What we want to observe is a ball acting under the 
influence of a gravitational field, detecting collisions with the walls, floor, and possibly 
ceiling, and unaffected by friction at this point.  The following is a complete code listing of 
such a simulation.  You may simply load your last program from the previous section and 
make changes where appropriate.  Save this modified program as pygravity.py or 
something similar. 
 
# PyGravity.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
import sys 
 
# uncomment these lines later 
# to see if there is any difference 
# in the speed of the ball 
# import psyco 
# psyco.full() 
 
#  globals for animation, ball position 
#  and direction of motion 
global anim, x, y ,hvel, vvel, radius 
global xborder, yborder 
 
# initial position of the ball 
x = -0.67 
y = 0.34 
dtime = 0.0005 
radius = 0.1 
hvel = 0.75 
vvel = 3.0 
 
# Window dimensions 
width = height = 600 
xborder = yborder = axrng = 1.0 
 
# No animation to start 
anim = 0 
 
def init(): 
 glClearColor(0.0, 0.0, 0.0, 1.0) 
 glColor3ub(255, 0, 0) 
  
 # Dimensions of the screen 
 # Make axrng larger and see what happens! 
 gluOrtho2D(-axrng, axrng, -axrng, axrng) 
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def idle(): 
 # We animate only if anim == 1, otherwise 
 # the ball doesn't move 
 if anim == 1: 
  glutPostRedisplay() 
 
def plotfunc(): 
 global x, y, hvel, vvel 
 glClear(GL_COLOR_BUFFER_BIT) 
 
 # changes x and y 
 x += hvel*dtime 
 
 # earth's gravity -9.8 meters per second*second 
 vvel = vvel - 9.8*dtime 
 y += vvel*dtime 
  
 # This if statement keeps the ball 
 # from falling below the window! 
 if y <= -axrng + radius: 
  y = -axrng + radius 
 
 # Keep the motion mathematics 
 # Safe from harm 
 glPushMatrix() 
  
 # Move the ball location based on x and y 
 glTranslate(x,y,0) 
 glutSolidSphere(radius, 50, 50) 
 glPopMatrix() 
  
 # Collision detection! 
 # What happens here and why does this work? 
 if x >= xborder - radius or x <= -xborder + radius: 
  hvel = -1*hvel 
 if y >= yborder - radius or y <= -yborder + radius: 
  vvel = -1*vvel 
 
 glutSwapBuffers() 
 
def reshape(  w,  h): 
 global xborder, yborder, x, y 
 # To insure we don't have a zero height 
 if h==0: 
  h = 1 
  
 #  Fill the entire graphics window! 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
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 glLoadIdentity() 
  
 #  Set the aspect ratio of the plot so that it 
 #  Always looks "OK" and never distorted. 
 if w <= h: 
  gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w) 
  yborder = axrng*h/w 
  xborder = axrng 
 else: 
  gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng) 
  xborder = axrng*w/h 
  yborder = axrng 
  
 if x <= -xborder: 
  x = -xborder + (2*radius) 
 if x >= xborder: 
  x = xborder - (2*radius) 
 if y <= -yborder: 
  y = -yborder + (2*radius) 
 if y >= yborder: 
  y = yborder - (2*radius) 
   
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
 
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 #  We can animate by "a" and stop by "s" 
 global anim 
 if key == chr(27): 
  sys.exit() 
 if key == "a": 
  # Notice we are making anim = 1 
  # What does this mean?  Look at the idle function 
  anim = 1 
 if key == "s": 
  # STOP the animation! 
  anim = 0 
 if key == "q": 
  sys.exit() 
 
def main(): 
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("PyBounce") 
 glutDisplayFunc(plotfunc) 
 glutKeyboardFunc(keyboard) 
 glutReshapeFunc(reshape) 
 glutIdleFunc(idle) 
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 init()  
 glutMainLoop() 
 
main()     

 
# End of Program 
 
 When you have completed the program, run the model and observe what 
happens... don't forget to press 'a' to start the animation!  Does this animation seem to 
simulate the motion of a ball under the influence of gravity? 

Exercises 
 
1) This is a program that should allow you to "play" with the numbers.  Try different 

values for the initial position of the ball.  Try different values for dtime and see what 
happens to the simulation.  Finally, try different initial velocities (hvel and vvel) for 
the ball and see how the simulation behaves. 
 

2) Try to add a second ball to the simulation and have this second ball act 
independently of the initial ball. 

 
3) Change the acceleration due to gravity in the following statements: 
 
 # earth's gravity -9.8 meters per second*second 
 vvel = vvel - 9.8*dtime 
 y += vvel*dtime 
 
 In the place of 9.8, you might try 1.62, which represents the moon's gravity. Try 
 3.71, which is the acceleration due to gravity on the planet Mars.  How could you 
 add a global variable to this program to change gravity in the initial section of  code?  
 The negative sign in front of the acceleration due to gravity represents an 
 acceleration toward the surface of the planet.  A positive sign would represent an 
 acceleration away from the planet's surface.  Try changing the sign to + and see 
 what happens! 
 
4) As an extension of Exercise 2, can you write some code that will detect a collision 
 between two objects?  Detecting a collision and responding properly to a collision are 
 two different things!  You might try looking up collision detection and collision 
 response online and get an idea of the difficulties involved. 



 265

Section 8.3 A Little MORE Gravity... a 2-Body Simulation 
 
 I am pleased to be involved (to a very minor extent) in a project called MSA 
(Moving Stars Around)1.  This project is headed by Piet Hut, an astrophysicist and 
Professor of Interdisciplinary Studies at the Institute for Advanced Studies in Princeton, 
New Jersey, and Jun Makino, an astrophysicist from the University of Tokyo in Japan.  
Piet is a friend of mine and I had the distinct honor and privilege of attending a workshop 
at the Institute in October 2007 to discuss the status and future of MSA.  One of the 
projects we are working on is a simulation of a cluster of stars.  In order to simulate a 
star cluster, one must take into consideration several factors such as the laws of motion, 
the nuclear reactions within the stars, the interactions of the stars, the gravitational and 
relativistic effects caused by each star, and other factors which I won't even begin to 
claim to understand.  The complexity of the entire dynamics of even a small cluster of 
stars is beyond the scope of this text, however I think we can at least glimpse some of 
the beauty of the dynamics of a star cluster by using the simple laws of motion 
developed by Newton 300+ years ago.  We'll start by looking at a 2 star or 2 body 
problem. 
 
 You'll recall that in Section 7.4 it was mentioned that the 2 body problem is easily 
solved using Newton's equations, but the 3 body problem (and beyond 3 bodies) is not 
solvable even with our current knowledge of mathematics and physics.  The best we can 
do is simulate the dynamics of 3 or more bodies using a computer.  Well, we have a 
computer, so what is stopping us...?  But before we plunge into a 3 body scenario and 
beyond, let's start by simulating a simple 2 body system.  We will assume that our 
bodies (stars) are in the vacuum of space and the only forces acting on them are the 
mutual gravitational attractions between each star.  This will be an assumption we will 
make in future more complex simulations as well.  Our equations will be relatively 
simple.  First, we will make use of Newton's law of universal gravitation in equation 1: 
 

   2
21

r
mmGF =

     (1) 

 
 The law of universal gravitation describes the force of gravity in newtons between 
any 2 objects if we know the masses of the objects, m1 and m2, and the distance, r, 
between their centers of mass.  Big "G" is the the universal gravitational constant first 
determined experimentally by Henry Cavendish in 1797.  It's value is approximately 6.67 
x 10-11 Nm2/kg2.  If we know the force acting on an object and we know the mass of the 
object, we can calculate the acceleration of the object by using Newton's 2nd law of 
motion in equation 2: 
 

    maF =      (2) 
 

                                            
1 See the Art of Computational Science webpage:  http://www.artcompsci.org/ 
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or if the mass of the object is represented by m1 equation 2 can be transformed as 
follows: 
 

    amF 1=      (3) 
 
Combining Newton's second law with the law of universal gravitation, we can 
immediately calculate the acceleration of the m1 object by the following equation: 
 

    2
2

r
mGa =

     (4) 

 
 Since acceleration is a vector, it must have BOTH a magnitude and a direction.  
The magnitude of the acceleration is calculated from the above equation, but how do we 
find the direction?  Direction is found by multiplying by something called a unit vector.  A 
unit vector has a magnitude equal to 1, so a unit vector can not change the value of a 
number.  However, a unit vector also has a direction which is NOT usually equal to 1, so 
muliplying by a unit vector WILL change the direction of whatever it multiplies, in this 
case, acceleration.  Here is an example of a unit vector: 
 

     r
r

      (5) 

 
 Combining the unit vector with equation 4 at the top of this page produces the 
following formula: 
 

    3
2

r
rmGa =

     (6) 

 
 
 Since I am already making the mathematicians and physicists in the audience 
cringe by my explanations and equations, let me rewrite equation 6 as follows: 
 

   3
2)(

r
mdirectionGa =

   (7) 
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 Equation 7 is provided to illustrate how we will be able to determine the direction 
of the acceleration vector.  Think of the "direction" term as both a distance AND a sign 
(+/-).  The distance is equal to the value of r and will divide out of the denominator, 
producing the original r2 term in equation 1.  The +/- sign will cross the '=' sign and attach 
itself to the value of a, the acceleration.  Thus, we calculate both a magnitude and a 
positive or negative direction for acceleration (a).  But wait... how can acceleration 
simply be positive or negative?  Can't acceleration be pointed in any direction?  Yes, 
acceleration can be pointed in any direction, but we can break up any vector into x, y, 
and z (z is used in 3D motion) axis components.  When breaking a vector into x, y, and z  
axis components, only positive and negative directions are needed.  This is very handy!  
Here is what we will be doing (eventually) with multiple body simulations.  We will take 
equation 7 and modify it for each axis component and let rn stand for the vector (arrow) r 
in the numerator of equation 6, where n is a coordinate axis: 
 

  3
2

r
mrGa x

x =    (8) 

 

  3
2

r
mr

Ga y
y =    (9) 

 

  3
2

r
mrGa z

z =    (10) 

 
 We have calculated acceleration components in each axis direction in equations 
9, 10, and 11.  Together, they will combine to describe the acceleration of our star!  Now 
back to our story... Once we know the acceleration of an object, we can calculate its 
velocity at any time by using similar reasoning: 
 

   
tav xx =

     (11) 
 

   
tav yy =

     (12) 
 

   tav zz =      (13) 
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 Now we know the velocity components in each of the three axes.  Together they 
will combine to form the velocity vector of our star! 
 
 Once we know the velocity components, we can then proceed to calculate the 
(x,y,z) position of the star by using the following system of hopefully familiar equations: 
 

    
tvd xx =      (14) 

 

    
tvd yy =      (15) 

 

    tvd zz =      (16) 
 
  
 If you are having a difficult time visualizing the concept of vector components, 
look at figure 3D Vector. 
 

 
   3D Vector 
  
 If you can visualize a star at point (x, y, z), then the line from the origin to (x, y, z) 
is the vector that represents the force due to gravity.  In this figure, this is the line 
labelled "a".  We can't simply use this direct line in our calculations, but must resolve the 
gravitation vector into its x, y, and z components as illustrated above.  In physics, we 
would use trigonometry to do the component calculations.  However, trigonometry is 
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nothing more than the ratios of the lengths of the sides of a triangle.  So, in our programs 
to simulate star dynamics we will use distances between the corresponding x, y, and z 
components as well as the Pythagorean distance between two stars to calculate the 
components of the gravitation vectors. 
 
 So, all those formulas you were forced to learn in math and science classes 
actually are useful for something!  Let's see if we can put them together and write a 
program to simulate a simple 2 star system.  Type in the following program and save it 
as 2body.py: 
 
# 2body.py 
# a 2 star system based on Piet Hut 
# and Jun Makino's MSA text with 
# Modifications by Stan Blank for 
# use in Python OpenGL/GLUT 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
import psyco 
psyco.full() 
 
#  Set the width and height of the window 
 
global width 
global height 
 
#  Initial values 
 
width = 500 
height = 500 
   
# initial values for position, velocity components, and time 
# increment 
 
global vx1, vy1, vz1, x1, y1, z1, r2, r3, ax1, ay1, az1, dt 
global vx2, vy2, vz2, x2, y2, z2, ax2, ay2, az2, G 
 
# initial x,y,z positions for both stars 
 
x1 = 1.0 
y1 = 0.0 
z1 = 0.0 
x2 = -1.0 
y2 = 0.0 
z2 = 0.0 
 
# initial vx,vy,vz velocities for both stars 
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vx1 = 0.0 
vy1 = -0.128571428 
vz1 = 0.0 
vx2 = 0.0 
vy2 = 0.3 
vz2 = 0.0 
 
# initial masses for both stars 
 
m1 = 0.7 
m2 = 0.3 
rad1 = 0.1*m1 
rad2 = 0.1*m2 
 
# arbitrary "Big G" gravitational constant 
 
G = 1.0 
 
# calculate distance and r**3 denominator for universal 
# gravitation 
 
r2 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2) 
r3 = r2*sqrt(r2) 
 
# calculate acceleration components along x,y,z axes 
# First for m1 
 
ax1 = -G*(x1-x2)*m2/r3 
ay1 = -G*(y1-y2)*m2/r3 
az1 = -G*(z1-z2)*m2/r3 
 
# now for m2 
 
ax2 = -G*(x2-x1)*m1/r3 
ay2 = -G*(y2-y1)*m1/r3 
az2 = -G*(z2-z1)*m1/r3 
 
# This value keeps a smooth orbit on my workstation 
# Smaller values slow down orbit, higher values speed up orbit 
 
dt = 0.001 
 
def init(): 
 glClearColor(0.0, 0.0, 0.0, 1.0) 
 
def reshape(  w,  h): 
  
 # To insure we don't have a zero height 
 
 if h==0: 
  h = 1 
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 #  Fill the entire graphics window! 
 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 # Set how we view the world and position our eyeball 
 
 gluPerspective(45.0, 1.0, 1.0, 1000.0)  
  
 #  Set the matrix for the object we are drawing 
 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
 # Place the camera position, the direction of view 
 # and which axis is UP  
 
 gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) 
 
 
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
  
def orbits(): 
 global vx1, vy1, vz1, x1, y1, z1, r2, r3, ax1, ay1, az1 
 global vx2, vy2, vz2, x2, y2, z2, ax2, ay2, az2 
  
 # calculate front half of velocity vector components 
 
 vx1 += 0.5*ax1*dt 
 vy1 += 0.5*ay1*dt 
 vz1 += 0.5*az1*dt 
 vx2 += 0.5*ax2*dt 
 vy2 += 0.5*ay2*dt 
 vz2 += 0.5*az2*dt 
  
 # calculate x,y,z positions for both stars 
 
 x1 += vx1*dt 
 y1 += vy1*dt 
 z1 += vz1*dt 
 x2 += vx2*dt 
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 y2 += vy2*dt 
 z2 += vz2*dt 
  
 # calculate the new r**3 denominator for each star position 
 
 r2 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2) 
 r3 = r2*sqrt(r2) 
  
 # calculate the new acceleration components 
 
 ax1 = -G*(x1-x2)*m2/r3 
 ay1 = -G*(y1-y2)*m2/r3 
 az1 = -G*(z1-z2)*m2/r3 
 ax2 = -G*(x2-x1)*m1/r3 
 ay2 = -G*(y2-y1)*m1/r3 
 az2 = -G*(z2-z1)*m1/r3 
  
 # calculate the back half velocity components 
 
 vx1 += 0.5*ax1*dt 
 vy1 += 0.5*ay1*dt 
 vz1 += 0.5*az1*dt 
 vx2 += 0.5*ax2*dt 
 vy2 += 0.5*ay2*dt 
 vz2 += 0.5*az2*dt 
  
 #send calculated x,y,z star positions to the display 
 
 glutPostRedisplay() 
 
def plotfunc(): 
 glClear(GL_COLOR_BUFFER_BIT) 
  
 # plot the first star (m1) position 
 
 glPushMatrix() 
 glTranslatef(x1,y1,z1) 
 glColor3ub(245, 230, 100) 
 glutSolidSphere(rad1, 10, 10) 
 glPopMatrix() 
  
 # plot the second star (m2) position 
 
 glPushMatrix() 
 glTranslatef(x2,y2,z2) 
 glColor3ub(245, 150, 30) 
 glutSolidSphere(rad2, 10, 10) 
 glPopMatrix() 
  
 # swap the drawing buffers 
 
 glutSwapBuffers() 
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def main(): 
 global width 
 global height 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("2 Body Problem") 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(plotfunc) 
 glutKeyboardFunc(keyboard) 
 glutIdleFunc(orbits) 
  
 init()  
 glutMainLoop() 
 
main()     
 
 If everything is typed correctly, when you run the program you should see two 
spherical objects in elliptical orbits passing near each other in the center of the graphics 
window.  Figure 2Body illustrates this scene: 
 

  
       2Body 
 
If the simulation appears to be running too slowly, then reduce the dt variable by a 
power of 10, from dt = 0.001 to dt = 0.005 and run the program again. 
 
 Now for an explanation of the program (this should be interesting)!  The first part 
of the code contains nothing new or unique with the exception of the larger number of 
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global variables needed in the computational functions.  Each of these global variables is 
given an initial value and these initial values contribute to the particular orbit displayed. 
 
# initial x,y,z positions for both stars 
 
x1 = 1.0 
y1 = 0.0 
z1 = 0.0 
x2 = -1.0 
y2 = 0.0 
z2 = 0.0 
 
 We initially set the position components x1 = 1.0 and x2 = -1.0 and all other 
position components at 0.0.  This will begin the simulation with both stars located on the 
x-axis at postive +1.0 and -1.0 units respectively.  The initial velocity components are as 
follows: 
 
# initial vx,vy,vz velocities for both stars 
 
vx1 = 0.0 
vy1 = -0.128571428 
vz1 = 0.0 
vx2 = 0.0 
vy2 = 0.3 
vz2 = 0.0 
 
 The first more massive star (m1) was given a downward y-axis component of  
vy1 = -0.128571428 and the second less massive star (m2) was given and upward 
component y-axis component of vy2 = 0.3.  All other velocity components were set at 
0.0.  These are not arbitray values for the velocity components, but were calculated 
beforehand to produce a nice stable orbit.   
 
 In the next section, we assign initial masses to the two stars m1 and m2 
respectively.  We also calculate a radius for both stars based on the individual star 
masses.  When we display the stars in our graphics window, the radius of the spheres 
will provide some indication of their relative masses.  In other words, a larger star will 
have a larger mass. 
 
# initial masses for both stars 
 
m1 = 0.7 
m2 = 0.3 
rad1 = 0.1*m1 
rad2 = 0.1*m2 
 
 We also will assume a gravitational constant of G = 1.0 (this is OUR simulation, 
we can do what we want!).  The result will be a simulation of gravitational effects that 
differ only in scale from the "real" universe. 
 
# arbitrary "Big G" gravitational constant 
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G = 1.0 
 
 Now we make some initial calculations to get the simulation headed down the 
correct path! 
 
# calculate distance and r**3 denominator for universal 
# gravitation 
 
r2 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2) 
r3 = r2*sqrt(r2) 
 
# calculate acceleration components along x,y,z axes 
# First for m1 
 
ax1 = -G*(x1-x2)*m2/r3 
ay1 = -G*(y1-y2)*m2/r3 
az1 = -G*(z1-z2)*m2/r3 
 
# now for m2 
 
ax2 = -G*(x2-x1)*m1/r3 
ay2 = -G*(y2-y1)*m1/r3 
az2 = -G*(z2-z1)*m1/r3 
 
 In the code above we performed some starting or "seed" calculations based on 
our initial values.  The r2 and r3 variables calculate the r3 denominator of Newton's 
universal gravitation equation in equations 6 through 10.2  After finding the r3 term for 
the denominator, we then calculate the initial ax, ay, and az acceleration components 
for each of the two bodies.  The negative signs in front of "Big G" indicate that these 
accelerations are attractive rather than repulsive (in the force sense, not in 
appearance!).  The subtraction of variables within parentheses after the "G" term, i.e. 
(x1 – x2) in the first calculation, finds the distance and the direction (+/-) between the 
bodies along whatever axis we choose.  In this case, the (x1 – x2) term finds the 
distance between the two bodies along the x axis.  The sign of this subtraction or 
distance calculation determines the direction of force.   In effect, this distance is the rx 
numerator term from equation 8.  The same line of reasoning applies to the acceleration 
components along the y and z axes as well. 
 
 Now that we have the initial acceleration components, we can at least think about 
plotting orbits.  First, we need to decide how to divide our orbit calculations into pieces or 
time slices.  We'll do this as we did in the cannonball simulation (pycannon.py) and 
choose a small increment of time.  In this program, we'll use: 
 
dt = 0.001 
 
We can alter this dt time increment value to speed up (larger time increment) or slow 
down (smaller time increment) the simulation.  Smaller time increments result in more 
accurate calculations, but at the expense of a slower simulation rate.  You will need to 
                                            
2 Don't forget that we are multiplying Newton's Law of Gravitation by the unit vector to give a 
direction.  This is why we must use the r3 term instead of an r2 term. 
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experiment on your own system to determine the best value for dt.  Remember that we 
are actually working with calculus and difference equations in problems of this nature! 
 
 The def init() function is certainly familiar by now and in this program we are 
going to set a black background to match the background of space.   
 
 In the def reshape() function, we see something new: 
 
gluPerspective(45.0, 1.0, 1.0, 1000.0)  
 
and later: 
 
gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) 
 
 Here are the beginnings of the journey into the land of 3D!  Let's dissect the first 
statement, gluPerspective, and look at its arguments.  The first value, in this case 
45.0, specifies the viewing angle of the observer.  In other words, in this instance the 
field of view is 45.0 degrees.  You can experiment with this value by making the number 
larger or smaller and see how the graphics display is affected.  The second value in 
gluPerspective, in this case 1.0, is the aspect ratio of the graphics presentation.  A 
value of 1.0 means that the ratio of the width to height in the viewing window equals 1.  If 
we change this value to something larger than 1.0, the display is "squeezed" from both 
sides.  If we use a value smaller than 1.0, the display is "squashed" from above and 
below.  It is possible to use the aspect ratio argument to adjust the display for a window 
resize/reshape, but we will not do that here.   
 
 The final two arguments specify the distance from our eye to the near and far 
clipping planes.  A clipping plane marks the boundary of the graphics window.  Should 
an object be drawn outside these boundaries, we will not be able to see what we have 
drawn.  Both values must be positive and the near plane must be closer to us than the 
far plane.  Again, you can experiment with these values to see how the display is 
changed.  For example, using 0.0 for the near clipping plane results in the stars being 
sliced so that all we see is a cross-section.  The reason for this behavior would be due to 
the fact that our eye would be in the near clipping plane rather than in front of it.  This 
would be a bit like sitting IN the plane of the screen at a movie theater.  It is much better 
to sit several rows away from the screen! 
 
 The gluLookAt statement appears to be more complicated, but it actually is 
rather easy to understand.  The first 3 arguments, in this case 0.0, 0.0, 5.0, specify 
the x, y, and z coordinates of your eye.  We are familiar with 2 dimensional x, y 
coordinates from algebra and from this text.  Adding a third dimension is as simple as 
adding another axis that comes out of the screen toward you and into the screen away 
from you.  This axis is called the z axis and we can locate any point in space by giving 
the x, y, and z coordinates of that point.  With the eye coordinates of (0.0, 0.0, 5.0), our 
eye is 5.0 units away from (or out of) the screen ON the z axis.  The second set of 3 
arguments, in this case 0.0, 0.0, 0.0, locate the point in space that your eye is 
looking toward.  The point (0.0, 0.0, 0.0) is the origin, so you are looking at the origin.  
That's simple!  The final set of 3 arguments, 0.0, 1.0, 0.0, simply tell the display 
which way is up.  In this case, the y coordinate equals 1.0, so the positive y axis is 
considered to be up.   
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 gluLookAt is a very powerful function!  We can use it to actually move or fly 
through a graphics scene or display by changing the eye location, the point we are 
viewing, and the "up" direction.  We will make use of this feature a bit later in the text, 
but keep this functionality in mind when you create your own programming projects or 
games. 
 
 The keyboard function is simple in that it allows us to exit the running simulation 
by either pressing the "Esc" key or the "q" key.  Later we will use keyboard functions 
coupled with the powerful gluLookAt statement to fly through a more complex star 
cluster simulation. 
 
 The real "dirty work" of this program is found in the def orbits() function.  
The first calculations we must make are some velocity component calculations based on 
equations 11 – 13.  If you are wondering why we are only calculating something called 
the "front half" of the velocity vector, the reason involves mathematics and calculation 
errors.  When doing numerical calculus with difference equations, errors creep into the 
calculations rather quickly.  We can get away with the small errors that enter into a short-
lived simulation such as we created in the pycannon.py program.  However, in 
simulations that are designed to run for extended periods of time, the errors can grow 
unacceptably large very quickly.  To avoid this problem, we split the velocity calculation 
into 2 parts.  The first part is calculated from the previous acceleration components and 
the second part is calculated from the new accleration components.  Doing the velocity 
calculations in this manner provides a form of averaging and the errors are minimized.  
Now back to the program... 
  
# calculate front half of velocity vector components 
 
vx1 += 0.5*ax1*dt 
vy1 += 0.5*ay1*dt 
vz1 += 0.5*az1*dt 
vx2 += 0.5*ax2*dt 
vy2 += 0.5*ay2*dt 
vz2 += 0.5*az2*dt 
 
 Once we know the velocity components, we can then find the (x, y, z) 
components of the star using equations 14 – 16.  We are using the += operator both in 
the velocity calculations above and in the position calculations below because we need 
to base new positions and velocities on the previous values for these quantities.  
  
# calculate x,y,z positions for both stars 
 
x1 += vx1*dt 
y1 += vy1*dt 
z1 += vz1*dt 
x2 += vx2*dt 
y2 += vy2*dt 
z2 += vz2*dt 
 
 Since the starts are moving with respect to each other, the distances between 
the stars change and we must calculate a new value for the r3 denominator at each 
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time step.  One drawback to calculating r3 in this manner is that it is possible for the 
centers of mass for each star to coincide.  This results in a zero distance between the 
stars and a zero value for r3.  If this occurs, the force of gravity becomes infinite and the 
stars will fly away from each other instantaneously.  This would not happen in nature.  
Star collisions or collisions between any two massive objects would be very complex.  
We can’t possibly simulate such matter and gravitational interactions in so simple a 
model.  Later we will introduced a small “fudge” factor to prevent such an occurrence. 
  
# calculate the new r**3 denominator for each star position 
 
r2 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2) 
r3 = r2*sqrt(r2) 
  
 Unlike the positions and velocities, we calculate new values for the gravitational 
acceleration components "from scratch" during each time step based on the masses, 
distances, and directions of the stars with respect to other. 
 
# calculate the new acceleration components 
 
ax1 = -G*(x1-x2)*m2/r3 
ay1 = -G*(y1-y2)*m2/r3 
az1 = -G*(z1-z2)*m2/r3 
ax2 = -G*(x2-x1)*m1/r3 
ay2 = -G*(y2-y1)*m1/r3 
az2 = -G*(z2-z1)*m1/r3 
 
 After the new acceleration components have been determined, we use them to 
calculate the "back half" of the velocity components.  These velocity components and 
acceleration components will be used again as initial values when we enter the def 
orbits() function during the next time slice. 
  
# calculate the back half velocity components 
 
vx1 += 0.5*ax1*dt 
vy1 += 0.5*ay1*dt 
vz1 += 0.5*az1*dt 
vx2 += 0.5*ax2*dt 
vy2 += 0.5*ay2*dt 
vz2 += 0.5*az2*dt 
 
 Finally, we want to update the display, so we issue a command to send the new 
position coordinates to the display function. 
 
#send calculated x,y,z star positions to the display 
 
glutPostRedisplay() 
  
 The display function is similar to bouncing ball program we wrote in the last 
section:    
 
def plotfunc(): 
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 glClear(GL_COLOR_BUFFER_BIT) 
  
 # plot the first star (m1) position 
 glPushMatrix() 
 glTranslatef(x1,y1,z1) 
 glColor3ub(245, 230, 100) 
 glutSolidSphere(rad1, 10, 10) 
 glPopMatrix() 
  
 # plot the second star (m2) position 
 glPushMatrix() 
 glTranslatef(x2,y2,z2) 
 glColor3ub(245, 150, 30) 
 glutSolidSphere(rad2, 10, 10) 
 glPopMatrix() 
  
 # swap the drawing buffers 
 glutSwapBuffers() 
 
 
 Once again we are using the glPushMatrix() and glPopMatrix() functions 
to keep the motions of the two stars independent of each other with the exception of 
their mutual gravitational effects.  The colors of the stars are arbitrary and the radius of 
each star was calculated in the initial portion of the program and is based on the masses 
of the stars.  After the stars are displayed at the proper coordinates, we issue the 
glutSwapBuffers() statement for smooth animation. 
 
 The def main(): function is familiar.  Note again the GLUT_DOUBLE argument 
within the glutInitDisplayMode function to allow for double buffered animation.  In 
the next section we will move from a 2 Body simulation to a 3 Body simulation, but first 
let's explore the current program by doing some Exercises.  Oh, I forgot to mention that 
even though this chapter is entitled "2D Animation", with the addition of a z axis, we are 
really doing 3D simulations at this point.  However, unless we specifically specify a z 
component for position or velocity, there will not be a z component for acceleration and 
we will have a 2D orbit system. 

Exercises 
 

1) The initial conditions in the simulation are such that the stars orbit each other in a 
pleasing manner with the motions of both describing well-formed ellipses.  Try 
varying the initial positions of the stars in the x1, y1, z1 and x2, y2, z2 
assignment statements at the beginning of the program. 

 
2) The initial velocities are also open for experimentation.  Change the initial velocities 

assigned to the vx1, vy1, vz1 and vx2, vy2, vz2 assignment statements to 
other values.  You might try implementing a random number for each variable.  How 
would you do this? 

 
3) Experiment with the gravitational constant G.  Try changing its value to something 

larger and/or smaller than 1.0 and see how the behavior of the star system changes.  
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Make certain that you keep the same initial position and velocity parameters for each 
new value of G so that changes in the orbits will be more easily noticed.  If you 
change BOTH the initial positions and velocities as well as the value of G, then you 
will not know which of the values caused the behaviors you see on the screen. 

 
4) Comment the glClear statement in the def plotFunc(): function as follows: 
  
 #glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)  
 
 What do you think will happen when you run the program now?  Make certain 
 you rememember to remove the comment!  
 
5) Experiment with the gluLookAt function and see if you can "Look At" the orbits 

from a different viewpoint.  Try to figure out how to move closer and then farther 
away. 

 
6) Look up "NBody problem" online.  Also, go to Piet Hut and Jun Makino's "Art of 

Computational Science" website (www.artcompsci.org) .  I am personally involved 
in the "Moving Stars Around" (MSA) project, so make certain to visit the MSA area of 
the website! 

 
7) There is nothing to prevent you from altering the computational part of the program 

by changing the formulas or altering how the gravitational forces are calculated.  
However, doing so will violate the known laws of physics and will invalidate the 
simulation.  There is nothing inherently wrong with this, but understand that 
simulations are designed to model the interactions between objects in the universe.  
If we knowingly change the known laws of physics, then we will no longer be 
modeling OUR universe.  As long as you understand this concept, then feel free to 
change the program however you like.  I strongly recomment that you keep the 
original copy of the 2Body.py program intact and simply rename the alternate 
universe copy. 
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Section 8.4 The REAL 3 Body Problem 
 
 In the previous section we were able to simulate the orbits of 2 stars interacting 
with each other through their gravitational forces.  It should be relatively simple to add a 
3rd star to the mix and see what happens... or should it be so easy?  In a 2 body 
simulation, each star is affected only be its companion.  In a 3 body simulation, each star 
is influenced by the sum of the interactions with BOTH of its companions.  As we shall 
see, this is not so simple and requires more code than we might think.  Remember that 
the 3 body problem is not solvable by a closed form equation.  The best we can do is 
simulate the orbits by calculating the acceleration, velocity, and position components.  
Prior to the computer, this was a very difficult and labor-intensive task.  Such 
calculations and resulting simulation is much simpler now that we have such enormous 
computing power at our fingertips.   
 
 The following listing is a 3 body simulation.  You can, to some extent, use the 
2body.py program you've already written.  Make certain to immediately change the 
name (Save As) of the program to 3body.py or something similar.  I will make no claim 
for the elegance or efficiency of this program.  It works properly and getting a program to 
work properly is the foremost consideration of any programmer.  Once a program is 
functioning correctly, then we can worry about elegance and efficiency if we so choose!  
More on efficiency later.  For now, here is a 3 body simulation: 
 
# 3body.py 
# a 3 star system based on Piet Hut 
# and Jun Makino's MSA 2 body text 
# with 3 body modifications by Stan Blank 
# for use in Python OpenGL/GLUT 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
import sys 
 
import psyco 
psyco.full() 
 
#  Set the width and height of the window 
 
global width 
global height 
 
#  Initial values for window width and height 
 
width = 500 
height = 500 
   
# global variables for position, velocity  and 
# acceleration components, time increment, and Gravity 
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global vx1, vy1, vz1, x1, y1, z1, ax1, ay1, az1 
global vx2, vy2, vz2, x2, y2, z2, ax2, ay2, az2 
global vx3, vy3, vz3, x3, y3, z3, ax3, ay3, az3, dt, G 
 
# Initial values for position components in x,y,z space 
# for each of the 3 star masses.  Note that the z-axis 
# position is zero, so there is no z-component.  This is 
# a 2D simulation at this point. 
 
x1 = 1.0 
y1 = 1.0 
z1 = 0.0 
x2 = -1.0 
y2 = -1.0 
z2 = 0.0 
x3 = 0.50 
y3 = -1.0 
z3 = 0.0 
 
# Initial values for velocity components in x,y,z space 
 
vx1 = 0.0 
vy1 = 0.0 
vz1 = 0.0 
vx2 = 0.0 
vy2 = 0.0 
vz2 = 0.0 
vx3 = 0.0 
vy3 = 0.0 
vz3 = 0.0 
 
# Initial acceleration components 
 
ax1 = 0.0 
ay1 = 0.0 
az1 = 0.0 
ax2 = 0.0 
ay2 = 0.0 
az2 = 0.0 
ax3 = 0.0 
ay3 = 0.0 
az3 = 0.0 
 
# Initial star masses 
 
m1 = 0.7 
m2 = 0.4 
m3 = 0.5 
 
# Gravitational Constant 
 
G = 1.0 
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# radius of stars used in the plotFunc function 
 
rad1 = 0.2*m1 
rad2 = 0.2*m2 
rad3 = 0.2*m3 
 
# Calculate r**3 denominators for 3 Body Gravitation 
# More complex because the motion of EACH star depends 
# on where the other two stars are located! 
 
r12 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2) 
r312 = r12*sqrt(r12) 
r13 = (x1-x3)*(x1-x3) + (y1-y3)*(y1-y3) + (z1-z3)*(z1-z3) 
r313 = r13*sqrt(r13) 
r23 = (x2-x3)*(x2-x3) + (y2-y3)*(y2-y3) + (z2-z3)*(z2-z3) 
r323 = r23*sqrt(r23) 
 
# Calculate the initial accelerations 
# MUCH more complex than 2 Body dynamics 
# Because each star must use the combined forces 
# due to gravity of the other 2 stars. 
# This is why there are TWO ax1, etc statements.   
 
ax1 += -G*(x1-x2)*m2/r312 
ax1 += -G*(x1-x3)*m3/r313 
ay1 += -G*(y1-y2)*m2/r312 
ay1 += -G*(y1-y3)*m3/r313 
az1 += -G*(z1-z2)*m2/r312 
az1 += -G*(z1-z3)*m3/r313 
ax2 += -G*(x2-x1)*m1/r312 
ax2 += -G*(x2-x3)*m3/r323 
ay2 += -G*(y2-y1)*m1/r312 
ay2 += -G*(y2-y3)*m3/r323 
az2 += -G*(z2-z1)*m1/r312 
az2 += -G*(z2-z3)*m3/r323 
ax3 += -G*(x3-x2)*m2/r323 
ax3 += -G*(x3-x1)*m1/r313 
ay3 += -G*(y3-y2)*m2/r323 
ay3 += -G*(y3-y1)*m1/r313 
az3 += -G*(z3-z2)*m2/r323 
az3 += -G*(z3-z1)*m1/r313 
 
# This value keeps a smooth orbit on my workstation 
# Smaller values slow down the orbit, higher values speed things 
# up 
 
dt = 0.001 
 
def init(): 
 glClearColor(0.0, 0.0, 0.0, 1.0) 
 glEnable(GL_DEPTH_TEST) 
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def reshape(  w,  h): 
  
 # To insure we don't have a zero height 
 
 if h==0: 
  h = 1 
  
 #  Fill the entire graphics window! 
 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 gluPerspective(45.0, 1.0, 1.0, 1000.0) 
  
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
 gluLookAt(0.0, 0.0, 8.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) 
  
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
def orbits(): 
 global vx1, vy1, vz1, x1, y1, z1, r2, r3, ax1, ay1, az1 
 global vx2, vy2, vz2, x2, y2, z2, ax2, ay2, az2 
 global vx3, vy3, vz3, x3, y3, z3, ax3, ay3, az3 
  
 # More complex due to 3 Body instead of simply 2 Body  
 # interactions.  This is the first half of the velocity 
 # Calculations.  Known as Leap Frog! 
 
 vx1 += 0.5*ax1*dt 
 vy1 += 0.5*ay1*dt 
 vz1 += 0.5*az1*dt 
 vx2 += 0.5*ax2*dt 
 vy2 += 0.5*ay2*dt 
 vz2 += 0.5*az2*dt 
 vx3 += 0.5*ax3*dt 
 vy3 += 0.5*ay3*dt 
 vz3 += 0.5*az3*dt 
  
 # Calculate new positions 
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 x1 += vx1*dt 
 y1 += vy1*dt 
 z1 += vz1*dt 
 x2 += vx2*dt 
 y2 += vy2*dt 
 z2 += vz2*dt 
 x3 += vx3*dt 
 y3 += vy3*dt 
 z3 += vz3*dt 
  
 # Reset acceleration components to zero. 
 # This is important! 
   
 ax1 = 0.0 
 ay1 = 0.0 
 az1 = 0.0 
 ax2 = 0.0 
 ay2 = 0.0 
 az2 = 0.0 
 ax3 = 0.0 
 ay3 = 0.0 
 az3 = 0.0 
  
 # Recalculate r**3 denominators  
 
 r12 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2) 
 r312 = r12*sqrt(r12) 
 r13 = (x1-x3)*(x1-x3) + (y1-y3)*(y1-y3) + (z1-z3)*(z1-z3) 
 r313 = r13*sqrt(r13) 
 r23 = (x2-x3)*(x2-x3) + (y2-y3)*(y2-y3) + (z2-z3)*(z2-z3) 
 r323 = r23*sqrt(r23) 
  
 # Calculate acceleration components from each body. 
 # We add or accumulate the acceleration components provided 
 # by each of the other two stars to arrive at ONE resultant 
 # Acceleration.  We avoid self-gravity! 
 
 ax1 += -G*(x1-x2)*m2/r312 
 ax1 += -G*(x1-x3)*m3/r313 
 ay1 += -G*(y1-y2)*m2/r312 
 ay1 += -G*(y1-y3)*m3/r313 
 az1 += -G*(z1-z2)*m2/r312 
 az1 += -G*(z1-z3)*m3/r313 
 ax2 += -G*(x2-x1)*m1/r312 
 ax2 += -G*(x2-x3)*m3/r323 
 ay2 += -G*(y2-y1)*m1/r312 
 ay2 += -G*(y2-y3)*m3/r323 
 az2 += -G*(z2-z1)*m1/r312 
 az2 += -G*(z2-z3)*m3/r323 
 ax3 += -G*(x3-x2)*m2/r323 
 ax3 += -G*(x3-x1)*m1/r313 
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 ay3 += -G*(y3-y2)*m2/r323 
 ay3 += -G*(y3-y1)*m1/r313 
 az3 += -G*(z3-z2)*m2/r323 
 az3 += -G*(z3-z1)*m1/r313 
  
 # Calculate the second half of the velocity components 
 
 vx1 += 0.5*ax1*dt 
 vy1 += 0.5*ay1*dt 
 vz1 += 0.5*az1*dt 
 vx2 += 0.5*ax2*dt 
 vy2 += 0.5*ay2*dt 
 vz2 += 0.5*az2*dt 
 vx3 += 0.5*ax3*dt 
 vy3 += 0.5*ay3*dt 
 vz3 += 0.5*az3*dt 
  
 #send x,y,z to the display 
 
 glutPostRedisplay() 
 
def plotfunc(): 
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) 
  
 # Plot the position of m1 
  
 glPushMatrix() 
 glTranslatef(x1,y1,z1) 
 glColor3ub(245, 150, 30) 
 glutSolidSphere(rad1, 10, 10) 
 glPopMatrix() 
 
 # Plot the position of m2  
 
 glPushMatrix() 
 glTranslatef(x2,y2,z2) 
 glColor3ub(245, 230, 100) 
 glutSolidSphere(rad2, 10, 10) 
 glPopMatrix() 
 
 # Plot the position of m3 
 
 glPushMatrix() 
 glTranslatef(x3,y3,z3) 
 glColor3ub(100, 230, 200) 
 glutSolidSphere(rad3, 10, 10) 
 glPopMatrix() 
 glutSwapBuffers() 
  
def main(): 
 global width 
 global height 
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 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("3 Body Problem") 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(plotfunc) 
 glutKeyboardFunc(keyboard) 
 glutIdleFunc(orbits) 
  
 init()  
 glutMainLoop() 
 
main() 
 
 Once you have the program saved, run and debug the code if necessary.3  If 
everything is running properly, you should see (at some point) a graphics display similar 
to the figure 3body below.  Watch as the stars dance with each other!  Amazing, isn't it?  
I never tire of running this simulation and its variations.  Even though the general format 
of this 3 body program is similar to the 2 body simulation, I think you will agree that this 
program is longer and more complicated than the relatively simple 2 body system.  The 
physics you observe on the screen is MUCH more complex and the interactions 
between 3 bodies are far more complicated than the 2 body system.  I think you can 
probably see why the 3 body problem is not generally solvable using mathematical 
equations except in a few specialized instances that we will view in the exercises. 
 

  
       3body 

                                            
3 The more complex the code, the more likely you will have errors!  Get used to this… debugging 
is an essential skill for a successful programmer. 
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 Looking at the listing of the 3 body program, you should immediately notice that 
there are many more variables and calculation statements than in the 2 body code.  You 
would not think that simply adding one more star to the simulation would create this 
much extra work!  It is even worse when we add a fourth, fifth, and sixth star as you will 
understand in a moment.  Since I've already touched on the mathematics and physics of 
a gravitational simulation in previous sections, let's look at the code in the new 3 body 
program and see if we can understand why we need a more complex computational 
system. 
 

Almost immediately we see MANY more global variables.  This is too many to 
deal with efficiently and we'll fix that later, but for now we'll be programming using the 
brute strength and ignorance (BSI) approach.  The BSI philosophy is easily stated:  Get 
the program running correctly first and worry about elegance and efficiency later!4 

 
We need a unique variable for all position, velocity, and acceleration components 

for each star mass, hence the need for more variables.  The initialization of the position 
and velocity variables is also understandable from the last program.  Since there is an 
additional star mass to consider, it is reasonable to expect that we would require more 
initialization code.  But then we encounter something new.  Why must we initialize the 
acceleration components as in the following code?   
 
# Initial acceleration components 
 
ax1 = 0.0 
ay1 = 0.0 
az1 = 0.0 
ax2 = 0.0 
ay2 = 0.0 
az2 = 0.0 
ax3 = 0.0 
ay3 = 0.0 
az3 = 0.0 
 
 We did not have to do this in the 2 body program (although we could have!).  The 
answer to the question is that we must accumulate all of the forces and combine them 
into a single acceleration component for each star.  If we do not set an initial value for 
the individual acceleration components, we will generate an error during the first 
acceleration component calculations.  We are setting the initial values of the acceleration 
components to zero. 
 
 After initializing the masses for each of the 3 stars and setting the value for G, we 
then calculate the radius of each star based on the star mass.  We will use these radii in 
the def plotfunc() function to display relative star sizes. 
 
rad1 = 0.2*m1 
rad2 = 0.2*m2 
rad3 = 0.2*m3 

                                            
4 I'm quite certain this approach is an anathema to the computer science wizards in the crowd.  I 
am trying to care about that, but I am simply unable to bring myself to give a flying fig at this point. 
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 Following the radius calculations, we must determine the initial r**3 denominators 
for each star pair interaction in the following code: 
 
# Calculate r**3 denominators for 3 Body Gravitation 
# More complex because the motion of EACH star depends 
# on where the other two stars are located! 
 
r12 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2) 
r312 = r12*sqrt(r12) 
r13 = (x1-x3)*(x1-x3) + (y1-y3)*(y1-y3) + (z1-z3)*(z1-z3) 
r313 = r13*sqrt(r13) 
r23 = (x2-x3)*(x2-x3) + (y2-y3)*(y2-y3) + (z2-z3)*(z2-z3) 
r323 = r23*sqrt(r23) 
 
 Why is this code more complicated than the 2 body problem?  In the 2 body 
simulation, we were concerned only with the single distance between the 2 stars.  In the 
3 body problem we must calculate forces using the distances between each of the star 
pairs.  There are 3 stars, so there are 3 unique pairs of stars and therefore, 3 distances 
to calculate.5  The variables are named to identify the star pair involved.  For example, 
r12 refers to the distance between stars m1 and m2.  Likewise, r312 refers to the r**3 
denominator in Newton's law of gravitation for stars m1 and m2.  If we move to 4 bodies, 
the number of unique star pairs would be 6 (why?), necessitating doubling the number of 
equations above!  How many equations would we need for 5 bodies if we keep on 
programming in this manner? 
 
 The next section of code is even more complex: 
 
# Calculate the initial accelerations 
# MUCH more complex than 2 Body dynamics 
# Because each star must use the combined forces 
# due to gravity of the other 2 stars. 
# This is why there are TWO ax1, etc statements. 
   
ax1 += -G*(x1-x2)*m2/r312 
ax1 += -G*(x1-x3)*m3/r313 
ay1 += -G*(y1-y2)*m2/r312 
ay1 += -G*(y1-y3)*m3/r313 
az1 += -G*(z1-z2)*m2/r312 
az1 += -G*(z1-z3)*m3/r313 
ax2 += -G*(x2-x1)*m1/r312 
ax2 += -G*(x2-x3)*m3/r323 
ay2 += -G*(y2-y1)*m1/r312 
ay2 += -G*(y2-y3)*m3/r323 
az2 += -G*(z2-z1)*m1/r312 
az2 += -G*(z2-z3)*m3/r323 
ax3 += -G*(x3-x2)*m2/r323 
ax3 += -G*(x3-x1)*m1/r313 
ay3 += -G*(y3-y2)*m2/r323 

                                            
5 The pairs are:  m1-m2, m1-m3, and m2-m3 
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ay3 += -G*(y3-y1)*m1/r313 
az3 += -G*(z3-z2)*m2/r323 
az3 += -G*(z3-z1)*m1/r313 
 
 Why does it seem like we are duplicating statements?  Why are there so many 
lines of code?  Let's look at the first 2 lines in the section.  These lines calculate the x 
acceleration component of the m1 star mass (i.e. this is why the variable is ax1): 
 
ax1 += -G*(x1-x2)*m2/r312 
ax1 += -G*(x1-x3)*m3/r313 
 
Even though these lines look similar, you will see that they are not exactly alike.  Why do 
we need two lines of code that appear to calculate the same thing?  Remember that this 
is a 3 body problem and the movement of each star is affected by the sum of the 
gravitational forces of the other 2 stars.  Therefore, to calculate the acceleration of an 
individual star, we must add the gravitational forces of BOTH of the other stars together 
to arrive at a vector6 sum of the acceleration components for each star.  Strictly 
speaking, the += increment operator is only needed in the second statement in each pair 
of component calculations (Why?).  We could simplify these two statements into one 
longer statement (or its algebraic equivalent) as follows: 
 
ax1 = -G*(x1-x2)*m2/r312 - G*(x1-x3)*m3/r313 
 
 Do you see how this single statement performs the same task as the two 
statements above?  We can save several lines of code this way, particularly in the def 
orbits() function as we will soon see. 
 
 After setting the time increment, dt, we then encounter the def init(), def 
reshape(), and def keyboard() functions.  These functions are not much different 
than in the previous 2 body program.  The def orbits() function is where the orbital 
acceleration, velocity, and position components are calculated.  You will notice 
immediately that this function is much more lengthy and complex than in the 2 body 
problem.  Why shouldn't it be?  Adding an extra star mass increases the number of 
calculations needed to determine the motion of each individual star.  However, we can 
shorten the def orbits() function by a few lines of code if we combine the 
acceleration component calculations as shown above.  Note that we must set the 
acceleration components back to zero before we recalculate the new acceleration for 
each star.  Positions and velocities are cummulative, but acceleration is not (Why?).  If 
we have shortened the acceleration component calculations by combining lines of code 
(as illustrated above), we will not need to set the acceleration components to zero each 
time increment (Why?).   
 
 In case you are wondering why I used so many lines of acceleration component 
code in the original 3 body program rather than the somewhat more efficient method of 
combining code statements, remember that I am a teacher and sometimes teachers do 
strange things in order to teach concepts!  In exercise 1, you will have the opportunity to 
shorten the 3body.py code if you wish. 
 

                                            
6 Don't forget that a vector contains BOTH magnitude and direction information. 
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 The def plotfunc() function includes plotting instructions for all 3 stars, 
which makes the code a few lines longer than in the 2 body system.  However, the 
structure of the code remains the same.  
 
 In the 3body.py example program contained in this text, the time increment is 
set to dt = 0.001.  This time increment allows the simulation to run smoothly on my 
workstation, a 2.13 Ghz Centrino Dell M70 laptop purchased in 2005.  If your computer 
is faster than mine, you may want to select a smaller time increment.  If your computer is 
a bit older or slower (such as my slothful 900 Mhz desktop), then you may wish to 
change this dt variable to a larger time increment such as dt = 0.01.  If you are able 
to use dt = 0.001, you will see a dance of 3 stars and eventually (be patient!), one of 
the stars (the yellow one) will slide away to the upper left leaving the remaining two stars 
orbiting each other and moving slowly together to the lower right.  According to Piet Hut, 
this is a realistic situation.  With 3 body dynamics, often one star will gain enough 
gravitational acceleration to leave the system.  The fleeing star takes much of the kinetic 
energy of the triple star system with it.  When such a scenario occurs, this may leave the 
remaining 2 stars orbiting each other in a binary gravitational embrace.  If you use a 
value for dt other than 0.001, the dynamics of the 3 body system will change slightly 
and you may not obtain the same result.   

Exercises 
 
1) OK, I said that it was possible to shorten the program by combining some of the 

statements into one line as long as it made sense algebraically.  Now is your chance 
to do just that.  Try to combine or eliminate lines of code and see if you can make the 
program shorter in length.  Test the program after EACH change you make to verify 
that the program still runs correctly!  One advantage to making a program shorter is 
that you MAY be able to lessen the number of calculations needed to solve the 
problem.  If so, the program may execute more quickly. 

 
2) The dynamics of the 3 body system are so sensitive to initial conditions that the 

slightest change in any of the starting parameters can result in enormous changes in 
the behavior of the stars.  What you should now do is make changes in the initial 
values for the variables.  You might first try varying the masses of the stars.  Then 
you can try changing the gravitational constant G.  Finally, you can alter the starting 
velocities and positions.  I recommend that you make only one change at a time so 
that should an interesting behavior appear, you will know exactly what you did to get 
that behavior. 

 
3) If you experimented enough in exercise 2, you may have noticed that from time to 

time, two stars approached either other and then zoomed away as if they were shot 
from a cannon.  Why might this happen?  You'll recall Newton's law of universal 
gravitation (equation 1): 
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21

r
mmGF =

 

 



 292

 If the distance, r, between two stars approaches zero, the force due to gravity will 
 increase enormously, resulting in huge accelerations for the stars.  This is unnatural 
 because two stars that approached each other that closely in nature would collide.  
 Our simulation does not take collisions into account.  One way to help alleviate this 
 problem is to adjust the time step when two stars approach too closely.  A smaller 
 time step results in more precise calculations and an apparent slowing of the 
 system.  More precise calculations will often help avoid some collision situations.  
 Another possibility, but more difficult to implement, is to allow for the collision and 
 combine the colliding masses into one larger object.  See if you can figure out 
 how to change the time step to a smaller value if the distance between two stars 
 becomes too small.  Remember to change the time increment back after the close 
 approach.  What are some drawbacks to changing the time increment?  (Note:  I 
 have already added 0.01 to the denominator to avoid a division by zero error.  This 
 kind of fix is called a “kludge”.  It would be much better to use a physical solution!) 
  
4) Even though the 3 body problem is not solvable using mathematical methods, there 

are certain configurations that have been discovered experimentally7 that are 
amazingly stable.  One famous 3 body configuration involves the stars orbiting each 
other in a figure-8 pattern.  To replicate this configuation, here is what you must do.  
First, set the initial positions of the stars as follows: 

 
 x1 = -0.97000436 
 y1 = 0.24308753 
 z1 = 0.0 
 x2 = 0.97000436 
 y2 = -0.24308753 
 z2 = 0.0 
 x3 = 0.0 
 y3 = 0.0 
 z3 = 0.0 
 
 Next, set the initial velocities of the stars: 
 
  vx1 = -0.93240737/2 
  vy1 = -0.86473146/2 
  vz1 = 0.0 
  vx2 = -0.93240737/2 
  vy2 = -0.86473146/2 
  vz2 = 0.0 
  vx3 = 0.93240737 
  vy3 = 0.86473146 
  vz3 = 0.0 
 
 Finally, set the masses of each star to 1.0 and set G = 1.0.  If you have everything 
 running correctly, you should see an amazing figure-8 orbital dance of stars! 
 
5) Explore the stable 3 body orbit by changing the mass of one of the stars to 1.1 and 

see what happens.  How long do the orbits remain stable?  Experiment with other 

                                            
7 Using computer simulations much as we are doing here.  You can actually do REAL science on 
your computer.  That is remarkable! 
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masses such as 1.01 and see how long the orbits remain stable.  Try subtly different 
velocities and positions to see how such small changes affect the figure-8 orbit. 

 
6) Look up "stable 3 body orbits" online and get a glimpse of what the professional 

astronomers are doing!  There are some other interesting stable orbit configurations 
involving multiple star masses. 

 
7) With the 3 body problem, a stellar distance of zero is more likely than in the 2 body 

problem.  If the distance between the masses was zero in the simulation, that would 
result in a division by zero error and/or a huge gravitational acceleration.  The stars 
would literally zip away almost instantly!  Fortunately in the 2 body problem with 
appropriate initial conditions, this is unlikely to occur, but in the 3 body problem and 
above, such close encounters could be common.  One method of fixing the zero 
distance problem is to insure that the distance is never zero!  How can we do this?  
We can simply add a very small “fudge” factor to the denominator in the equations 
where we calculate r3.  Something like this would work: 

   
  r312 = r12*sqrt(r12) + 0.01 
 
 Of course, you would have to add this factor to EACH of the  r3 denominator 
 equations.  This is a simple method of preventing a zero radius encounter and 
 avoiding infinite gravity.  We’ll see this again in the next section. 
 
8) Another possible solution is to change the time increment.  You might check for close 

encounters between stellar masses and if the stars get within a certain distance, you 
can slow down the simulation (how?) and allow for more precision in the orbital 
calculations. 

 
9) Finally, it may be possible for you to figure out a method to allow for the stars to 

collide and combine their masses.  This would be a more difficult, bur perhaps more 
accurate, solution to the zero distance problem. 
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Section 8.5 From 3Body to NBody Using Arrays 
 
 Based on the complexity of the 3body.py program, you can probably imagine 
how difficult it would be to extend the simulation to 4, 5, or 6 bodies!  How about 20 
bodies?  We would have to write a specific program for each number of stars that we 
wanted to simulate.  This is clearly inefficient!  Piet Hut has coauthored a textbook which 
describes the process of simulating a million stars in a single cluster.8  Can you imagine 
how such a program would be written?  First, our simple desktop or laptop computers 
would not be able to run such a huge simulation due to the incredible number of 
calculations involved.  However, if we were to make an attempt to write a million-body 
simulation based on what we have done so far, the amount of extra code needed would 
be several million more lines or thousands of new pages of code!  This task is clearly 
impossible unless there are better methods of writing such complex simulations.  There 
ARE better methods and that is the topic of this section.  Rather than write several extra 
lines of code for each new star we add to the simulation, why not use an array of 
variables?9  We can use arrays to store data about each star in our cluster simulation.  
This makes the code MUCH more efficient and allows us the flexibility to extend our star 
cluster simulation to as many stars as we wish.  We probably can't simulate the 
dynamics of one million stars, but we can simulate 4, 5, 10 or 20 without much difficulty.  
By the way, you may be wondering why such a simulation is called an nbody simulation?  
Apparently that's what astrophysicists decided to call multi-body any code that 
represents a system of multiple bodies or stars .  There is no special reason.  "n" can 
represent any number, hence "nbody". 
 
 Here is the code for an nbody simulation.  Save it as nbody.py. 
 
# NBody Code 
# for multiple stars 
# based on Piet Hut and Jun Makino's 
# MSA Text 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
from random import * 
import sys 
 
import psyco 
psyco.full() 
 
#  Set the width and height of the window 
 
global width 
global height 
 

                                            
8 Heggie, Douglas; Hut, Piet (2003) "The Gravitational MillionBody Problem:  A Multidisciplinary 
Approach to Star Cluster Dynamics", Cambridge University Press 
9 If you don't remember what arrays are and how they work, see Section 6.3 "The Chaos Game". 
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#  Initial values for window width and height 
 
width = 600 
height = 600 
   
# global variables for position, velocity  and 
# acceleration components, time increment, and Gravity 
 
global n, m, v, a, r, rad, G, dt 
 
# Time increment 
 
dt = 0.0001 
 
# Gravitational Constant 
 
G = 1.0 
 
# Initial number of stars 
 
n = 20 
 
# Initialize arrays for mass, velocity, acceleration 
# position, radius, and color 
 
m = zeros(n+1, float) 
vx = zeros(n+1, float) 
vy = zeros(n+1, float) 
vz = zeros(n+1, float) 
ax = zeros(n+1, float) 
ay = zeros(n+1, float) 
az = zeros(n+1, float) 
rx = zeros(n+1, float) 
ry = zeros(n+1, float) 
rz = zeros(n+1, float) 
rad = zeros(n+1, float) 
colr = zeros(n+1, float) 
colg = zeros(n+1, float) 
colb = zeros(n+1, float) 
 
def init(): 
 global m, r, a, v, rad, colr, colg, colb 
 glClearColor(0.0, 0.0, 0.0, 1.0) 
 
 # Enable depth testing for true 3D effects  
  
 glEnable(GL_DEPTH_TEST) 
  
 # Add lighting and shading effects 
 
 glShadeModel(GL_SMOOTH) 
 lightdiffuse = [1.0, 1.0, 1.0, 1.0] 



 296

 lightposition = [1.0, 1.0, 1.0, 0.0] 
 lightambient = [0.0, 0.0, 0.0, 1.0] 
 lightspecular = [1.0, 1.0, 1.0, 1.0] 
  
 # Turn on the light 
 
 glLightfv(GL_LIGHT1, GL_DIFFUSE, lightdiffuse) 
 glLightfv(GL_LIGHT1, GL_POSITION, lightposition) 
 glLightfv(GL_LIGHT1, GL_AMBIENT, lightambient) 
 glMaterialfv(GL_FRONT, GL_DIFFUSE, lightdiffuse) 
 glMaterialfv(GL_FRONT, GL_SPECULAR, lightspecular) 
 glEnable(GL_LIGHT1) 
 glEnable(GL_LIGHTING) 
 glEnable(GL_COLOR_MATERIAL) 
  
 # Create a random set of n stars 
 
 for i in range(1, n+1): 
   
  m[i] = 500.*random() + 100. 
  rad[i] = 0.0002*m[i] 
  colr[i] = abs(sin(m[i])) 
  colg[i] = abs(cos(m[i])) 
  colb[i] = sqrt(abs(sin(m[i])*cos(m[i]))) 
 
 # Assign random positions to each star 
  
 for i in range(1, n+1): 
  rx[i] = cos(2*random()-1.25)*cos(5*random()-1.25) 
  ry[i] = sin(2*random()-1.25)*cos(5*random()-1.25) 
  rz[i] = sin(2*random()-1.25) 
 
  # Set initial velocities and accelerations 
  # of each star 
 
  vx[i] = 0.0 
  vy[i] = 0.0 
  vz[i] = 0.0 
  ax[i] = 0.0 
  ay[i] = 0.0 
  az[i] = 0.0 
   
def orbits(): 
 global rx, ry, rz, vx, vy, vz, ax, ay, az 
  
 # array calculations make things easier! 
 
 for i in range(1,n+1): 
 
  # First half of leapfrog algorithm   
 
  vx[i] += 0.5*ax[i]*dt 
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  vy[i] += 0.5*ay[i]*dt 
  vz[i] += 0.5*az[i]*dt 
 
  rx[i] += vx[i]*dt 
  ry[i] += vy[i]*dt 
  rz[i] += vz[i]*dt 
   
  ax[i] = 0.0 
  ay[i] = 0.0 
  az[i] = 0.0 
 
   
  # Loop through ALL stars 
 
  for j in range(1,n+1): 
    
   # Do NOT act on self to avoid infinity! 
   # Only calculate acceleration components 
   # if we are working with OTHER stars 
 
   if j != i: 
 
    # Arrays are more efficient! 
    # r2 calculation could be on 1 line 
    # but it wouldn't fit the page margins 
    # Also… added 0.01 fudge factor 
    # so the stellar diatance is never 0 
 
    r2 = (rx[i]-rx[j])*(rx[i]-rx[j])  
    r2 += (ry[i]-ry[j])*(ry[i]-ry[j])  
    r2 += (rz[i]-rz[j])*(rz[i]-rz[j]) 
    r3 = r2*sqrt(r2) + 0.01 
     
    ax[i] += -G*(rx[i]-rx[j])*m[j]/r3 
    ay[i] += -G*(ry[i]-ry[j])*m[j]/r3 
    az[i] += -G*(rz[i]-rz[j])*m[j]/r3 
 
  # Second half of leapfrog algorithm 
 
  vx[i] += 0.5*ax[i]*dt 
  vy[i] += 0.5*ay[i]*dt 
  vz[i] += 0.5*az[i]*dt 
  
 glutPostRedisplay() 
 
def reshape(  w,  h): 
  
 # To insure we don't have a zero height 
 
 if h==0: 
  h = 1 
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 #  Fill the entire graphics window! 
 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 gluPerspective(45.0, 1.0, 1.0, 1000.0) 
   
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
 gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) 
  
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
def plotfunc(): 
 global m 
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) 
  
 # Again, hooray for arrays! 
 
 for i in range(1,n+1): 
  glPushMatrix() 
  glTranslatef(rx[i],ry[i],rz[i]) 
   
  glColor3f(colr[i],colg[i],colb[i]) 
  glutSolidSphere(rad[i],20,20) 
  glPopMatrix() 
 
 glutSwapBuffers() 
 
def main(): 
 global width 
 global height 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("NBody Problem") 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(plotfunc) 
 glutKeyboardFunc(keyboard) 
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 glutIdleFunc(orbits) 
  
 init()  
 glutMainLoop() 
 
main()     
 
 If your program is running correctly, you should see an initial graphics window 
that looks something like figure nbody on the next page.  Your graphics window will 
probably not look exactly like the nbody figure because we chose random initial 
positions and sizes for the stars in our program.  However, you should see 20 stars 
(unless one or more are hiding behind each other) and these stars will begin to move 
according to the gravitational attractions between them. 
 

The wonderful thing about using arrays in this program is that we now have the 
flexibility to create a star cluster with as many stars as we wish (up to a practical limit, of 
course) without making major modifications to the program.  If we want a system of 25 
stars, we can simply set n = 25 and then save and run the program.  The result is a 25 
star simulation!  The drawback to using arrays is that arrays can be difficult to implement 
and understand.  It is often hard to visual how arrays are utilized within a particular 
program and the nbody.py code is no exception.  Different programming languages 
utilize arrays in different ways.  Python is not particularly difficult in terms of array usage, 
but I find that array structures within C and BASIC are far easier to understand.  This is 
my own personal opinion (and this is my textbook).  Let's dig in and see what we can 
understand! 
 
 

 
        nbody 
 
 The first portion of the nbody.py program does not differ significantly from 
previous programs we've written.  Very quickly, though, we see something new: 
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# Initialize arrays for mass, velocity, acceleration 
# position, radius, and color 
 
m = zeros(n+1, float) 
vx = zeros(n+1, float) 
vy = zeros(n+1, float) 
vz = zeros(n+1, float) 
ax = zeros(n+1, float) 
ay = zeros(n+1, float) 
az = zeros(n+1, float) 
rx = zeros(n+1, float) 
ry = zeros(n+1, float) 
rz = zeros(n+1, float) 
rad = zeros(n+1, float) 
colr = zeros(n+1, float) 
colg = zeros(n+1, float) 
colb = zeros(n+1, float) 
 
 What is this?   Each of the variables on the left side of the = sign has now been 
defined as an array.  Remember that an array is an entire series or block of variables, all 
having the same variable name, but accessed by using a number or index.  In the code 
above, not only are we defining several arrays, but we are also letting Python know how 
large the array needs to be, what kind of values will be stored in the array, and to start 
the array with nothing but zeroes.  We are starting with zeros in order to have SOME 
value or number in each array element.  Without a starting value in each array element, 
Python would most likely produce an error when we attempt to calculate and store a new 
value in the same location.  We also specify that the arrays are floating point numbers.  
In order, the arrays store the following information: 
 

m  – masses of the individual stars 
vx  – the x velocity component of the individual stars 
vy  – the y velocity component of the individual stars 
vz  – the z velocity component of the individual stars 
ax  – the x acceleration component of the individual stars 
ay  – the y acceleration component of the individual stars 
az  – the z acceleration component of the individual stars 
rx  – the x coordinate of each star 
ry  – the y coordinate of each star 
rz  – the z coordinate of each star 
rad   – the radius of each star 
colr  – the red color parameter of each star 
colg  – the green color parameter of each star 
colb  – the blue color parameter of each star 

 
Let's take a closer look at one of the code statements: 
 
vx = zeros(n+1,float) 
 
 In the statement above, the vx array will hold the x velocity component for each 
of the stars in our simulation.  The n+1 sets the size of the array.  Why n+1?  We simply 
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can't have just n, the number of stars, as the number of elements in our array.  
Remember that we start counting array elements in Python (and most programming 
languages) at zero, so we must add 1 to the size of each array in order to conveniently 
start counting at 1. 
 
 Once the array is filled with values, we access each star's information as follows: 
 
Star 1 
 
x velocity component = vx[1] 
y velocity component = vy[1] 
z velocity component = vz[1] 
 
Star 2 
 
x velocity component = vx[2] 
y velocity component = vy[2] 
z velocity component = vz[2] 
 
Star 3 
 
x velocity component = vx[3] 
y velocity component = vy[3] 
z velocity component = vz[3] 
. 
. 
. 
Star 10 
 
x velocity component = v[10] 
y velocity component = v[10] 
z velocity component = v[10] 
 
 Notice that each star's velocity components are stored in a vx[i], vy[i], or 
vz[i] array.  The index of the array variable determines which star we are currently 
accessing.  For example, the fourth star's z velocity component would be vz[4].  Why?  
What is the index for the y velocity component of the sixth star?  A similar line of 
reasoning can be employed to understand the acceleration and position arrays.   
 
 Accessing the information contained in a simple array is relatively simple.  One 
method would be to use a for loop ranging from 1 to n + 1.  This is the method 
employed in the nbody.py code. 
 
 In the def init(): function, we see some new statements. 
 
# Enable depth testing for true 3D effects  
  
glEnable(GL_DEPTH_TEST) 
  
# Add lighting and shading effects 
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glShadeModel(GL_SMOOTH) 
lightdiffuse = [1.0, 1.0, 1.0, 1.0] 
lightposition = [1.0, 1.0, 1.0, 0.0] 
lightambient = [0.30, 0.30, 0.30, 1.0] 
lightspecular = [1.0, 1.0, 1.0, 1.0] 
  
glLightfv(GL_LIGHT1, GL_DIFFUSE, lightdiffuse) 
glLightfv(GL_LIGHT1, GL_POSITION, lightposition) 
glLightfv(GL_LIGHT1, GL_AMBIENT, lightambient) 
glMaterialfv(GL_FRONT, GL_DIFFUSE, lightdiffuse) 
glMaterialfv(GL_FRONT, GL_SPECULAR, lightspecular) 
glEnable(GL_LIGHT1) 
glEnable(GL_LIGHTING) 
glEnable(GL_COLOR_MATERIAL) 
 
 Objects intended to be displayed as solid or in 3D look much more realistic when 
lighting and depth effects are added.  OpenGL has a built-in lighting system that allows a 
programmer to easily add lighting to a display scene.  The first line, 
glEnable(GL_DEPTH_TEST) isn't exactly part of the lighting sequence, but allows for 
the proper display of 3D objects when one object, a star in this simulation, passes in 
front of another object.  With GL_DEPTH_TEST enabled, objects that are supposed to be 
hidden by another object ARE hidden.  This may not seem very important, but such an 
effect greatly adds to the illusion of 3D on a flat screen monitor.  If you comment out this 
line and run the simulation again, you may be able to see the difference depth-testing 
makes in a 3D scene.  Trust me when I tell you that this is a great feature in OpenGL!  In 
the "old day", we had to actually calculate hidden lines and points in the code.  That was 
not fun and tended to be difficult at best. 
 
 The next line, glShadeModel(GL_SMOOTH) allows the shading of an object to 
have a smooth appearance.  For example, if two different colors are used at different 
points on a 3D object, GL_SMOOTH allows an interpolated, gradual blend of the two 
colors on all points in between.     
 
 The actual lighting occurs here: 
 
lightdiffuse = [0.85, 0.85, 0.85, 0.0] 
lightposition = [10.0, 10.0, 100.0, 0.0] 
lightambient = [0.25, 0.25, 0.25, 0.0] 
lightspecular = [1.0, 1.0, 1.0, 1.0] 
 
glLightfv(GL_LIGHT1, GL_DIFFUSE, lightdiffuse) 
glLightfv(GL_LIGHT1, GL_POSITION, lightposition) 
glLightfv(GL_LIGHT1, GL_AMBIENT, lightambient) 
glMaterialfv(GL_FRONT, GL_DIFFUSE, lightdiffuse) 
glMaterialfv(GL_FRONT, GL_SPECULAR, lightspecular) 
glEnable(GL_LIGHT1) 
glEnable(GL_LIGHTING) 
glEnable(GL_COLOR_MATERIAL) 
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 The first three lines each represent an array of values that we will use to 
configure the behavior, placement, and background lighting.  The first 3 values 
correspond to red, green, and blue color combinations.  The fourth value is the alpha 
parameter, which deals with color transparency and blending.  The glLightfv lines set 
the diffuse lighting, the x,y,z position of the light, and the ambient background light 
levels.  The "fv" at the end of glLightfv means that we will be using a floating point 
array or vector10 of values stored in a single array variable (such as lightdiffuse) to 
set the parameters of the glLightfv command.  The glMaterialfv function allows 
the color of the 3D objects to be displayed properly when lighting is employed.  We then 
turn on the lighting by specifying a light glEnable(GL_LIGHT1), turning on the 
"power" to the light glEnable(GL_LIGHTING), and enabling color 
glEnable(GL_COLOR_MATERIAL).  The GL_SPECULAR parameter triggers the 
"shininess" of an object.  It is possible to create a mirror effect using OpenGL lighting.  
OpenGL has the capability for multiple lights (up to 8 at last check) and complex lighting 
effects.  Objects can be illuminated from the exterior and from inside.  Interior lighting 
(emission) can render a glowing appearance to objects.  Lighting effects are both an art 
and a science.  You should take the time to explore different lighting effects and make 
certain you research OpenGL lighting online!  There are a LOT more options than we 
display in this simulation. 
 
 After we apply lighting, we then create our stars based on the number we 
assigned earlier, in this case, n = 20. 
 
# Create a random set of n stars 
 
for i in range(1, n+1): 
   
 m[i] = 500.*random() + 100. 
 rad[i] = 0.0002*m[i] 
 colr[i] = abs(sin(m[i])) 
 colg[i] = abs(cos(m[i])) 
 colb[i] = sqrt(abs(sin(m[i])*cos(m[i]))) 
 
In this code block, we create n stars (n = 20 in this example).  Remember that when 
we use for loops, simply stating range(1,n) will not suffice since the loop will stop 
prior to reaching n.  We must specify range(1, n+1) in order to create n stars.  The 
mass of each star is randomly assigned a floating point value from 100 to 500.  The 
radius of each star is calculated based on the mass and the red, green, and blue colors 
are assigned, again based on the mass of each star.  The mathematical statements for 
color assignments are arbitrary. 
 
# Assign random positions to each star 
  
for i in range(1, n+1): 
 rx[i] = cos(2*random()-1.25)*cos(5*random()-1.25) 
 ry[i] = sin(2*random()-1.25)*cos(5*random()-1.25) 
 rz[i] = sin(2*random()-1.25) 

                                            
10 No, I'm not trying to confuse you.  A vector in physics has magnitude and direction.  Another 
definition for vector is a single row or column of values. 
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 # Set initial velocities and accelerations 
 # of each star 
 
 vx[i] = 0.0 
 vy[i] = 0.0 
 vz[i] = 0.0 
 ax[i] = 0.0 
 ay[i] = 0.0 
 az[i] = 0.0 
 
Each star is assigned a random set of x, y, and z coordinates stored in the rx, ry, and rz 
arrays.  The position assignment statements are the parametric equations for a sphere, 
so hopefully we'll get a somewhat spherical region of stars surrounding the origin.  With 
small numbers for n, we obviously can't expect a perfect sphere.  Once the stars are in 
place, the velocity and acceleration components are set to 0.0. 
 
 The true power of arrays is revealed in the def orbits(): function.  With 
arrays, we no longer have to worry about the complexity of our orbital calculations 
increasing every time we add an additional star mass.  Here is the def orbits(): 
function: 
 
def orbits(): 
 global rx, ry, rz, vx, vy, vz, ax, ay, az 
  
 # array calculations make things easier! 
 
 for i in range(1,n+1): 
 
  # first half of leapfrog algorithm   
 
  vx[i] += 0.5*ax[i]*dt 
  vy[i] += 0.5*ay[i]*dt 
  vz[i] += 0.5*az[i]*dt 
 
  rx[i] += vx[i]*dt 
  ry[i] += vy[i]*dt 
  rz[i] += vz[i]*dt 
   
  ax[i] = 0.0 
  ay[i] = 0.0 
  az[i] = 0.0 
 
  # Loop through ALL stars 
 
  for j in range(1,n+1): 
    
   # Do NOT act on self to avoid infinity! 
   # Only calculate acceleration components 
   # if we are working with OTHER stars 
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   if j != i: 
 
    # Arrays are more efficient! 
    # r2 calculation could be on 1 line 
    # but it wouldn't fit the page margins 
    # Also… added 0.01 fudge factor 
    # so the stellar diatance is never 0 
 
    r2 = (rx[i]-rx[j])*(rx[i]-rx[j])  
    r2 += (ry[i]-ry[j])*(ry[i]-ry[j])  
    r2 += (rz[i]-rz[j])*(rz[i]-rz[j]) 
    r3 = r2*sqrt(r2) + 0.01 
     
    ax[i] += -G*(rx[i]-rx[j])*m[j]/r3 
    ay[i] += -G*(ry[i]-ry[j])*m[j]/r3 
    az[i] += -G*(rz[i]-rz[j])*m[j]/r3 
 
  # Second half of leapfrog algorithm 
 
  vx[i] += 0.5*ax[i]*dt 
  vy[i] += 0.5*ay[i]*dt 
  vz[i] += 0.5*az[i]*dt 
  
 glutPostRedisplay() 
 
The first nine lines calculate the velocities and positions for the forward half of the 
leapfrog algorithm.11 The += operators accumulate the velocity and position components 
for each star in the simulation.  The velocities and positions are running totals and 
depend on the previous values for each of the variables used.  The acceleration 
components are NOT cummulative and must be recalculated each time the def 
orbits() function is called.  This is why we set the acceleration components to 0.0 in 
this part of the loop.  The next section is crucial: 
 
 # Loop through ALL stars 
 
 for j in range(1,n+1): 
   
  # Do NOT act on self to avoid infinity! 
  # Only calculate acceleration components 
  # if we are working with OTHER stars 
 
  if j != i: 
 
   # Arrays are more efficient! 
   # r2 calculation could be on 1 line 
   # but it wouldn't fit the page margins 
 
   r2 = (rx[i]-rx[j])*(rx[i]-rx[j])  

                                            
11 This is calculus, specifically we are numerically solving the difference equations for 
gravitational effects.  Yes, leapfrog is its name. 
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   r2 += (ry[i]-ry[j])*(ry[i]-ry[j])  
   r2 += (rz[i]-rz[j])*(rz[i]-rz[j]) 
   r3 = r2*sqrt(r2) + 0.01 
     
   ax[i] += -G*(rx[i]-rx[j])*m[j]/r3 
   ay[i] += -G*(ry[i]-ry[j])*m[j]/r3 
   az[i] += -G*(rz[i]-rz[j])*m[j]/r3 
 
 In order to calculate ALL the gravitational forces acting on each star, we must 
take each star individually (using the i loop) and move through all the OTHER stars in 
the cluster (using the j loop), adding all the acceleration components together to arrive a 
single value for the acceleration components acting on each individual star.  We must 
make certain that we do NOT calculate a star's gravitational forces on itself to avoid a 
meaningless infinite result.  That is the purpose of the if j != i: conditional 
statement.  If j is NOT equal to i, then the star is "legitimate" and can be used for 
calculation. 
 
 Using arrays, we are able to perform all calculations more efficiently than in 
previous programs!  The for i in range(1, n+1): loop chooses each star 
individually.  The for j in range(1,n+1): starts a second or inner loop to look at 
all the OTHER stars in the cluster.  The combination of i and j indexes in the 
calculations help perform the same computations that we did in the previous star cluster 
programs.  The r2 calculations are separated into several lines to avoid running over the 
page margins.  We can do this by using the += operator, which adds or accumulates the 
new calculated values for r2 into the previous values.  Notice the (rx[i] – rx[j]) 
and similar statements in the r2 and ax, ay, and az code lines.  It is in these statements 
that we use loop indexes and arrays to calculate all the interactions between each star in 
our simulated cluster.  Finally, we can compute the second half of the velocity 
components and call the glutPostRedisplay() command to update the graphics 
window. 
 
 The def reshape(w, h): and def keyboard(key, x, y): functions are 
similar to previous programs.  This particular keyboard function allows us to exit the 
program using either the ESC or 'q' key.  The def plotfunc(): display function is 
much simpler than in the previous 3body program: 
 
def plotfunc(): 
 global m 
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) 
  
 # Again, hooray for arrays! 
 
 for i in range(1,n+1): 
  glPushMatrix() 
  glTranslatef(rx[i],ry[i],rz[i]) 
   
  glColor3f(colr[i],colg[i],colb[i]) 
  glutSolidSphere(rad[i],20,20) 
  glPopMatrix() 
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 glutSwapBuffers() 
 
Using arrays, we can simply loop through each of the stars (n = 20 in this program) 
translating to the proper position and plotting the star using the previously calculated 
radius and color scheme.  Nothing could be simpler! 
 
 I won't pretend to have present you with everything there is to know about using 
arrays.  Arrays are a topic that require time and mental effort on your part to understand.  
The wonderful thing about arrays in this program is that we can select an arbitrary 
number of stars by changing ONE SIMPLE LINE OF CODE.  If we want 50 stars, we set 
n = 50 at the start of the program.  If we want 100 stars, set n = 100.  There is no 
theoretical limit to n, however there are practical limits determined by your computer and 
Python.  It would be nice to simply specify n = 1000000 to simulate one million stars.  
However, if your computer ran slowly with 100 stars, it might not run at all with 1000000 
stars due to memory and processor limitations.  Piet Hut and Jun Makino run very large 
star cluster simulations using a specialized computer call the GRAPE.12  Look up Jun 
Makino and GRAPE using Google and see what information is available.  The GRAPE is 
a true super-computer, but it is very specialized and works only with star cluster 
dynamics problems. 
 
 In the next section, we are going to add the ability to fly through this nbody.py 
program as if we were in a space ship.  3D navigation is an important function in terms 
of simulations and gaming. 

Exercises 
 
1) Experiment with lighting.  How might you do this?  You could change some of the 

values in this program or even better, look up OpenGL lighting online and figure out 
how lighting actually works.  For example, see if you can make the stars actually 
GLOW like stars! 

 
2) Increase the value for n until your computer begins to run slowly and/or badly.  You 

will notice that instead of smooth animation, the updating becomes ragged and 
"jerky".  You can also adjust the time increment (dt) by making it smaller to see if this 
helps the animation.  What is the maximum star limit for relatively smooth animation 
on your computer? 

 
3) Yes, you can try n = 1000000.  What happens?  Nothing?  Do you think nothing is 

going on or are the number of calculations simply too huge to complete in a 
reasonable amount of time? 

 
4) Feel free to experiment in other ways.  For example, you can adjust the mass, 

radius, and color calculations if you choose. 
 
5) How might you assign the initial values for position and velocity  "on purpose" in 

order to replicate the stable figure 8 orbit from the last section?  Hint:  You can do 
something like this -->  rx[3] = -0.234 

 

                                            
12 Jun Makino and Piet Hut developed the specialized GRAPE computer themselves! 
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6) Are there any stable orbit configurations of more than 3 bodies?  Do some research 
online and see if you can find any such “beasts”. 

 
7) You do not have to build stars that are spherical and solid.  Using wireframe stars 

should speed up the simulation somewhat.  For example, using 
glutWireSphere(rad[i], 5, 5) may make you program run a bit faster.  You 
might even try cubes or tetrahedrons.  What do orbiting teapots look like? 

 
8) A great online resource for the nbody problem in addition to Piet Hut’s website is 

Sverre Aarseth’s great website www.sverre.com   Sverre is one of the pioneers in 
computational nbody simulation. 

 
9) If you want to see what happens when the distance between stars is zero, remove 

the 0.01 distance fudge factor from the r3 = r2*sqrt(r2) + 0.01 equation.  
You should see several stars zipping away at high rates of speed!  With the distance 
factor in place, this does not happen. 
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Section 8.6  Navigating the Stars 
 
 One of the drawbacks of the nbody.py program is that we are limited in what we 
can view.  Using the gluLookAt command we can set the position of our eye or camera 
at the start of the program, but what happens if the stars move out of our sight?  It would 
be nice to have the capability of navigating or flying through the star cluster, changing 
our position and our view as needed.  This would add great flexibility to our program and 
might even suggest the possibility of creating a (dare I say it?) game at some point in our 
programming journey!  How can we add a navigation feature to our simulation?  It really 
isn’t too difficult.  We can use keyboard routines to move our camera (OK… our 
spaceship) position via the gluLookAt function.  gluLookAt is a very powerful 
command and is flexible enough to allow us to use it at any time and not just at program 
startup.  I’m going to list the entire nbody.py program again, with the navigation functions 
added.  You can simply reuse the program from the last section, rename it 
flynbody.py or something similar, and make the changes and additions where 
necessary.  The result is interesting at the very least! 
 
# Fly Through NBody Code 
# for multiple stars 
# based on Piet Hut and Jun Makino's 
# MSA Text 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
from random import * 
import sys 
 
import psyco 
psyco.full() 
 
#  Set the width and height of the window 
 
global width 
global height 
 
#  Initial values for window width and height 
 
width = 500 
height = 500 
   
# global variables for position, velocity  and 
# acceleration components, time increment, and Gravity 
 
global n, m, v, a, r, rad, G, dt 
 
# gluLookAt variables 
 
global x, y, z, lx, ly, lz 
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# Time increment 
 
dt = 0.001 
 
# Gravitational Constant 
 
G = 1.0 
 
# Initial number of stars 
 
n = 20 
 
# Initialize arrays for mass, velocity, acceleration 
# position, radius, and color 
 
m = zeros(n+1, float) 
vx = zeros(n+1, float) 
vy = zeros(n+1, float) 
vz = zeros(n+1, float) 
ax = zeros(n+1,float) 
ay = zeros(n+1,float) 
az = zeros(n+1, float) 
rx = zeros(n+1,float) 
ry = zeros(n+1,float) 
rz = zeros(n+1,float) 
rad = zeros(n+1,float) 
colr = zeros(n+1,float) 
colg = zeros(n+1,float) 
colb = zeros(n+1,float) 
 
def initgl(): 
 global m, r, a, v, rad, colr, colg, colb 
 glClearColor(0.0, 0.0, 0.0, 1.0) 
 
 # Enable depth testing for true 3D effects  
  
 glEnable(GL_DEPTH_TEST) 
  
 # Add lighting and shading effects 
 
 glShadeModel(GL_SMOOTH) 
 lightdiffuse = [1.0, 1.0, 1.0, 1.0] 
 lightposition = [1.0, 1.0, 1.0, 0.0] 
 lightambient = [0.0, 0.0, 0.0, 1.0] 
 lightspecular = [1.0, 1.0, 1.0, 1.0] 
  
 # Turn on the light 
 
 glLightfv(GL_LIGHT1, GL_DIFFUSE, lightdiffuse) 
 glLightfv(GL_LIGHT1, GL_POSITION, lightposition) 
 glLightfv(GL_LIGHT1, GL_AMBIENT, lightambient) 
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 glMaterialfv(GL_FRONT, GL_DIFFUSE, lightdiffuse) 
 glMaterialfv(GL_FRONT, GL_SPECULAR, lightspecular) 
 glEnable(GL_LIGHT1) 
 glEnable(GL_LIGHTING) 
 glEnable(GL_COLOR_MATERIAL) 
 
def init(): 
 # Create a random set of n stars 
 
 for i in range(1, n+1): 
   
  m[i] = 500.*random() + 100. 
  rad[i] = 0.0002*m[i] 
  colr[i] = abs(sin(m[i])) 
  colg[i] = abs(cos(m[i])) 
  colb[i] = sqrt(abs(sin(m[i])*cos(m[i]))) 
 
 # Assign random positions to each star 
  
 for i in range(1, n+1): 
  rx[i] = cos(2*random()-1.25)*cos(5*random()-1.25) 
  ry[i] = sin(2*random()-1.25)*cos(5*random()-1.25) 
  rz[i] = sin(2*random()-1.25) 
 
  # Set initial velocities and accelerations 
  # of each star 
 
  vx[i] = 0.0 
  vy[i] = 0.0 
  vz[i] = 0.0 
  ax[i] = 0.0 
  ay[i] = 0.0 
  az[i] = 0.0 
 
def tilt(azim): 
 # Tilts the camera/spaceship up and down 
 
 global ly 
 ly = sin(azim) 
 lz = -cos(azim) 
 glLoadIdentity() 
 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0) 
  
def latmove(mov): 
 # Moves the camera/spaceship forward and backward 
 # along the line of sight 
 
 global x, y, z 
 x += mov*lx*n/10 
 y += mov*ly*n/10 
 z += mov*lz*n/10 
 glLoadIdentity() 
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 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0) 
  
def swivel(theta): 
 # Swivels the camera/spaceship left and right 
 
 global lx, lz 
 lx = sin(theta) 
 lz = -cos(theta) 
 glLoadIdentity() 
 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0) 
 
def orbits(): 
 global rx, ry, rz, vx, vy, vz, ax, ay, az 
  
 # array calculations make things easier! 
 
 for i in range(1,n+1): 
 
  # First half of leapfrog algorithm   
 
  vx[i] += 0.5*ax[i]*dt 
  vy[i] += 0.5*ay[i]*dt 
  vz[i] += 0.5*az[i]*dt 
 
  rx[i] += vx[i]*dt 
  ry[i] += vy[i]*dt 
  rz[i] += vz[i]*dt 
   
  ax[i] = 0.0 
  ay[i] = 0.0 
  az[i] = 0.0 
 
   
  # Loop through ALL stars 
 
  for j in range(1,n+1): 
    
   # Do NOT act on self to avoid infinity! 
   # Only calculate acceleration components 
   # if we are working with OTHER stars 
 
   if j != i: 
 
    # Arrays are more efficient! 
    # r2 calculation could be on 1 line 
    # but it wouldn't fit the page margins 
 
    r2 = (rx[i]-rx[j])*(rx[i]-rx[j])  
    r2 += (ry[i]-ry[j])*(ry[i]-ry[j])  
    r2 += (rz[i]-rz[j])*(rz[i]-rz[j]) 
    r3 = r2*sqrt(r2) + 0.01 
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    ax[i] += -G*(rx[i]-rx[j])*m[j]/r3 
    ay[i] += -G*(ry[i]-ry[j])*m[j]/r3 
    az[i] += -G*(rz[i]-rz[j])*m[j]/r3 
 
  # Second half of leapfrog algorithm 
 
  vx[i] += 0.5*ax[i]*dt 
  vy[i] += 0.5*ay[i]*dt 
  vz[i] += 0.5*az[i]*dt 
  
 glutPostRedisplay() 
 
def reshape(  w,  h): 
  
 # To insure we don't have a zero height 
 
 if h==0: 
  h = 1 
  
 #  Fill the entire graphics window! 
 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 gluPerspective(45.0, 1.0, 1.0, 1000.0) 
  
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
 
 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0) 
  
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
   
 # Reset view to original position 
 if key == "z": 
  zap() 
 
# The specialkey function looks for arrow keys 
def specialkey(key, x, y): 
 global ang, updown, move 
  
 # mode checks for SHIFT key 
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 mode = glutGetModifiers() 
  
 # Left arrow key 
 if key == GLUT_KEY_LEFT: 
  ang = -0.01 
  
 # Right arrow key 
 if key == GLUT_KEY_RIGHT: 
  ang = 0.01 
  
 # Up arrow key 
 if key == GLUT_KEY_UP: 
  # If shift key is used, tilt upward 
  if mode == GLUT_ACTIVE_SHIFT: 
   updown = -0.01 
  # Otherwise move forward 
  else: 
   move = 0.05 
  
 # Down arrow key 
 if key == GLUT_KEY_DOWN: 
  # If shift key is used, tilt downward 
  if mode == GLUT_ACTIVE_SHIFT: 
   updown = 0.01 
  # Otherwise move backward 
  else: 
   move = -0.05 
    
def plotfunc(): 
 global m, move, angle, ang, azim, updown 
  
 # moving around in 3D 
 # Based on specialkeys 
  
 # move forward and backward 
 # along the line of sight 
 if move != 0: 
  latmove(move) 
  move = 0 
  
 # Swivel left and right 
 if ang != 0.0: 
  angle += ang*n/10 
  swivel(angle) 
  ang = 0.0 
   
 # Tilt up and down  
 if updown != 0.0: 
  azim += updown 
  tilt(azim) 
  updown = 0.0 
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 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) 
  
 # Again, hooray for arrays! 
 
 for i in range(1,n+1): 
  glPushMatrix() 
  glTranslatef(rx[i],ry[i],rz[i]) 
   
  glColor3f(colr[i],colg[i],colb[i]) 
  glutSolidSphere(rad[i],20,20) 
  glPopMatrix() 
 
 glutSwapBuffers() 
 
def zap(): 
 global angle, ang, updown, azim, move 
 global x, y, z, lx, ly, lz 
 # Navigation variables 
  
 angle = 0.0 
 ang = 0.0 
 updown = 0.0 
 azim = 0.0 
 move = 0.0 
  
 # Initial values for eyeball position 
  
 x = 0.0 
 y = 0.0 
 z = 10.0 
 lx = 0.0 
 ly = 0.0 
 lz = -10.0 
 
 # makes certain we set the view "straight ahead" 
 swivel(0) 
 
def main(): 
 global width 
 global height 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE) 
 glutInitWindowPosition(100,100) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("NBody Problem") 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(plotfunc) 
 glutKeyboardFunc(keyboard) 
 glutSpecialFunc(specialkey) 
 glutIdleFunc(orbits) 
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 initgl() 
 init()  
 zap() 
 glutMainLoop() 
 
main()   
 
 Assuming that everything has been correctly entered and properly saved, you 
should be able to run the program.  When you do, you will probably not notice much 
difference between this program and the previous nbody.py simulation. However, if 
you press one of the arrow keys, you should immediately see a new feature.  We can 
MOVE within the simulation environment!  The instructions for movement are as follows: 
 

The UP arrow key moves us forward along the line of sight 
The DOWN arrow key moves us backward along the line of sight 
The LEFT arrow key swivels the camera to the left 
The RIGHT arrow key swivels the camera to the right 
The SHIFT+UP arrow tilts the camera down as if we were diving 
The SHIFT+DOWN arrow tilts the camera up as if we were climbing 

 
 Once a new orientation is reached, the UP and DOWN arrow keys move us 
along the new line of sight.  The result is that we can travel anywhere within the 
simulation, even into the middle of the cluster!  If you get lost, pressing the "z" key will 
"ZAP" you back to the original viewpoint.  Neat, isn't it? 
 
 So how does this program differ from the previous nbody program?  Let's look at 
the listing and see what we can find.  Almost immediately we encounter some new 
global variables: 
 
# gluLookAt variables 
 
global x, y, z, lx, ly, lz 
 
 This set of variables suggests that we are going to do something new with the 
gluLookAt statement and we are, of course!  Instead of a single def init(): 
function as in previous programs, this new program divides the initialization up into a 
lighting function (def initgl(): ) and a function to create the stars, star masses, 
and initial positions (def init(): ).  Strictly speaking, we do not have to do this, but 
sometimes separating discrete tasks into smaller functions makes a program listing 
more readable.  In this case, we have two tasks:  Lighting and star intialization.  Why not 
create separate functions to perform each task?  That is what we have done. 
 
 Following the initialization functions, we see three new functions: 
 
def tilt(azim): 
 # Tilts the camera/spaceship up and down 
 global ly 
 ly = sin(azim) 
 lz = -cos(azim) 
 glLoadIdentity() 
 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0) 
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def latmove(mov): 
 # Moves the camera/spaceship forward and backward 
 # along the line of sight 
 global x, y, z 
 x += mov*lx*n/10 
 y += mov*ly*n/10 
 z += mov*lz*n/10 
 glLoadIdentity() 
 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0) 
  
def swivel(theta): 
 # Swivels the camera/spaceship left and right 
 global lx, lz 
 lx = sin(theta) 
 lz = -cos(theta) 
 glLoadIdentity() 
 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0) 
 
As you might be able to guess, the first function, def tilt(azim):, provides a 
method for tilting the camera up or down, much like tilting your head.  The sin(azim) 
and –cos(azim) mathematical functions are used here because tilt would be measured 
in terms of an angle, represented by the variable azim13 and tilting results in a shift of 
both the y and z positions of objects.  The variable, azim, is "passed" to def tilt from 
the def specialkeys function elsewhere in the program.  We can implement a tilt in 
our viewing by pressing both the SHIFT key AND the UP or DOWN arrow keys at the 
same time.  Notice that once we have "tilted" and stored the numeric value for 
sin(azim) and –cos(azim) in the variables ly and lz, we call the gluLookAt 
function to load the new tilted view in our graphics window.  For your information, the 
glLoadIdentity() statement just prior to the gluLookAt command uses the identity 
matrix14 to set the current view so that any future changes will be based on our current 
position. 
 
 The second function, def latmove(mov):, provides lateral motion along the 
current viewing axis using the UP and DOWN arrow keys.  In this function, the variable 
mov is passed from the def specialkeys function and results in a change in the x, y, 
and z coordinates of the camera.  Once the new x, y, and z coordinates have been 
calculated, the gluLookAt function is called again to create a new scene and simulate 
motion forward and backward motion. 
 
 The def swivel(theta): function uses the LEFT and RIGHT arrow keys to 
pass an angle theta to the function.  Using this angle, the camera can be swivelled 
from left to right in a similar fashion as in the def tilt function.  This time, however, a 
swivel results in movements in the x and z coordinates of the objects in the display 

                                            
13 Representing azimuth, which is an angle between a reference point and a plane.  An example 
would be the angle that the moon makes with the horizon as viewed by your eye. 
14 The identity matrix is a matrix with 1's along the upper left to lower right diagonal.  Multiplying 
by the identity matrix produces the original matrix just like multiplying by one produces the original 
number. 
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window.  Once the lx and lz variables are defined, they are sent to the gluLookAt 
command so the new view can be displayed.   
 
 The def orbits and def reshape functions are unchanged.  The def 
keyboard function is a bit different, though.  We have added a new keystroke 
command: 
 
 # Reset view to original position 
 if key == "z": 
  zap() 
 
 If the "z" key is pressed, the zap() function is called.  Let's look at the def 
zap(): function now: 
 
def zap(): 
 global angle, ang, updown, azim, move 
 global x, y, z, lx, ly, lz 
 # Navigation variables 
  
 angle = 0.0 
 ang = 0.0 
 updown = 0.0 
 azim = 0.0 
 move = 0.0 
  
 # Initial values for eyeball position 
  
 x = 0.0 
 y = 0.0 
 z = 10.0 
 lx = 0.0 
 ly = 0.0 
 lz = -10.0 
 
 # makes certain we set the view "straight ahead" 
 swivel(0) 
 
 The def zap function returns the simulation to the original viewpoint by resetting 
all gluLookAt variables back to their original values.  Sending an angle of 0 to the 
swivel function turns the camera "straight ahead" to its original orientation. 
 
 A new set of commands is found in the def specialkeys function: 
 
# The specialkey function looks for arrow keys 
 
def specialkey(key, x, y): 
 global ang, updown, move 
  
 # mode checks for SHIFT key 
 mode = glutGetModifiers() 
  



 319

 # Left arrow key 
 if key == GLUT_KEY_LEFT: 
  ang = -0.01 
  
 # Right arrow key 
 if key == GLUT_KEY_RIGHT: 
  ang = 0.01 
  
 # Up arrow key 
 if key == GLUT_KEY_UP: 
  # If shift key is used, tilt upward 
  if mode == GLUT_ACTIVE_SHIFT: 
   updown = -0.01 
  # Otherwise move forward 
  else: 
   move = 0.05 
  
 # Down arrow key 
 if key == GLUT_KEY_DOWN: 
  # If shift key is used, tilt downward 
  if mode == GLUT_ACTIVE_SHIFT: 
   updown = 0.01 
  # Otherwise move backward 
  else: 
   move = -0.05 
 
 Built into GLUT is the capability of looking for the "special" keys on a keyboard, 
such as the ARROW keys, END, HOME, PAGE UP, PAGE DOWN, and SHIFT key 
combinations as well as the CTRL and ALT keys.  I believe the specialkeys function 
is fairly self-explanatory.  It is here that we are setting the values of variables that will be 
employed in creating movement.  By changing the values assigned to these variables, 
we can alter how quickly we move.  However, fast movement comes at the expense of 
smooth movements!  Make note of the statement: 
 
 mode = glutGetModifiers() 
 
In this statement, we can check for keys that modify other keys.  The SHIFT key is such 
a modifier.  We can check for the presence of the SHIFT key by the value of the mode 
variable.  If mode == GLUT_ACTIVE_SHIFT, then the shift key has been pressed. 
 
 The def plotfunc(): function has some added lines of code at the 
beginning: 
 
def plotfunc(): 
 global m, move, angle, ang, azim, updown 
  
 # moving around in 3D 
 # Based on specialkeys 
  
 # move forward and backward 
 # along the line of sight 
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 if move != 0: 
  latmove(move) 
  move = 0 
  
 # Swivel left and right 
 if ang != 0.0: 
  angle += ang*n/10 
  swivel(angle) 
  ang = 0.0 
   
 # Tilt up and down  
 if updown != 0.0: 
  azim += updown 
  tilt(azim) 
  updown = 0.0 
 
 It is here that we check to see if any of the movement keys have been pressed.  
If any of those keys have been active, then the variables move, ang, and updown will 
have been changed from 0.0 to a different value (equal to the amount of movement 
specified in the def specialkeys function).  If any of the variables have a value other 
than zero, the appropriate movement function will be called and the new view position 
will be displayed.  When the latmove, swivel, or tilt functions "do their thing", the 
program returns and sets the value of the variable (such as move) back to zero.  If we 
fail to reset the variable to zero, continuous movement results.  Try it!  Place a comment 
in front of the ang = 0.0 statement, save and run the program, and then press the left 
or right arrow key.  What happens?  There is nothing wrong with this behavior, but it 
might make you dizzy!  The remainder of the def plotfunc() function is unchanged 
from the previous program. 
 
 The only other significant change is in the def main(): function.  If you will 
look closely, we've added the statement: 
 
 glutSpecialFunc(specialkey) 
 
This command will identify the function that captures the "special" keystrokes needed in 
this program.  Also notice that prior to issuing the glutMainLoop statement, we have: 
 
 initgl() 
 init()  
 zap() 
 
in order to call the program startup functions for lighting, stars, and the proper view. 

Exercises 
 
1) Explore the movement routines in this program.  See if you can change how the 

camera... or spaceship if you prefer, moves through space.  Research the GLUT 
special keys online to see the possibilities for program control. 
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2) instead of the SHIFT + ARROW key combination for tilting, try to use the PageUp 
and PageDown keys instead.   

 
3) What other movements can you think to employ?  Can you control the position of the 

lighting using some keys, special or otherwise? 
 
4) This is NOT a trivial program by any means.  Not only are we simulating star cluster 

dynamics, but we are also programming a “fly-through” interactive experience.  See if 
you can write an original program that will allow you to move in 3D space through a 
set of GLUT shapes or objects. 

 
5) If you zoom close enough, you should be able to see stars “collide” in the sense that 

they pass through each other.  The distance “fudge” factor of 0.01 will actually keep 
the stellar centers of mass separate, but the stars can and do pass close enough for 
the appearance of a collision to occur.  The simplicity of this simulation does not 
allow for the fluid dynamics, plasma, and matter interactions of stars to be visualized.  
In fact, I’m not entirely certain that we understand fully what happens in such 
circumstances.  Perhaps this is an area of research that might be of interest to you? 
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Chapter 9  3D and 3D Animation 
 
 The last chapter was basically an introduction to 2D animation, but I cheated a bit 
and added some 3D code to simulate star clusters.  OpenGL was originally intended to 
create 3D objects, scenes, and animation, so after many pages of 2D topics, 3D is 
where we will concentrate our efforts until the end of the book.  When discussing 3D 
objects and scenes, we need to realize that our monitor screen or laptop dispay is only a 
2D surface.  I know there are special glasses, headsets, screens, holographic, and 
CAVE/CUBE virtual reality display devices that create "true" 3D scenes, but most of 
these devices are not easily accessible for mere mortals.  What we must be able to do in 
order to simulate 3D is to draw or render objects on the screen to provide the illusion of 
3 dimensions.  We can do this by depth testing so that near objects block or occlude 
farther objects.  Perspective can be employed to make objects that are farther away 
appear smaller.  Lighting and shading can create 3D effects and we can even use fog to 
make objects appear to fade away in the distance.  In my opinion, the most important 
OpenGL 3D effect is that we can have objects move or rotate in such a fashion that our 
minds become convinced that the virtual world we've created within our display exists in 
3D space.  You will know that your 3D efforts have succeeded if at some point you begin 
to think of your computer monitor or display NOT as a screen, but as a box or world with 
height, width, and depth! 

Section 9.1  Rotating Objects in Space 
 
 The first program in this chapter is fairly simple.  We will allow the placement of 
objects in the center of the graphics window and provide a method to rotate the object.  
The program will give the user the choice of which GLUT object to display based on the 
number keys.  Also, the user will have the choice to display the GLUT object as a 
wireframe or solid shape.  Finally, lighting and perspective will be employed to give a 
richer 3D effect. 
 
 Save the following program as glutshapes.py or something similar.  This is 
not an original program idea, but is a Python translation based on a C program found in 
Richard Wright's excellent "OpenGL SuperBible" text.15  I highly recommend it as an 
OpenGL reference. 
 
# glutshapes.py 
# Shapes and rotations with special keys 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
import sys 
 
import psyco 
psyco.full() 
 
#  Set the width and height of the window 
global width 

                                            
15 Wright, Richard S. (1999). OpenGL SuperBible (2nd Edition).  Pearson Education. 
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global height 
 
#  Global variables for rotation angles 
global xrot 
global yrot 
 
xrot = 0.0 
yrot = 0.0 
 
# the usual screen dimension variables and lighting 
 
width = 600 
height = 600 
 
# Generic Lighting values and coordinates 
global  ambientLight 
global  diffuseLight 
global  specular 
global  specref 
 
ambientLight =  (0.35, 0.35, 0.35, 1.0) 
diffuseLight = ( 0.75, 0.75, 0.75, 0.7) 
specular = (1.0, 1.0, 1.0, 1.0) 
specref = (1.0, 1.0, 1.0, 1.0) 
 
# Shape variables 
global glutshape 
global solid 
 
# start with wireframe 
solid = "w" 
 
# start with a sphere 
glutshape = 1 
  
def renderscene(): 
 global xrot 
 global yrot 
  
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) 
  

# isolate the rotation by using glPushMatrix() 
# this keeps the whole scene from rotating! 
  
glPushMatrix() 
 
# rotate the GLUT object! 
 

 glRotatef(xrot, 1.0, 0.0, 0.0) 
 glRotatef(yrot, 0.0, 1.0, 0.0) 
  
 # choose either wireframe (w) or solid (s) and which 
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 # GLUT shape you want to view 
 
 if solid == "w": 
  if glutshape == 1: 
   glutWireSphere(1.0, 25, 25) 
  elif glutshape == 2: 
   glutWireCube(1.0) 
  elif glutshape == 3: 
   glutWireCone(0.3, 1.1, 20, 20) 
  elif glutshape == 4: 
   glutWireTorus(0.3, 1.0, 10, 25) 
  elif glutshape == 5: 
   glutWireDodecahedron() 
  elif glutshape == 6: 
   glutWireOctahedron() 
  elif glutshape == 7: 
   glutWireTetrahedron() 
  elif glutshape == 8: 
   glutWireIcosahedron() 
  elif glutshape == 9: 
   glutWireTeapot(1.0) 
 elif solid == "s": 
  if glutshape == 1: 
   glutSolidSphere(1.0, 25, 25) 
  elif glutshape == 2: 
   glutSolidCube(1.0) 
  elif glutshape == 3: 
   glutSolidCone(0.3, 1.1, 20, 20) 
  elif glutshape == 4: 
   glutSolidTorus(0.3, 1.0, 10, 25) 
  elif glutshape == 5: 
   glutSolidDodecahedron() 
  elif glutshape == 6: 
   glutSolidOctahedron() 
  elif glutshape == 7: 
   glutSolidTetrahedron() 
  elif glutshape == 8: 
   glutSolidIcosahedron() 
  elif glutshape == 9: 
   glutSolidTeapot(1.0) 
  
 # end the glPushMatrix() command by “popping” the rotation 
 # matrix back into place for real-time animation 
 glPopMatrix() 
 
 # swap the screen buffers for smooth animation 
 glutSwapBuffers()  
   
def init(): 
    global width 
    global height 
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    glClearColor(0.0, 0.0, 0.0, 1.0) 
     
    # Enable depth testing 
    glEnable(GL_DEPTH_TEST) 
     
    glEnable(GL_LIGHTING) 
    glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight) 
    glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight) 
    glLightfv(GL_LIGHT0, GL_SPECULAR, specular) 
    glEnable(GL_LIGHT0) 
    glEnable(GL_COLOR_MATERIAL) 
    glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE) 
    glMaterialfv(GL_FRONT, GL_SPECULAR, specref) 
    glMateriali(GL_FRONT, GL_SHININESS, 128) 
     
    glColor3ub(230,100,100) 
 
def specialkeys(  key,  x,  y): 
 global xrot 
 global yrot 
  
 if key == GLUT_KEY_UP: 
  xrot -= 2.0 
 if key == GLUT_KEY_DOWN: 
  xrot += 2.0 
 if key == GLUT_KEY_LEFT: 
  yrot -= 2.0 
 if key == GLUT_KEY_RIGHT: 
  yrot += 2.0 
  
 glutPostRedisplay() 
  
def reshape(  w,  h): 
 lightPos = (-50.0, 50.0, 100.0, 1.0) 
 nRange = 2.0 
  
 if h==0: 
  h = 1 
  
 glViewport(0, 0, w, h) 
  
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 # this section allows for window reshaping while 
 # maintaining a “normal” GLUT shape 
 
 if w <= h: 
  glOrtho(-nRange, nRange, -nRange*h/w, nRange*h/w, -nRange, nRange) 
 else: 
  glOrtho(-nRange*w/h, nRange*w/h, -nRange, nRange, -nRange, nRange) 
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 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
 glLightfv(GL_LIGHT0, GL_POSITION, lightPos) 
  
def keyboard(key, x, y): 
 global glutshape, solid 
 if key == chr(27) or key == "q": 
  sys.exit() 
 try: 
  if int(key) < 10: 
   glutshape = int(key) 
 except: 
  pass 
  
 if key == "w" or key == "s": 
  solid = key 
  
 glutPostRedisplay() 
 
def main(): 
     
    global width 
    global height 
     
    #  Setup for double-buffered display and depth testing 
    glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE|GLUT_DEPTH) 
    glutInitWindowPosition(100,100) 
    glutInitWindowSize(width,height) 
    glutInit(sys.argv) 
    glutCreateWindow("GLUT Shapes... Rotations") 
   
    init() 
 
    glutReshapeFunc(reshape) 
 
    glutDisplayFunc(renderscene) 
    glutKeyboardFunc(keyboard) 
    glutSpecialFunc(specialkeys) 
    glutMainLoop() 
 
main()     
 
 If everything runs correctly, you should see the graphics window in figure 
glutshape when the program executes. 
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  glutshape 
 
 Pressing the number keys (1-9) should display a unique shape for each number.  
Also, the "w" and "s" keys toggle from wireframe to solid shapes and the arrow keys 
allow you to rotate the shape on each axis.   
 
 There are a couple of new concepts in this program and both are related to an 
interactive experience using the keyboard.  The first involves the rotation of the the 
GLUT shapes: 
 
#  Global variables for rotation angles 
global xrot 
global yrot 
 
xrot = 0.0 
yrot = 0.0 
 
 We define two global variables, xrot and yrot, to store values (in degrees) for 
rotation around the x and y axes.  Then in the def specialkeys(): function, we use 
these variables with the keyboard arrow keys and conditional statements to provide a 
method for increasing or decreasing the values of the xrot and yrot variables. 
 
def specialkeys(  key,  x,  y): 
 global xrot 
 global yrot 
  
 if key == GLUT_KEY_UP: 
  xrot -= 2.0 
 if key == GLUT_KEY_DOWN: 
  xrot += 2.0 
 if key == GLUT_KEY_LEFT: 
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  yrot -= 2.0 
 if key == GLUT_KEY_RIGHT: 
  yrot += 2.0 
  
 glutPostRedisplay() 
 
 Then in the first section of def renderscene(): we use the values stored in 
xrot and yrot to “feed” a rotation angle into a new OpenGL command, glRotatef().  
After the rotation matrix is complete, a series of conditional statements determines 
whether or not we view a wireframe or solid object.  We start with a few simple global 
variables to store the shape and state of the GLUT object we wish to display: 
 
# Shape variables 
global glutshape 
global solid 
 
# start with wireframe 
solid = "w" 
 
# start with a sphere 
glutshape = 1 
  
def renderscene(): 
 global xrot 
 global yrot 
  
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) 
  

# isolate the rotation by using glPushMatrix() 
# this keeps the whole scene from rotating! 
  
glPushMatrix() 
 
# rotate the GLUT object! 
 

 glRotatef(xrot, 1.0, 0.0, 0.0) 
 glRotatef(yrot, 0.0, 1.0, 0.0) 
  
 # choose either wireframe (w) or solid (s) and which 
 # GLUT shape you want to view 
 
 if solid == "w": 
  if glutshape == 1: 
   glutWireSphere(1.0, 25, 25) 
  elif glutshape == 2: 
   glutWireCube(1.0) 
  elif glutshape == 3: 
   glutWireCone(0.3, 1.1, 20, 20) 
  elif glutshape == 4: 
   glutWireTorus(0.3, 1.0, 10, 25) 
  elif glutshape == 5: 
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   glutWireDodecahedron() 
  elif glutshape == 6: 
   glutWireOctahedron() 
  elif glutshape == 7: 
   glutWireTetrahedron() 
  elif glutshape == 8: 
   glutWireIcosahedron() 
  elif glutshape == 9: 
   glutWireTeapot(1.0) 
 elif solid == "s": 
  if glutshape == 1: 
   glutSolidSphere(1.0, 25, 25) 
  elif glutshape == 2: 
   glutSolidCube(1.0) 
  elif glutshape == 3: 
   glutSolidCone(0.3, 1.1, 20, 20) 
  elif glutshape == 4: 
   glutSolidTorus(0.3, 1.0, 10, 25) 
  elif glutshape == 5: 
   glutSolidDodecahedron() 
  elif glutshape == 6: 
   glutSolidOctahedron() 
  elif glutshape == 7: 
   glutSolidTetrahedron() 
  elif glutshape == 8: 
   glutSolidIcosahedron() 
  elif glutshape == 9: 
   glutSolidTeapot(1.0) 
  
 # end the glPushMatrix() command by “popping” the rotation 
 # matrix back into place for real-time animation 
 glPopMatrix() 
 
 # swap the screen buffers for smooth animation 
 glutSwapBuffers() 
 

There are a couple of things in this def renderscene(): function worth 
scrutinizing a bit more closely.  The first is the rotation commands: 

 
# rotate the GLUT object! 
 

 glRotatef(xrot, 1.0, 0.0, 0.0) 
 glRotatef(yrot, 0.0, 1.0, 0.0) 
 
The glRotatef command works as follows: 
 
 glRotatef(angle, x-axix, y-axix, z-axis) 
 
You must specify an angle in degrees (xrot and yrot) and an axis (or multiple axes) of 
rotation.  In this program, we are allowing a complete 360 degree (and beyond) rotation 
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of the GLUT shapes.  However, if you wanted to simply “tilt” an object at a 45.0 degree 
angle on the x-axis of rotation ONLY you could write the following: 
 
 glRotatef(45.0, 1.0, 0.0, 0.0) 
  
The following command provides rotation on the y-axis only: 
 
 glRotatef(yrot, 0.0, 1.0, 0.0)  

 
How would you rotate and object on the z-axis only?  What happens if you provide 
values on each of the 3 axes?  Do the values have to be 1.0?  Experiment! 
 
 We now know how to rotate objects!  This is an extremely valuable feature for 
both positioning objects in the field of view and for interaction.  The remainder of the def 
renderscene(): function is a fairly complex set of conditional statements designed to 
allow user selection of GLUT shapes and toggling between solid and wireframe models. 
 

In the next section, we will see how we can animate a 3D object using the 
mouse. 

Exercises 
 
The program in this section (as in the last chapter) is NOT trivial.  You should take time 
to understand it completely! 
 
Many of the GLUT shapes have a default size that generally corresponds to a radius of 
1.0.  Look up the glScalef(x, y, z) command online on in the RedBook and try 
inserting it in your program.  What does glScalef do?  What happens if the values for 
x, y, and z are less than 1.0?  What happens if the values are different? 
 
There is a variation of the program in this section that is more faithful to Richard S. 
Wright’s excellent example and uses a pop-up menu.  I’m going to provide the listing 
below with the following caveat:16 Some relatively recent versions of GLUT have a bug 
that will not allow the creation of right-click menus.  If your version of OpenGL/GLUT 
does not have this bug (and it probably doesn’t) you should be able to use the program 
you’ve just written as a basis for writing a new version as listed.  Make certain you save 
the new program under a different name!  
 
# glutMenuShapes.py 
# Menu driven shapes and rotations with special keys 
# Adapted from Richard S. Wright’s OpenGL SuperBible 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
import sys 
 
#  Set the width and height of the window 

                                            
16 Caveat = “warning” in Latin.  You can impress your friends..   
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global width 
global height 
 
#  Global variables for rotation angles 
global xrot 
global yrot 
 
xrot = 0.0 
yrot = 0.0 
 
width = 600 
height = 600 
 
# Light values and coordinates 
global  ambientLight 
global  diffuseLight 
global  specular 
global  specref 
 
ambientLight =  (0.3, 0.3, 0.3, 1.0) 
diffuseLight = ( 0.7, 0.7, 0.7, 0.7) 
specular = (1.0, 1.0, 1.0, 1.0) 
specref = (1.0, 1.0, 1.0, 1.0) 
 
global glutshape 
glutshape = 1 
 
def processmenu( value): 
 global glutshape 
 glutshape = value 
 glutPostRedisplay() 
  
def renderscene(): 
 global glutshape 
 global xrot 
 global yrot 
  
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) 
 glPushMatrix() 
 glRotatef(xrot, 1.0, 0.0, 0.0) 
 glRotatef(yrot, 0.0, 1.0, 0.0) 
  
 if glutshape == 1: 
  glutWireSphere(1.0, 25, 25) 
 elif glutshape == 2: 
  glutWireCube(1.0) 
 elif glutshape == 3: 
  glutWireCone(0.3, 1.1, 20, 20) 
 elif glutshape == 4: 
  glutWireTorus(0.3, 1.0, 10, 25) 
 elif glutshape == 5: 
  glutWireDodecahedron() 
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 elif glutshape == 6: 
  glutWireOctahedron() 
 elif glutshape == 7: 
  glutWireTetrahedron() 
 elif glutshape == 8: 
  glutWireIcosahedron() 
 elif glutshape == 9: 
  glutWireTeapot(1.0) 
  
 elif glutshape == 11: 
  glutSolidSphere(1.0, 25, 25) 
 elif glutshape == 12: 
  glutSolidCube(1.0) 
 elif glutshape == 13: 
  glutSolidCone(0.3, 1.1, 20, 20) 
 elif glutshape == 14: 
  glutSolidTorus(0.3, 1.0, 10, 25) 
 elif glutshape == 15: 
  glutSolidDodecahedron() 
 elif glutshape == 16: 
  glutSolidOctahedron() 
 elif glutshape == 17: 
  glutSolidTetrahedron() 
 elif glutshape == 18: 
  glutSolidIcosahedron() 
 elif glutshape == 19: 
  glutSolidTeapot(1.0) 
  
 glPopMatrix() 
 glutSwapBuffers() 
    
def init(): 
    global width 
    global height 
 
    glClearColor(0.0, 0.0, 0.0, 1.0) 
     
    # Enable depth testing 
    glEnable(GL_DEPTH_TEST) 
     
    glEnable(GL_LIGHTING) 
    glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight) 
    glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight) 
    glLightfv(GL_LIGHT0, GL_SPECULAR, specular) 
    glEnable(GL_LIGHT0) 
    glEnable(GL_COLOR_MATERIAL) 
    glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE) 
    glMaterialfv(GL_FRONT, GL_SPECULAR, specref) 
    glMateriali(GL_FRONT, GL_SHININESS, 128) 
     
    glColor3ub(230,100,155) 
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    wiremenu = glutCreateMenu(processmenu) 
    glutAddMenuEntry("Sphere", 1) 
    glutAddMenuEntry("Cube", 2) 
    glutAddMenuEntry("Cone", 3) 
    glutAddMenuEntry("Torus", 4) 
    glutAddMenuEntry("Dodecahedron", 5) 
    glutAddMenuEntry("Octahedron", 6) 
    glutAddMenuEntry("Tetrahedron", 7) 
    glutAddMenuEntry("Icosahedron", 8) 
    glutAddMenuEntry("Teapot", 9) 
 
    solidmenu = glutCreateMenu(processmenu) 
    glutAddMenuEntry("Sphere", 11) 
    glutAddMenuEntry("Cube", 12) 
    glutAddMenuEntry("Cone", 13) 
    glutAddMenuEntry("Torus", 14) 
    glutAddMenuEntry("Dodecahedron", 15) 
    glutAddMenuEntry("Octahedron", 16) 
    glutAddMenuEntry("Tetrahedron", 17) 
    glutAddMenuEntry("Icosahedron", 18) 
    glutAddMenuEntry("Teapot", 19) 
 
    mainmenu = glutCreateMenu(processmenu) 
    glutAddSubMenu("Wire", wiremenu) 
    glutAddSubMenu("Solid", solidmenu) 
    glutAttachMenu(GLUT_RIGHT_BUTTON) 
     
def specialkeys(  key,  x,  y): 
 global xrot 
 global yrot 
  
 if key == GLUT_KEY_UP: 
  xrot -= 2.0 
 if key == GLUT_KEY_DOWN: 
  xrot += 2.0 
 if key == GLUT_KEY_LEFT: 
  yrot -= 2.0 
 if key == GLUT_KEY_RIGHT: 
  yrot += 2.0 
  
 glutPostRedisplay() 
  
def reshape(  w,  h): 
 lightPos = (-50.0, 50.0, 100.0, 1.0) 
 nRange = 2.0 
  
 if h==0: 
  h = 1 
  
 glViewport(0, 0, w, h) 
  
 glMatrixMode(GL_PROJECTION) 
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 glLoadIdentity() 
  
 # allows for reshaping the window without distorting 
 # the GLUT shape 
 
 if w <= h: 
  glOrtho(-nRange, nRange, -nRange*h/w, nRange*h/w, -nRange, nRange) 
 else: 
  glOrtho(-nRange*w/h, nRange*w/h, -nRange, nRange, -nRange, nRange) 
 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
 glLightfv(GL_LIGHT0, GL_POSITION, lightPos) 
  
def keyboard(key, x, y): 
 if key == chr(27): 
  sys.exit() 
 
def main(): 
     
    global width 
    global height 
     
    #  Setup for double-buffered display and depth testing 
    glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE|GLUT_DEPTH) 
    glutInitWindowPosition(100,100) 
    glutInitWindowSize(width,height) 
    glutInit(sys.argv) 
    glutCreateWindow("GLUT Shapes... Rotations") 
   
    init() 
 
    glutReshapeFunc(reshape) 
 
    glutDisplayFunc(renderscene) 
    glutKeyboardFunc(keyboard) 
    glutSpecialFunc(specialkeys) 
    glutMainLoop() 
 
main() 
 
# End of program 
 

When you run this program, the initial scene is identical to the program you wrote 
at the beginning of this section.  However, try right-clicking17 the mouse pointer within 
the viewing window.  If the version of Python OpenGL/GLUT you have installed is 
relatively recent (or relatively old!), you should see a pop-up menu appear.  You can 
then use this pop-up menu as you would any other mouse menu by left-clicking your 
choice.  If the program runs correctly, you may see Python protest a bit in the text output 
                                            
17 Click using the right mouse button as opposed to the usual left mouse button. 



 335

pane in the DrPython or Scite programming editor, but these warnings are not usually 
serious and can most likely be ignored.  On the next page is a snapshot of my desktop 
with the pop-up menu displayed. 
 

    
 
 Menu capability is a great new function to have at our disposal when writing 
interactive routines!  Keep this in mind as you begin to write original Python OpenGL 
programs, including games. 
 
 In the next section, we will look at more mouse interaction! 
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Section 9.2  Real Time Interactive Computer Animator (RTICA) 
 
 At this point, I would like for you to run the glutshapes.py program from the 
last section again.  Rotate the shape to the right and to the left using the right and left 
arrow keys.  Observe that the rotation appears to follow your command.  In other words, 
pressing the left arrow causes rotation toward the left and pressing the right arrow 
causes rotation toward the right.  Now use the up arrow to turn the object 90 degrees “on 
its side”.  Once you have done this, rotate the object again to the left and to the right.  
What happened!  Use the up arrow to rotate the object an additional 90 degrees so that 
it is “upside-down” in relation to its original position.  Again, try to rotate the object to the 
left and to the right.  Whoa… what is going on here? 
 
 The simple answer is that the rotation provided by glRotatef will always be 
relative to the object’s viewpoint rather than from your outside point of view unless you 
write additional code to remedy this behavior.  My friend George Francis18 and his 
math/computer colleagues have developed a fantastic routine for allowing us the 
capability of rotating objects from OUR point of view in real time.  The mathematics 
behind the rotations involves matrices and linear algebra.  Essentially, any point or 
collection of points in space can be defined by the 3 coordinates of an ordered triple, (x, 
y, z), and we can use a matrix of 3 linear equations with these 3 x, y, and z variables to 
manipulate the position of the points in space.  If we wish to translate and/or transform 
these points to another location, we must use the principles of linear algebra to 
recalculate the position matrices.  Fortunately for us, this is easy using Python code and 
the already available OpenGL/GLUT matrix multiplication commands. 
 
 The following program is a wonderful example of smooth mouse interaction.  It is 
a Python translation of Professor Francis’ illiOctahedron.c program that he uses in 
his mathematical visualization REU programming course (Math 198) at the U of I. 
 
# pyilliOct.py 
# From George K. Francis and his C illiOctahedron.c program 
# and Glenn Chappell for chaptrack rotations 
 
from OpenGL.GL import * 
from OpenGL.GLUT import * 
from OpenGL.GLU import * 
import sys 
 
# this array stores the 6 octahedron vertices 
global vv 
vv = [(1.0, 0.0, 0.0), 
      (0.0, 1.0, 0.0), 
      (0.0, 0.0, 1.0), 
      (-1.0, 0.0, 0.0), 
      (0.0, -1.0, 0.0), 
      (0.0, 0.0, -1.0)] 
                                            
18 You met Professor Francis in the first few chapters.  He is a math professor extraordinaire at 
the University of Illinois and very interested in the visualization of mathematics using computers.  
I “borrowed” the name of this section directly from him and I hope he doesn’t mind! 
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# this aff array is the affine matrix which is used 
# for translation and transformation of coordinates 
# during rotation.  It is an identity matrix 
 
global aff 
aff = (1.0,0.0,0.0,0.0, 
       0.0,1.0,0.0,0.0, 
       0.0,0.0,1.0,0.0, 
       0.0,0.0,0.0,1.0) 
 
global wd 
global ht 
wd = 400 
ht = 400 
 
# initial mouse position is center of the window 
 
global mouseX 
global mouseY 
mouseX = wd/2 
mouseY = ht/2 
 
def display(): 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
 glMatrixMode(GL_MODELVIEW) 
 glPushMatrix() 
 glLoadIdentity() 
  

# do the matrix multiplication to rotate the octahedron 
glMultMatrixf(aff) 

  
 # creates the top half of the octahedron 
 # if the indents cause problems, fix them! 
 glBegin(GL_TRIANGLE_FAN) 
        glColor3f(0.0,255.0,0.0) 
        glVertex3fv(vv[1]) 
        glColor3f(0.,0.,255.)   
        glVertex3fv(vv[0]) 
        glColor3f(0.,255.,255.) 
        glVertex3fv(vv[5]) 
        glColor3f(255.,255.,0.) 
        glVertex3fv(vv[3]) 
        glColor3f(255.,0.,0.)   
        glVertex3fv(vv[2]) 
        glColor3f(0.,0.,255.)   
        glVertex3fv(vv[0])  
 glEnd() 
  
 # creates the bottom half of the octahedron 
 glBegin(GL_TRIANGLE_FAN) 
 glColor3f(255.0,0.0,255.0) 
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        glVertex3fv(vv[4]) 
        glColor3f(0.0,0.0,255.0)   
        glVertex3fv(vv[0]) 
        glColor3f(0.0,255.0,255.0) 
        glVertex3fv(vv[5]) 
        glColor3f(255.,255.,0.) 
        glVertex3fv(vv[3]) 
        glColor3f(255.,0.,0.)   
        glVertex3fv(vv[2]) 
        glColor3f(0.,0.,255.)   
        glVertex3fv(vv[0])  
 glEnd() 
  
 # uncomment this later 
 #glutWireSphere(1.,50,50) 
  
 glPopMatrix() 
 glFlush() 
 glutSwapBuffers() 
  
def keyboard(key, x, y): 
 if key == chr(27) or key == 'q': 
  sys.exit(0) 
 glutPostRedisplay() 
 
def reshape(width, height): 
 global wd 
 global ht 
 glClearColor(0.0, 0.0, 0.0, 0.0) 
 if height == 0: 
  height = 1 
 wd = width 
 ht = height 
 glViewport(0,0,wd,ht) 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 if wd<=ht: 
  glOrtho(-2.0,2.0,-2.0*ht/wd,2.0*ht/wd,-2.0,2.0) 
 else: 
  glOrtho(-2.0*wd/ht,2.0*wd/ht,-2.0,2.0,-2.0,2.0) 
   
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
# Here is the mysterious rotation function in homage 
# to Glenn Chappell 
def chaptrack(): 
 global aff 
 global mouseX 
 global mouseY 
 global wd 



 339

 global ht 
 dx = (mouseX-wd/2)/256.0  
 dy = (mouseY-ht/2)/256.0  
 glMatrixMode(GL_TEXTURE) 
 glPushMatrix() 
 glLoadIdentity() 
 glRotatef(dx,0,1.0,0.0)  
 glRotatef(dy,1.0,0.0,0.0) 
 glMultMatrixf(aff)  
 aff = glGetFloatv(GL_TEXTURE_MATRIX) 
 glPopMatrix() 
 
def idle(): 
 chaptrack() 
 glutPostRedisplay() 
  
def mousemotion(x,y): 
 global mouseX 
 global mouseY 

mouseX = x  
 mouseY = y 
 
def init(): 
 glEnable(GL_DEPTH_TEST) 
 glShadeModel(GL_SMOOTH) 
 
def main() : 
 global wd 
 global ht 
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(wd, ht) 
 glutInit([]) 
 glutCreateWindow("illiOct") 
 glutKeyboardFunc(keyboard) 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(display) 
  
 glutIdleFunc(idle) 
 glutPassiveMotionFunc(mousemotion) 
  
 init()  
 
 glutMainLoop() 
  
main() 
 
# End Program 
 
 If all goes well when you execute the program you should see the following 
display in figure illiOct: 
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    illiOct  
 
 This program is not long when compared to some of the other programs we’ve 
written, but it certainly has some code that is difficult to decipher.  When you run the 
program… and assuming it is running correctly, move the mouse pointer within the 
graphics window.  You should see that the octahedron always rotates in the direction the 
mouse is moving or pointing.  In other words, the rotation is now relative to YOUR 
viewpoint.  Also notice that the farther you move the mouse pointer away from the center 
of the window, the faster the rotation.  Let’s see if we can understand at least some of 
the code behind this neat little program. 
 
 The first bit of code after the import statements is: 
 
# this array stores the 6 octahedron vertices 
global vv 
vv = [(1.0, 0.0, 0.0), 
      (0.0, 1.0, 0.0), 
      (0.0, 0.0, 1.0), 
      (-1.0, 0.0, 0.0), 
      (0.0, -1.0, 0.0), 
      (0.0, 0.0, -1.0)] 
 
The vv[] array contains a list of 3D coordinates that correspond to the vertices of the 
octahedron.  You should pause for a moment and try to visualize how these points 
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represent an octahedron.  If you are successful and can “see” an octahedron in your 
mind based on these coordinates, then you are well on your way to working and thinking 
in 3D space!  If not, hang in there.  The following figure MAY help a bit.  It isn’t perfect, 
but perhaps you’ll get the idea. 
 

 
    Octahedron on Axes 
 
We will use these vv[] coordinates to draw the octahedron’s 6 vertices and 8 faces.  
The next section of code defines what is known as the affine matrix.   
 
# this aff array is the affine matrix which is used 
# for translation and transformation of coordinates 
# during rotation.  It is an identity matrix 
 
global aff 
aff = (1.0,0.0,0.0,0.0, 
       0.0,1.0,0.0,0.0, 
       0.0,0.0,1.0,0.0, 
       0.0,0.0,0.0,1.0) 
 
 The affine matrix starts out as an identity matrix.  Any matrix multiplied by an 
identity matrix does not change the value of the first matrix19, so the initial affine matrix 
represents a “clean slate” or ideal set of initial conditions.  An affine transformation in 
solid geometry preserves the 3D spatial order of the represented points.  In this case, we 
want ALL of the points of the octahedron… or whatever object we are rotating, to “hang 
together”.  So, using affine transformations will preserve the shape of the octahedron as 
we manipulate it in space.  The affine matrix will eventually take on values that will 
insure that this 3D shape/space preservation is always the case. 
 
 The variables used to store the mouse movements are as follows: 
 
# initial mouse position is center of the window 
 
global mouseX 
global mouseY 
mouseX = wd/2 
mouseY = ht/2 

                                            
19 This is exactly like multiplying a number by 1 or unity. 
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We must keep track of both the x and y coordinates of the mouse pointer and the 
mouseX and mouseY variables allow us to do this.  Initially, we set both variables to the 
midpoint of the display windows (how?). 
 
 The def display(): function introduces a couple of new concepts: 
 
def display(): 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
 glMatrixMode(GL_MODELVIEW) 
 glPushMatrix() 
 glLoadIdentity() 
  

# do the matrix multiplication to rotate the octahedron 
glMultMatrixf(aff) 

  
 # creates the top half of the octahedron 
 # if the indents cause problems, fix them! 
 glBegin(GL_TRIANGLE_FAN) 
        glColor3f(0.0,255.0,0.0) 
        glVertex3fv(vv[1]) 
        glColor3f(0.,0.,255.)   
        glVertex3fv(vv[0]) 
        glColor3f(0.,255.,255.) 
        glVertex3fv(vv[5]) 
        glColor3f(255.,255.,0.) 
        glVertex3fv(vv[3]) 
        glColor3f(255.,0.,0.)   
        glVertex3fv(vv[2]) 
        glColor3f(0.,0.,255.)   
        glVertex3fv(vv[0])  
 glEnd() 
  
 # creates the bottom half of the octahedron 
 glBegin(GL_TRIANGLE_FAN) 
 glColor3f(255.0,0.0,255.0) 
        glVertex3fv(vv[4]) 
        glColor3f(0.0,0.0,255.0)   
        glVertex3fv(vv[0]) 
        glColor3f(0.0,255.0,255.0) 
        glVertex3fv(vv[5]) 
        glColor3f(255.,255.,0.) 
        glVertex3fv(vv[3]) 
        glColor3f(255.,0.,0.)   
        glVertex3fv(vv[2]) 
        glColor3f(0.,0.,255.)   
        glVertex3fv(vv[0])  
 glEnd() 
  
 # uncomment this later 
 #glutWireSphere(1.,50,50) 
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 glPopMatrix() 
 glFlush() 
 glutSwapBuffers() 
 
The first new concept is found in the following code: 
 

# do the matrix multiplication to rotate the octahedron 
glMultMatrixf(aff) 

 
While a discourse on matrix algebra is a bit beyond the realm of this text (for the 
moment), it is sufficient to say that here the proper mathematics is done for the affine 
transformation (rotation) of the vertices of the octahedron.   
 

The second new concept and the remainder of the function deals with the proper 
drawing or rendering of the octahedron using glBegin(GL_TRIANGLE_FAN).  If you 
have ever seen a collapsible hand-fan, then you have an idea of how this statement 
works.  We use the points (vertices) stored in the vv[] array to draw connected 
triangles.  Think of the octahedron as existing in two halves, a top and a bottom.  Each 
half is drawn or rendered by connecting a series of four triangles in such a way so that a 
pyramid is formed.  One pyramid points “upward” and one pyramid points “downward”.  
Placing the two pyramids of triangle fans together, base to base, then forms the 
octahedron. 
 
 The nice color blending is accomplished by changing the color of each vertex 
and issuing a glShadeModel(GL_SMOOTH) command in the def init(): function 
(as in this program) or in the def main(): function.  The vertices are accessed 
individually by using a statement such as glVertex3fv(vv[4]). Notice the “v” on the 
end of the glVertex3fv command.  This stands for “vector”, which in this situation20 is 
a list of numbers, i.e. the x, y, and z values in each line of the list we stored in vv[].  
The vv[4] simply points to the 4th set of ordered triples in the list or the 4th vertex.  You 
absolutely MUST think about this set of statements in order to make sense of them.  
Why and how is the octahedron generated?  What happens if you change the order of 
the vertices?  Using triangle fans is a great way to build custom solid objects, but you 
must think about how the geometry fits together in order to create the object you 
visualize in you mind. 

 
 The mouse motion is achieved, partially, by the next two functions. 
 
def idle(): 
 chaptrack() 
 glutPostRedisplay() 
  
def mousemotion(x,y): 
 global mouseX 
 global mouseY 

mouseX = x  
                                            
20 In physics, a vector is a quantity having both magnitude and direction.  In the context of 
computer science and other mathematical disciplines, a vector is considered to be a single 
dimensional array or list of values.  These concepts are related. 
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 mouseY = y 
 
In the def idle(): function, the program calls def chaptrack(): and the updates 
the display whenever it is not handling some other task.  The def mousemotion(): 
function continually monitors the (x, y) position of the mouse pointer within the graphics 
window.  The def mousemotion(x, y): callback function is defined by the 
glutPassiveMotionFunc(mousemotion) statement in def main().  The REAL 
magic, though is contained in def chaptrack(): 
 
# Here is the mysterious rotation function in homage 
# to Glenn Chappell 
 
def chaptrack(): 
 global aff 
 global mouseX 
 global mouseY 
 global wd 
 global ht 
 dx = (mouseX-wd/2)/256.0  
 dy = (mouseY-ht/2)/256.0  
 glMatrixMode(GL_TEXTURE) 
 glPushMatrix() 
 glLoadIdentity() 
 glRotatef(dx,0,1.0,0.0)  
 glRotatef(dy,1.0,0.0,0.0) 
 glMultMatrixf(aff)  
 aff = glGetFloatv(GL_TEXTURE_MATRIX) 
 glPopMatrix() 
 
 It is my understanding that this function took considerable effort to create and I 
can understand why!  My hat is off to Glenn Chappell, George Francis, Stuart Levy, and 
their colleagues for figuring this out.  It is best not to meddle in the affairs of such 
wizards, to paraphrase Tolkien, so you are at your own peril if you try to modify this 
function!  There are a lot of mysterious calculations taking place here in the form of 
numerous matrix manipulations!  This function works very well.  Use it.  I will make one 
small comment, though.  Notice the 256.0 denominator in the dx and dy statements.  
Try running this program using 256 rather than 256.0 and you will get a great lesson on 
why it is important to use the correct variable type (floating point rather than integer) for 
certain calculations.  By the way, what is the purpose of 256.0?  Change this value to a 
larger and/or smaller value and see what happens!  You may be wondering why the 
GL_TEXTURE_MATRIX is involved in this routine?  OpenGL has several sets of matrices 
it uses to display objects and scenes.  One is the GL_MODELVIEW matrix and another is 
the GL_PROJECTION matrix.  We have used both of these matrices to position and view 
an object within our 3D window.  GL_TEXTURE is another such matrix and it is used in 
chaptrack to avoid disturbing the contents of the other two matrices.  Confused?  So am 
I. 
 
 The def main(): function is similar to the main() functions we have used in 
previous programs.  The pyilliOct.py code can be used as a skeleton for building 
much more complicated objects and programs.  It should be kept in a safe place for 
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further reference.  Let’s explore chaptrack and building objects from vertices and 
triangle fans a bit further! 
 

The German Bell 
 
One of my favorite memories from grade school art was making a so-called German bell 
tree ornament by folding colorful construction paper in a precise manner.  It is my 
understanding that geometry classes, including those in my high school, also participate 
in this activity near the holiday season.  If you do not know what a German bell looks 
like, use a search engine to see if you can locate an image online.  I have included a 
couple of images of German bells below, but they may be difficult to view properly, 
particularly if you are not using a color printer: 
 

  
 
 In the following program, you will use the basic structure found in the 
pyilliOct.py program, but we will create a German bell by making the additions and 
modifications, including lighting, found in the following listing. 
 
# pyGermanBell.py... 
# based on illiOctahedron 
 
#import important GL stuff 
from OpenGL.GL import * 
from OpenGL.GLUT import * 
from OpenGL.GLU import * 
import sys 
 
#define some globals 
global belltop 
global bellbottom 
global aff 
global wd 
global ht 
global MouseX 
global MouseY 
global brake 
 
# Light values and coordinates 
global  ambientLight 
global  diffuseLight 
global  specular 
global  specref 
global  lightPos 
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ambientLight =  (0.3, 0.3, 0.3, 1.0) 
diffuseLight = ( 0.7, 0.7, 0.7, 0.7) 
specular = (1.0, 1.0, 1.0, 1.0) 
specref = (1.0, 1.0, 1.0, 1.0) 
lightPos = (20.0, -20.0, 20.0, 1.0) 
 
# define the vertex points of the bell top 
# in geometric order (important for looping) 
belltop = [(0.0,1.0,0.0), 
  (-.75,-.25,0.0), 
  (-.475,0.0,.475), 
  (0.0,-.25,.75), 
  (.475,0.0,.475), 
  (.75, -.25, 0.0), 
  (.475,0.0,-.475), 
  (0.0,-.25,-.75), 
  (-.475, 0.0, -.475), 
  (-.75, -.25, 0.0)] 
   
# define the bell bottom vertex points 
# in geometric order (important!) 
bellbottom = [(0.0, -.50, 0.0), 
   (-.75,-.25,0.0), 
   (-.475,0.0,.475), 
   (0.0,-.25,.75), 
   (.475,0.0,.475), 
   (.75, -.25, 0.0), 
   (.475,0.0,-.475), 
   (0.0,-.25,-.75), 
   (-.475, 0.0, -.475), 
   (-.75, -.25, 0.0)] 
 
#define the affine identity matrix 
aff = (1.0,0.0,0.0,0.0, 
  0.0,1.0,0.0,0.0, 
  0.0,0.0,1.0,0.0, 
  0.0,0.0,0.0,1.0) 
   
#initial window and mouse settings 
wd = 800 
ht = 800 
MouseX = wd/2.0 
MouseY = ht/2.0 
 
# rotation speed 
brake = 1024.0 
 
#The usual display routine 
def display(): 
 global lightPos 
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 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
 
 glPushMatrix() 
 glLoadIdentity() 
  
 glMultMatrixf(aff) 
  
 glLightfv(GL_LIGHT0, GL_POSITION, lightPos) 
  
 #draw the top of the bell 
 glBegin(GL_TRIANGLE_FAN) 
  
 # Use a loop to select the vertices 
 for v in range(10): 
  # change color every other vertex 
  # by using even numbers 
  if v/2. <> int(v/2.): 
   glColor3f(0.0,1.0,0.0) 
  else: 
   glColor3f(1.0,0.0,0.0) 
   
  glVertex3fv(belltop[v]) 
 glEnd() 
  
 #draw the bottom of the bell 
 glBegin(GL_TRIANGLE_FAN) 
  
 # loop through the vertices 
 for v in range(10): 
 
  # alternate colors every even number 
  if v/2. <> int(v/2.): 
   glColor3f(0.0,1.0,0.0) 
  else: 
   glColor3f(1.0,0.0,0.0) 
    
  glVertex3fv(bellbottom[v]) 
 glEnd() 
  
 glPopMatrix() 
  
 glutSwapBuffers() 
  
 
#keyboard stuff 
def keyboard(key, x, y): 
 if key == chr(27) or key == 'q': 
  sys.exit(0) 
 glutPostRedisplay() 
 
#if we change the screen dimensions 
def reshape(width, height): 
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 global wd 
 global ht 
 global lightPos 
  
 glClearColor(0.0, 0.0, 0.0, 0.0) 
 if height == 0: 
  height = 1 
 wd = width 
 ht = height 
 glViewport(0,0,wd,ht) 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 gluPerspective(40.,1.,1.,40.) 
  
 gluLookAt(0,0,4,0,0,0,0,1,0) 
   
 glMatrixMode(GL_MODELVIEW)  
 glLoadIdentity() 
  
def chaptrack(): 
 global MouseX 
 global MouseY 
 global wd 
 global ht 
 global aff 
  
 dx = (MouseX-wd/2)/brake 
 dy = (MouseY-ht/2)/brake 
 glMatrixMode(GL_MODELVIEW) 
 glPushMatrix() 
 glLoadIdentity() 
  
 glRotatef(dx,0,1.0,0.0)  
 glRotatef(dy,1.0,0.0,0.0) 
  
 glMultMatrixf(aff)  
  
 #this line is different from the C 
 #version.  Python handles it a bit 
 #differently... was a pain to figure out! 
 aff = glGetFloatv(GL_MODELVIEW_MATRIX) 
 glPopMatrix() 
  
  
#traditional idle 
def idle(): 
 chaptrack() 
 glutPostRedisplay() 
 
#ditto traditional mousemotion 
def mousemotion(x,y): 
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 global MouseX 
 global MouseY 
 MouseX = x  
 MouseY = y 
 
def setup(): 
 glShadeModel(GL_SMOOTH) 
 glEnable(GL_DEPTH_TEST) 
 
 glEnable(GL_LIGHTING) 
 
 glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight) 
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight) 
 glLightfv(GL_LIGHT0, GL_SPECULAR, specular) 
 glEnable(GL_LIGHT0) 
 glEnable(GL_COLOR_MATERIAL) 
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE) 
 glMaterialfv(GL_FRONT, GL_SPECULAR, specref) 
 glMateriali(GL_FRONT, GL_SHININESS, 128) 
 
# def motion(x, y): 
# do some stuff here 
#     when you click on a mouse button 
#    not using it now 
 
#Traditional main subroutine  
def main() : 
 global wd 
 global ht 
  
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(wd, ht) 
 glutInit(sys.argv) 
 glutCreateWindow("German Bell... ") 
 glutKeyboardFunc(keyboard) 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(display) 
  
 # another interactive mouse function 
 # glutMotionFunc(motion) 
 
 glutIdleFunc(idle) 
 glutPassiveMotionFunc(mousemotion) 
   
 setup() 
 glutMainLoop() 
  
main() 
 
#End Program 
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 If everything is working properly, you should see something like figure German 
Bell with the ability to rotate the bell in real-time as in the pyilliOct.py program. 
 

 
   German Bell 

 

Exercises 
 
1) Experiment with these programs!  Make certain you save the original program lists 

(assuming they work correctly!) and then begin to explore by changing colors, 
vertices, etc.  Can you create a more complex object?  Try it!  There are many 
different parameters for glBegin() other than GL_POINTS, GL_LINES, and 
GL_TRIANGLE_FAN.  These include GL_LINE_LOOP, GL_LINE_STRIP, 
GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_QUADS, GL_QUAD_STRIP, and 
GL_POLYGON.  Research glBegin and see what you can find out about these 
paramters.  You can build amazingly complex shapes and objects using glBegin!  
At this point in your journey you have the skills to create original works and ideas.  
Now is your chance!  Write a program using these new concepts with 
pyilliOct.py,  pyGermanBell.py, or pyilliTorus.py as models! 

 
 If you feel as thought the bell rotation is too slow or uneven, you can change the 

value of the brake variable to a smaller value.  Also, we have not used the lines: 
 

import psyco 
psyco.full() 
 
in either of the programs in this section.  You might try adding these lines (assuming 
psyco is installed on your system) and see if that makes a difference. 
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For those of you with a mathematical or geometric bent, how do you think the 
vertices of the German Bell were derived?  Can you think of other objects you might 
create using mathematics/geometry? 

 
2) The chaptrack mouse rotation is very smooth and elegant.  However, your mouse 

also has buttons.  Is there a way to use these buttons interactively?  Certainly!  We 
can modify any of the RTICA programs (or any program for that matter) to allow the 
left and right mouse buttons to control clockwise and anticlockwise rotations.  My 
suggestion is that you reload the pyilliOct.py program and make the following 
changes.  First, add a couple of global variables to the beginning of the program to 
store the rotation values: 

 
 # rotation globals 
 global rotclock 
 global rotanticlock 
 
 rotclock = 0 
 rotanticlock = 0 
 
 Then make the following changes to the chaptrack() function: 
 
 def chaptrack(): 
     global MouseX 
     global MouseY 
    global wd 
     global ht 
 
     # mouse button rotation globals 
     global rotclock 
     global rotanticlock 
 
      dx = (MouseX-wd/2)/256.0  
     dy = (MouseY-ht/2)/256.0  
     glMatrixMode(GL_TEXTURE) 
     glPushMatrix() 
     glLoadIdentity() 
     
     # rotation using left/right mouse buttons 
     glRotatef(rotclock, 0.0, 0.0, 1.0) 
     glRotatef(rotanticlock, 0.0, 0.0, 1.0) 
      
  glRotatef(dx,0,1.0,0.0)  
    glRotatef(dy,1.0,0.0,0.0) 
     global aff 
     glMultMatrixf(aff)  
     aff = glGetFloatv(GL_TEXTURE_MATRIX) 
     glPopMatrix() 
 
 After the chaptrack() modifications, add the following function to your program.  
 There are a couple of complex conditional statements that are too long to fit on one 
 line.  As before, you should type them on a single line in your programming editor. 
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 def mouse(button ,state, x, y): 
     global rotclock 
     global rotanticlock 
 
     if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN: 
        rotanticlock = 1.0 
        rotclock = 0.0 
     if glutGetModifiers() == GLUT_ACTIVE_SHIFT and button ==  
   GLUT_LEFT_BUTTON and state == GLUT_DOWN: 
        rotanticlock = 5.0 
        rotclock = 0.0 
     if button == GLUT_LEFT_BUTTON and state == GLUT_UP: 
        rotanticlock = 0.0 
         
     if button == GLUT_RIGHT_BUTTON and state == GLUT_DOWN: 
        rotanticlock = 0.0 
        rotclock = -1.0 
     if glutGetModifiers() == GLUT_ACTIVE_SHIFT and button ==  
   GLUT_RIGHT_BUTTON and state == GLUT_DOWN: 
        rotanticlock = 0.0 
        rotclock = -5.0 
     if button == GLUT_RIGHT_BUTTON and state == GLUT_UP: 
        rotclock = 0.0 
 
 And finally, add the following line to your def main() function: 
 
  glutMouseFunc(mouse) 
 
 If all went well, you should be able to run the pyilliOct.py program and not only 
 rotate the octahedron in space, but also hold down either the left or right mouse 
 buttons and have the octahedron rotate clockwise or anticlockwise about the z-
 axis.21 Now hold down the shift key and press either mouse button.  What do you 
 see?  This is a decent example of how we can further interact with a program using 
 the mouse.  Many mice (mouses?) have a middle or third button.  You can also 
 program this button.  Perhaps you can research the third button and figure out a 
 method for moving into and away from an object without using the arrow keys?  You 
 may need to use the glutGetModifiers() statement to incorporate the Shift, Ctrl, 
 or Alt keys in addition to the third or middle mouse button.  
 
 Remember this exercise when you create more complex models later in the text.  
 You may wish to include a full set of mouse interactions with the programs you write.  
 If you recall the pySkel.py program early in the text, you may wish to write a NEW 
 pySkel.py program the automatically includes several options for interaction with 
 both the keyboard and the mouse. 
 
 

                                            
21 The z-axis comes out of the monitor straight at you! 
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illiTorus 
 
 One of my favorite RTICA programs is the illiTorus.  The C version of this 
program is much more complex and has many more features, but C is a compiled 
language and the resulting program executes very quickly with smooth animation.  
Python is an interpreted language and runs an order of magnitude more slowly (at least), 
so the Python translation is not quite as complex.  Here is the Python listing: 
 
# pyilliTorus.py  
# Credit to George K. Francis for the excellent original program 
 
from OpenGL.GL import * 
from OpenGL.GLUT import * 
from OpenGL.GLU import * 
from math import * 
import sys 
 
import psyco 
psyco.full() 
 
# define some mathematical functions here for 
# later use in the program.  This is NEAT STUFF! 
def C(u): return cos(u*0.01745) 
def S(u): return sin(u*0.01745) 
 
global wd 
global ht 
global mouseX 
global mouseY 
global lux  
global lu 
global pwr 
global aff 
 
lux =(0.3, 0.5, 0.8) 
lu = [1,0,0]  # this should not be necessary  
pwr = 10.   
 
aff = [1.0, 0.0, 0.0, 0.0, 
       0.0, 1.0, 0.0, 0.0, 
       0.0, 0.0, 1.0, 0.0, 
       0.0, 0.0, 0.0, 1.0] 
 
def drawvert(th,ta): 
   global lu;  global pwr 
    
   # parametric sphere equations 
   # for spherical lighting model 
   n0= C(th)*C(ta) 
   n1= S(th)*C(ta) 
   n2=       S(ta) 
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   nn=(n0,n1,n2) 
   lmb = nn[0]*lu[0]+nn[1]*lu[1]+nn[2]*lu[2] 
   lmb = min(max(lmb, 0.0), 1.0)  #clamp 
   spec=min(1., 1. - pwr + pwr*lmb) 
   dog = (th- 10.)/(346.-10.) 
   cat = (ta- 10.)/(346.-10.) 
   rr = dog*lmb*1.5 
   gg = (.25 + abs(cat-.5))*lmb*1.5 
   bb = (1-cat)*lmb*1.5 
   glColor3f(max(rr,spec), max(gg,spec), max(bb,spec)) 
    
   # torus! 
   glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2) 
 
# draw the torus from the mathematical 
# description in drawvert 
def drawtor(): 
   for th in range(0 ,348,15): 
      glBegin(GL_TRIANGLE_STRIP) 
      for ta in range (0,348, 15):  
         drawvert(th,ta); drawvert(th+8,ta)  
      glEnd()  
 
# calculate the lighting effects 
def calculite(aff): 
    global lu 
    for ii in range(3): 
        lu[ii]= 0  
        for jj in range(3):  
            lu[ii]+=aff[ii][jj]*lux[jj] 
 
#assign initial window and mouse settings 
wd = 600 
ht = 600 
mouseX = wd/2 
mouseY = ht/2 
 
brake = 128.0  
 
def display(): 
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
   glMatrixMode(GL_MODELVIEW) 
   glLoadIdentity() 
   glMultMatrixf(aff) 
   calculite(aff) 
   drawtor() 
   glutSwapBuffers() 
 
#typical keyboard callback  
def keyboard(key, x, y): 
   if key == chr(27) or key == 'q': 
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     sys.exit(0) 
   glutPostRedisplay() 
 
#adjust to resizing of the window 
def reshape(width, height): 
   global wd 
   global ht 
   glClearColor(0.0, 0.0, 0.0, 0.0) 
   if height == 0: 
      height = 1 
   wd = width 
   ht = height 
   glViewport(0,0,wd,ht) 
   glMatrixMode(GL_PROJECTION) 
   glLoadIdentity() 
   if wd<=ht: 
      glOrtho(-2.0,2.0,-2.0*ht/wd,2.0*ht/wd,-2.0,2.0) 
   else: 
      glOrtho(-2.0*wd/ht,2.0*wd/ht,-2.0,2.0,-2.0,2.0) 
   glMatrixMode(GL_MODELVIEW) 
   glLoadIdentity() 
 
#Note that we must declare the globals again 
def chaptrack(): 
   global mouseX 
   global mouseY 
   global wd 
   global ht 
   global aff 
   dx = (mouseX-wd/2)/brake   
   dy = (mouseY-ht/2)/brake 
   glMatrixMode(GL_TEXTURE) 
   glPushMatrix() 
   glLoadIdentity() 
   glRotatef(dx,0,1.0,0.0) 
   glRotatef(dy,1.0,0.0,0.0) 
   glMultMatrixf(aff) 
   aff = glGetFloatv(GL_TEXTURE_MATRIX) 
   glPopMatrix() 
 
#traditional idle 
def idle(): 
   chaptrack() 
   glutPostRedisplay() 
 
#ditto traditional mousemotion 
def mousemotion(x,y): 
   global mouseX 
   global mouseY 
   mouseX = x 
   mouseY = y 
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def init(): 
    glEnable(GL_DEPTH_TEST) 
    glShadeModel(GL_SMOOTH) 
 
#Traditional main subroutine 
def main() : 
   global wd 
   global ht 
   glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE) 
   glutInitWindowPosition(50, 50) 
   glutInitWindowSize(wd, ht) 
   glutInit() 
   glutCreateWindow("illiTorus") 
   glutKeyboardFunc(keyboard) 
   glutDisplayFunc(display) 
   glutIdleFunc(idle) 
   glutReshapeFunc(reshape) 
   glutPassiveMotionFunc(mousemotion) 
    
   init() 
   glutMainLoop() 
 
main() 
 
# End Program 
 
 This is a very ambitious program.  Much of the program, particularly the lighting 
effects and the drawing of the torus, involve many complex calculations.  The reason for 
the custom lighting is that the OpenGL lighting model is adequate for most purposes, but 
it is sometimes difficult to get perfect lighting, particularly using the chaptrack motion 
function.  The light tends to rotate as the object rotates, making “spot” lighting very 
difficult if not impossible.  To fix this problem, Professor Francis created his own lighting 
routines using mathematics… neat, huh? 
 
 Drawing the torus involves the use of 3D parametric equations, similar to the 2D 
parametric equations we worked with earlier in the text.  The Python program displays 
the resulting surface using ribbons rather than points or a solid surface.  Feel free to 
change this behavior if you wish.  Where and how would you make such changes?  The 
original C program uses a solid surface rather than ribbons.  Why do you think we might 
prefer to use ribbons in Python rather than render a solid surface? 
 
 If everything works properly, you should see the following graphics screen: 
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    illiTorus 
 
 As in previous programs, moving the mouse pointer will cause the “donut” or 
torus to rotate.   How do you create a torus?  In the “real” world, take an elastic sheet of 
paper and roll it into a tube.  Then connect the ends of the tube and you have a torus.  In 
a computer program, it takes a bit more effort!   
 
 There are several new concepts addressed in this program.  One interesting 
concept is found at the beginning of the program:  
 
# define some mathematical functions here for 
# later use in the program.  This is NEAT STUFF! 
def C(u): return cos(u*0.01745) 
def S(u): return sin(u*0.01745) 
 
 These lines of code define the new functions C(u) and S(u), which are 
abbreviated versions of cos() and sin().  Technically, you do not have to define such 
new functions, but using abbreviations for complicated expressions or functions may 
make your programming task a bit easier. 
 
 The drawvert function listing is next: 
 
def drawvert(th,ta): 
   global lu;  global pwr 
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   # parametric sphere equations 
   # for spherical lighting model 
   n0= C(th)*C(ta) 
   n1= S(th)*C(ta) 
   n2=       S(ta) 
     
   # these are the magic lighting calculations  
   nn=(n0,n1,n2) 
   lmb = nn[0]*lu[0]+nn[1]*lu[1]+nn[2]*lu[2] 
   lmb = min(max(lmb, 0.0), 1.0)  #clamp 
   spec=min(1., 1. - pwr + pwr*lmb) 
   dog = (th- 10.)/(346.-10.) 
   cat = (ta- 10.)/(346.-10.) 
   rr = dog*lmb*1.5 
   gg = (.25 + abs(cat-.5))*lmb*1.5 
   bb = (1-cat)*lmb*1.5 
   glColor3f(max(rr,spec), max(gg,spec), max(bb,spec)) 
    
   # torus! 
   glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2) 
 
 In this function, the torus and lighting effects are combined through the 
parametric sphere equations.  The parametric sphere equations are standard and can 
be found in any decent differential geometry or mathematical computer graphics text.  
You can also find parametric equations online for most 3D mathematical curves and 
surfaces.  The sphere is deformed into a torus in the following lines of code.  
 
 # torus! 
 glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2) 
 
The torus is actually plotted and the lighting effects are rendered by the following two 
functions: 
 
# draw the torus from the mathematical 
# description in drawvert 
def drawtor(): 
   for th in range(0 ,348,15): 
      glBegin(GL_TRIANGLE_STRIP) 
      for ta in range (0,348, 15):  
         drawvert(th,ta); drawvert(th+8,ta)  
      glEnd()  
 
# calculate the lighting effects 
def calculite(aff): 
    global lu 
    for ii in range(3): 
        lu[ii]= 0  
        for jj in range(3):  
            lu[ii]+=aff[ii][jj]*lux[jj] 
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 If you remember the 2D parametric equations chapter, we generate parametric 
equations by manipulating each variable, such as x, y, and z (here n0, n1, and n2), 
independently of each other.  You will notice the for th in range(0, 348, 15): 
and the for ta in range(0, 348, 15):  loop statements.  We use these loops to 
perform a 3D radar sweep while adjusting the distance of the plotted points from the 
origin through the three parametric equations.  There is MUCH wizardry taking place in 
this program!  One of the best methods of learning how the code works is by 
experimenting, so let’s take a few small steps in that direction!  Remember to SAVE this 
program before modifying it and then re-save under a new name in the event that we 
destroy the program’s functionality. 
 

Exercises 
 
 Let’s see if we can modify the illiTorus program by making it a bit simpler so that 
we may be able to more easily display other mathematical surfaces.  It is diificult to 
create some of the more famous parametric surfaces in mathematics using the original 
program, simply because any modification to the spherical parametric equations plays 
havoc with the lighting.  If we remove Professor Francis’ lighting effects we may have 
and easier time creating new surfaces.  However, we may pay a penalty with much 
poorer lighting effects.  Let’s see!  Take the pyilliTorus.py program and change it to 
the following listing: 
 
# pyNewTorus.py  
# Credit to George K. Francis for the excellent original program 
 
from OpenGL.GL import * 
from OpenGL.GLUT import * 
from OpenGL.GLU import * 
from math import * 
import sys 
 
import psyco 
psyco.full() 
 
# define some new trig functions here for 
# later use in the program.  This is NEAT STUFF! 
def C(u): return cos(u*0.01745) 
def S(u): return sin(u*0.01745) 
 
global wd 
global ht 
global mouseX 
global mouseY 
global aff  
global nrange 
nrange = 2.0 
 
aff = [1.0, 0.0, 0.0, 0.0, 
       0.0, 1.0, 0.0, 0.0, 
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       0.0, 0.0, 1.0, 0.0, 
       0.0, 0.0, 0.0, 1.0] 
 
def drawvert(th,ta): 
    
   # parametric sphere equations 
   n0= C(th)*C(ta) 
   n1= S(th)*C(ta) 
   n2=       S(ta) 
    
   # new color scheme! 
   glColor3f(S(th),C(ta),S(th*ta)) 
    
   # torus! 
   glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2) 
    
   # sphere 
   #glVertex3f(n0, n1, n2) 
 
def drawtor(): 
   for th in range(0 ,348,15): 
      glBegin(GL_TRIANGLE_STRIP) 
      for ta in range (0,348, 15): 
         drawvert(th,ta); drawvert(th+8,ta)  
      glEnd()  
 
#assign initial window and mouse settings 
wd = 600 
ht = 600 
mouseX = wd/2 
mouseY = ht/2 
 
brake = 128.0  
 
def display(): 
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
   glMatrixMode(GL_MODELVIEW) 
   glLoadIdentity() 
   glMultMatrixf(aff) 
   drawtor() 
   glutSwapBuffers() 
 
#typical keyboard callback  
def keyboard(key, x, y): 
   if key == chr(27) or key == 'q': 
     sys.exit(0) 
   glutPostRedisplay() 
 
#adjust to resizing of the window 
def reshape(width, height): 
   global wd 
   global ht 
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   glClearColor(0.0, 0.0, 0.0, 0.0) 
   if height == 0: 
      height = 1 
   wd = width 
   ht = height 
   glViewport(0,0,wd,ht) 
   glMatrixMode(GL_PROJECTION) 
   glLoadIdentity() 
   if wd<=ht: 
      glOrtho(-nrange,nrange,-nrange*ht/wd,nrange*ht/wd,-
nrange,nrange) 
   else: 
      glOrtho(-nrange*wd/ht,nrange*wd/ht,-nrange,nrange,-
nrange,nrange) 
   glMatrixMode(GL_MODELVIEW) 
   glLoadIdentity() 
 
#Note that we must declare the globals again 
def chaptrack(): 
   global mouseX 
   global mouseY 
   global wd 
   global ht 
   global aff 
   dx = (mouseX-wd/2)/brake   
   dy = (mouseY-ht/2)/brake 
   glMatrixMode(GL_TEXTURE) 
   glPushMatrix() 
   glLoadIdentity() 
   glRotatef(dx,0,1.0,0.0) 
   glRotatef(dy,1.0,0.0,0.0) 
   glMultMatrixf(aff) 
   aff = glGetFloatv(GL_TEXTURE_MATRIX) 
   glPopMatrix() 
 
#traditional idle 
def idle(): 
   chaptrack() 
   glutPostRedisplay() 
 
#ditto traditional mousemotion 
def mousemotion(x,y): 
   global mouseX 
   global mouseY 
   mouseX = x 
   mouseY = y 
 
def init(): 
    glEnable(GL_DEPTH_TEST) 
    glShadeModel(GL_SMOOTH) 
 
#Traditional main subroutine 
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def main() : 
   global wd 
   global ht 
   glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE) 
   glutInitWindowPosition(50, 50) 
   glutInitWindowSize(wd, ht) 
   glutInit() 
   glutCreateWindow("illiTorus") 
   glutKeyboardFunc(keyboard) 
   glutDisplayFunc(display) 
   glutIdleFunc(idle) 
   glutReshapeFunc(reshape) 
   glutPassiveMotionFunc(mousemotion) 
    
   init() 
   glutMainLoop() 
 
main() 
 

 
  Torus Without Lighting 
 
 The new torus program does not have the sophisticated lighting of Professor 
Francis’ program, but the code is much simpler and you can see the torus without a 
problem… even if the coloration is, well, interesting.  With the lighting calculations 
removed, we may find that the program will actually run a bit faster than before. 
 
 See if you can display a sphere instead of a torus!  The modification in the def 
drawvert(): function is simple.  Leave the parametric sphere statements as they are 
and make the following changes: 
 
 # torus! 
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 #glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2) 
    
 # Display the parametric equations “as is” 
 glVertex3f(n0, n1, n2) 
 
 Notice that the glVertex3f statement that plots the torus has been commented 
and we’ve added a new glVertex3f line.  This should display a single sphere (why?).  
Uncomment both glVertex3f statements for an interesting effect!   
 

 
     Sphere 
  
 Another surface you might try is the Crosscap.  It looks a bit like a sphere that 
has been pinched.  Here is the modified def drawvert(): … first comment both the 
sphere and torus equations and leave the remainder of the program untouched.  Then 
add the Crosscap code as shown below: 
 
def drawvert(th,ta): 
    
   # parametric sphere equations 
   #n0= C(th)*C(ta) 
   #n1= S(th)*C(ta) 
   #n2=       S(ta) 
 
   # Crosscap 
   n0= C(th)*S(2*ta) 
   n1= S(th)*S(2*ta) 
   n2= C(ta)*C(ta) - C(th)*C(th)*S(ta)*S(ta) 
 
   glColor3f(S(th),C(ta),S(th*ta))  
    
   # torus! 
   #glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2) 
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   # sphere 
   glVertex3f(n0, n1, n2) 
 
 Here is the Crosscap: 
 

 
     Crosscap 
 
 We’ll try a few other surfaces.  In each new instance, comment out the previous 
set of parametric equations and add the new code immediately below the “old” 
equations.  Now try a Klein Bottle! 
 
        # Klein Bottle!  
    n0 = C(th)*(1 + S(ta)*C(th/2) - (S(2*ta)*S(th/2))/2)  
    n1 = S(th)*(1 + S(ta)*C(th/2) - (S(2*ta)*S(th/2))/2)  
    n2 = S(th/2)*S(ta) + (C(th/2)*S(2*ta))/2 
 
 The Klein bottle (named for the great mathematician/geometer Felix Klein) is a 
4D surface.  Yes, I said 4D.  We are actually looking at a 3D projection of an object from 
the 4th dimension.  A Klein bottle has no interior… every point in a Klein bottle is 
considered to be on the outside!  You should do some research on the Klein bottle.  It is 
an interesting surface and is related to the Mobius strip.22 

                                            
22 The Mobius strip is a surface that has only 1 side!  Look it up… 
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  Klein Bottle 
 
Similar to the Crosscap is Steiner’s Roman Surface: 
 
      # Steiner's Roman Surface 
   n0 = C(ta)*C(ta)*S(2*th) 
   n1 = S(th)*S(2*ta) 
   n2 = C(th)*S(2*ta) 
 

 
 Steiner’s Roman Surface 
 
And here is another torus! 
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       # Another torus 
   n0 = (1 + 0.5*C(ta))*C(th) 
   n1 = (1 + 0.5*C(ta))*S(th) 
   n2 = 0.5*S(ta) 
 

 
  Torus Again! 
 
 This new torus is exactly like the original torus (without lighting), isn’t it?  That 
must mean that the above equations are equivalent to the original equations in the 
pyilliTorus.py program!  Are you surprised? 
 
How about a very nice figure 8? 
 
   # figure 8... beautiful! 
   n0 = C(th)*(1 + S(ta)*C(th) - S(2*ta)*S(th)/2) 
   n1 = S(th)*(1 + S(ta)*C(th) - S(2*ta)*S(th)/2) 
   n2 = S(th)*S(ta) + C(th)*S(2*ta)/2 
 
 In each of these new surfaces, you may find that the nrange variable needs to 
be modified in order to show the entire surface in a pleasing manner.  If the surface is 
too small, decrease nrange.  If the surface is too large, increase nrange. 
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   Figure 8 
 
 The last parametric surface we’ll visit formally is one that was discovered by 
Professor Francis and named the Etruscan Venus.  You may need to change nrange to 
3.0 to see the entire figure (don’t forget to change it back to 2.0 if you wish to return to 
the other surfaces): 
 
    # George's Etruscan Venus 
    n0 = 1.2*C(2*th)*C(ta) + S(ta)*C(th) 
    n1 = 1.2*S(2*th)*C(ta) - S(ta)*S(th) 
    n2 = 2*C(ta) 
 

 
     Etruscan Venus 
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 The Etruscan Venus is related to Steiner’s Roman Surface.  It was named after 
the Etruscans, an ancient civilization predating the Romans.  The Venus is derived from 
Venus de Milo, the famous armless Greek statue depicting the goddess of love.  
 
 In the event that you are having problems displaying these surfaces, here is a 
complete listing of the def drawvert(th, ta): function, showing how to use comments to 
display only the surface we wish to view.  In this listing, we are viewing Venus! 
 
def drawvert(th,ta): 
    
   # parametric sphere equations 
   #n0= C(th)*C(ta) 
   #n1= S(th)*C(ta) 
   #n2=       S(ta) 
 
   # Crosscap 
   #n0= C(th)*S(2*ta) 
   #n1= S(th)*S(2*ta) 
   #n2= C(ta)*C(ta) - C(th)*C(th)*S(ta)*S(ta) 
 
   # Klein Bottle!  
   #n0 = C(th)*(1 + S(ta)*C(th/2) - (S(2*ta)*S(th/2))/2)  
   #n1 = S(th)*(1 + S(ta)*C(th/2) - (S(2*ta)*S(th/2))/2)  
   #n2 = S(th/2)*S(ta) + (C(th/2)*S(2*ta))/2 
    
   # Steiner's Roman Surface 
   #n0 = C(ta)*C(ta)*S(2*th) 
   #n1 = S(th)*S(2*ta) 
   #n2 = C(th)*S(2*ta) 
    
   # Another torus 
   #n0 = (1 + 0.5*C(ta))*C(th) 
   #n1 = (1 + 0.5*C(ta))*S(th) 
   #n2 = 0.5*S(ta) 
    
   # George's Etruscan Venus 
   n0 = 1.2*C(2*th)*C(ta) + S(ta)*C(th) 
   n1 = 1.2*S(2*th)*C(ta) - S(ta)*S(th) 
   n2 = 2*C(ta) 
    
   # figure 8... beautiful! 
   #n0 = C(th)*(1 + S(ta)*C(th) - S(2*ta)*S(th)/2) 
   #n1 = S(th)*(1 + S(ta)*C(th) - S(2*ta)*S(th)/2) 
   #n2 = S(th)*S(ta) + C(th)*S(2*ta)/2 
    
   glColor3f(S(th),C(ta),S(th*ta))  
    
   # torus! 
   #glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2) 
    
   # sphere 
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   glVertex3f(n0, n1, n2) 
 
 Now what?  If you don’t like the striped or ribbon nature of the surfaces, you can 
try to modify the code so that the surfaces are solid.  Where might you try this?  You can 
also try to modify the parametric equations to see if you can create a new surface.  If you 
can and the surface is interesting enough, perhaps it will be named after you!  Perhaps 
not. 
 
 Here is a real challenge:  Why not add a popup menu to the program so the user 
can easily select among the surfaces?  You could even programmatically change the 
value of nrange in the popup menu or in the code of the surface you wish to view.  
Does adding the psyco code speed up these surface calculations and animations? 
 
 In the next chapter we are going to learn how to speed up our animations by 
using display lists.  If we have a large number of points or very complex objects, we can’t 
easily animate the scene simply because it takes a long time to draw each point.  This is 
very unhandy since we need to have a method for complex visualizations.  The display 
list is an excellent method.  It is related to arrays and will allow us to store an object or a 
collection of objects (such as points) in memory.  This storage will result in much faster 
animation. 
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Chapter 10  Animation and Display Lists 
 
 Most chemistry classes, even at the high school level, will discuss the concept of 
the electron orbital.  An electron orbital is a location in space where an electron is likely 
to be found.  Orbitals take shapes such as spheres, lobes, and much more exotic forms 
as the electron energy level and number of orbitals increases.  The shapes of the 
orbitals are solutions to very complex mathematical equations in quantum theory23.  In 
this chapter, I would like to begin by presenting a program that depicts electron orbitals 
as a cloud of points (or point cloud), which is somewhat similar to the electron cloud 
model of the atom.  If we plot many thousands of points and then attempt to rotate them 
all, each point position must be recalculated and plotted.  That would take considerable 
computation time.  Is there a better method?  Certainly!  We can store the points in an 
OpenGL display list.  Display lists are very efficient memory routines that will group our 
points together as a unit and allow for fast animation. 

Electron Orbitals 
 
# pyPointCloud.py 
# uses a display list 
 
from OpenGL.GL import * 
from OpenGL.GLUT import * 
from OpenGL.GLU import * 
# from numpy import * 
from numpy import * 
from random import * 
import sys 
 
global ptcloud 
global s2 
global p2 
global axrng 
 
axrng = 5.0 
 
p2 = 0 
s2 = 0 
 
global aff 
aff = (1.0,0.0,0.0,0.0, 
       0.0,1.0,0.0,0.0, 
       0.0,0.0,1.0,0.0, 
       0.0,0.0,0.0,1.0) 
 
global wd 
wd = 400 

                                            
23 Quantum theory is one of the most robust and most difficult theories in physics and chemistry.  
It requires an intense mathematical background to understand and even then, loses none of its 
exotic and difficult aspects.  Quantum theory is virtually impossible to describe or explain without 
the mathematics… and no, I don’t understand quantum theory. 
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global ht 
ht = 400 
global MouseX 
MouseX = wd/2.0 
global MouseY 
MouseY = ht/2.0 
 
def display(): 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
 glMatrixMode(GL_MODELVIEW) 
 glPushMatrix() 
 glLoadIdentity() 
 glMultMatrixf(aff) 
  
 glColor3f(1.0, 0.0, 1.0) 
 #glutWireSphere(1.,50,50) 
 glCallList(ptcloud) 
  
 glPopMatrix() 
 glFlush() 
 glutSwapBuffers() 
  
def keyboard(key, x, y): 
 global s2 
 global p2 
 if key == "s": 
  s2 = 1 
 if key == "z": 
  s2 = 0 
 if key == "p": 
  p2 = 1 
 if key == "o": 
  p2 = 0 
 if key == chr(27) or key == 'q': 
  sys.exit(0) 
 lists() 
 glutPostRedisplay() 
 
def reshape(width, height): 
 global wd 
 global ht 
 glClearColor(0.0, 0.0, 0.0, 0.0) 
 if height == 0: 
  height = 1 
 wd = width 
 ht = height 
 glViewport(0,0,wd,ht) 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 if wd<=ht: 
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  glOrtho(-axrng,axrng,-axrng*ht/wd,axrng*ht/wd,-
axrng,axrng) 
 else: 
  glOrtho(-axrng*wd/ht,axrng*wd/ht,-axrng,axrng,-
axrng,axrng) 
   
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
def motion(): 
 return 0 
 
def chaptrack(): 
 global MouseX 
 global MouseY 
 global wd 
 global ht 
 dx = (MouseX-wd/2.0)/128  
 dy = (MouseY-ht/2.0)/128  
 glMatrixMode(GL_MODELVIEW) 
 glPushMatrix() 
 glLoadIdentity() 
 glRotatef(dx,0,1.0,0.0)  
 glRotatef(dy,1.0,0.0,0.0) 
 global aff 
 glMultMatrixf(aff)  
 aff = glGetFloatv(GL_MODELVIEW_MATRIX) 
 glPopMatrix() 
 
def lists(): 
 global ptcloud 
 ptcloud = glGenLists(1) 
 glNewList(ptcloud, GL_COMPILE) 
 glPointSize(2.0) 
 glBegin(GL_POINTS) 
 for n in range(25000): 
  u = random()*6.28-3.14 
  v = random()*6.28-3.14 
     
  x = cos(u)*cos(v) 
  y = sin(u)*cos(v) 
  z = sin(v) 
  glColor3f(0.30,0.0,1.0) 
  glVertex3f(x,y,z) 
   
  if s2 == 1: 
   x = cos(u)*cos(v) 
   y = sin(u)*cos(v) 
   z = sin(v) 
   glColor3f(0.80,0.40,0.60) 
   glVertex3f(2*x,2*y,2*z) 
   glColor3f(0.90,0.10,0.25) 
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   glVertex3f(4*x,4*y,4*z) 
   
  if p2 == 1: 
   x = cos(u)*sin(2*v) 
   y = sin(u)*sin(2*v) 
   z = sin(v) 
   glColor3f(0.50,0.70,0.30) 
   glVertex3f(x,y,3.5*z) 
   glVertex3f(x,3.5*z,y) 
   glVertex3f(3.5*z,x,y) 
    
 glEnd() 
 glEndList() 
 
def idle(): 
 chaptrack() 
 glutPostRedisplay() 
  
def mousemotion(x,y): 
 global MouseX 
 MouseX = x 
 global MouseY  
 MouseY = y 
  
def main() : 
 global wd 
 global ht 
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(wd, ht) 
 glutInit([]) 
 glutCreateWindow("illiOct") 
 glutKeyboardFunc(keyboard) 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(display) 
 glutMotionFunc(motion) 
 glutIdleFunc(idle) 
 glutPassiveMotionFunc(mousemotion) 
 glEnable(GL_DEPTH_TEST)  
 lists() 
 
 glutMainLoop() 
  
main() 
 
 If the program runs correctly the program begins with a small blue point cloud 
sphere in the center of the screen.  This represents the 1s electron orbital.  Pressing the 
“s” key will add the 2s and 3s orbitals, which are larger concentric spheres surrounding 
the first orbital (be patient, the program takes time to calculate the points in the display 
list).  The p orbitals can be displayed by pressing the “p” key.  When all orbitals are 
toggled, you will see something like the following: 
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       Orbitals 
 
 The orbital program is interactive both by mouse and keyboard.  Can you figure 
out how to hide the orbitals by looking at the code?  Those of you with an interest in 
chemistry might try to add additional orbitals?  Let’s move on to a more difficult point 
cloud animation. 
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The Quaternion Julia Set 
 
 The quaternion Julia set is a rather beautiful 4D version of the 2D Julia set.  
There is no 3D version of the Juia set due to the nature of complex numbers.  Since we 
do not have 4D displays (yet?), we are limited to rendering a 3D projection of the 4D 
Julia set analogous to the 3D projection of the 4D Klein bottle.  Actually, since our 
display screen is 2D, we are really viewing a 2D projection of the 3D projection of the 4D 
mathematical object.  The program listing is a Python adaptation from “Hyperspace 
Iterations:  Distance estimation and higher dimensional fractals” by Yumei Dang, Louis 
H. Kauffman, and Daniel Sandin (2002 World Scientific Publishing): 
 
# pyQuat.py 
 
from OpenGL.GL import * 
from OpenGL.GLUT import * 
from OpenGL.GLU import * 
from math import * 
from random import * 
import sys 
 
# we need some help with computational speed! 
import psyco 
psyco.full() 
 
#define some globals 
global vv 
global aff 
global wd 
global ht 
global MouseX 
global MouseY 
 
global count 
 
# variable to store the display list 
global ptcloud 
 
#define the vertex points 
vv = [] 
 
#define the affine identity matrix 
aff = (1.0,0.0,0.0,0.0, 
  0.0,1.0,0.0,0.0, 
  0.0,0.0,1.0,0.0, 
  0.0,0.0,0.0,1.0) 
   
#initial window and mouse settings 
wd = 800 
ht = 800 
MouseX = wd/2 



 376

MouseY = ht/2 
 
# calculate the quaternion fractal 
def calcit(): 
 global vv 
 global count 
 count = 1 
 s = 1 
 pi = 3.141592653588 
 a = 0.1 
 b = -0.75 
 theta = 20. 
 
 theta = 2*pi*theta/360. 
 
 x = a 
 y = b*cos(theta) 
 z = b*sin(theta) 
 
    # change the values of k and l to change the shape 
 k = 0.2 
 l = 0.7 
 phi = 20. 
 
 phi = 2*pi*phi/360. 
 
 a = k 
 b = l*cos(phi) 
 c = l*sin(phi) 
  
 # 20000 points to store 
 while count < 20000: 
  x = x + a 
  y = y + b 
  z = z + c 
  
  r = sqrt(x*x + y*y + z*z) 
  x = x/r 
  y = y/r 
  z = z/r 
  r = sqrt(r) 
  m = sqrt(y*y + z*z) 
  e = sqrt(.5*(1+x)) 
  g = sqrt(.5*(1-x)) 
   
  if m == 0: 
   x = r 
   y = 0 
   z = 0 
  else: 
   x = r*e 
   y = r*y*g/m 
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   z = r*z*g/m 
   
  count = count + 1 
  if random() > 0.5: 
   s = -s 
  x = s*x 
  y = s*y 
  z = s*z 
  if count > 30: 
   vv = vv + [(x,y,z)] 
   vv = vv + [(-x,-y,-z)] 
 
        dolist() 
 
def dolist(): 
    global ptcloud 
     
    # start storing the display list in ptcloud 
    ptcloud = glGenLists(1) 
     
    # compile the ptcloud points 
    glNewList(ptcloud, GL_COMPILE) 
    glPointSize(3.0) 
    glBegin(GL_POINTS) 
    for n in range(1,2*count-60,3): 
        glColor3f(sin(n),cos(n),sin(n)*cos(n)) 
        glVertex3fv(vv[n]) 
    glEnd()         
    glEndList() 
     
def display(): 
 global vv 
 global count 
 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
 glMatrixMode(GL_MODELVIEW) 
 glPushMatrix() 
 glLoadIdentity() 
 glMultMatrixf(aff) 
  
 glCallList(ptcloud) 
   
 glPopMatrix() 
 glFlush() 
 glutSwapBuffers() 
 
def keyboard(key, x, y): 
 if key == chr(27) or key == 'q': 
  sys.exit(0) 
 glutPostRedisplay() 
 
#if we change the screen dimensions 
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def reshape(width, height): 
 global wd 
 global ht 
 glClearColor(0.0, 0.0, 0.0, 0.0) 
 if height == 0: 
  height = 1 
 wd = width 
 ht = height 
 glViewport(0,0,wd,ht) 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 if wd<=ht: 
  glOrtho(-2.0,2.0,-2.0*ht/wd,2.0*ht/wd,-2.0,2.0) 
 else: 
  glOrtho(-2.0*wd/ht,2.0*wd/ht,-2.0,2.0,-2.0,2.0) 
   
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
def chaptrack(): 
 global MouseX 
 global MouseY 
 global wd 
 global ht 
 global aff 
 dx = (MouseX-wd/2)/128.0 
 dy = (MouseY-ht/2)/128.0  
 glMatrixMode(GL_TEXTURE) 
 glPushMatrix() 
 glLoadIdentity() 
 glRotatef(dx,0,1.0,0.0)  
 glRotatef(dy,1.0,0.0,0.0) 
 glMultMatrixf(aff)  
 aff = glGetFloatv(GL_TEXTURE_MATRIX) 
 glPopMatrix() 
 
def idle(): 
 chaptrack() 
 glutPostRedisplay() 
 
def mousemotion(x,y): 
 global MouseX 
 global MouseY 
 MouseX = x  
 MouseY = y 
 
def init(): 
    glEnable(GL_DEPTH_TEST) 
    glShadeModel(GL_SMOOTH) 
 
def main() : 
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 global wd 
 global ht 
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(wd, ht) 
 glutInit([]) 
 glutCreateWindow("illiOct") 
 glutKeyboardFunc(keyboard) 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(display) 
 glutIdleFunc(idle) 
 glutPassiveMotionFunc(mousemotion) 
  
 init() 
 
 # calculate the fractal  
 calcit() 
 
 glutMainLoop() 
  
main() 
 
# End program 
 
 It is my recommendation that in the debugging phase of the program you use 
2000 points rather than 20000 points.  Python takes a couple of minutes to calculate 
20000 points with the rather complicated equations used in the def calcite(): 
function, so please be patient!  If the program runs correctly, you will see something 
similar to the following: 
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      Quaternion Julia Set 
 
 You will have to trust me when I tell you that if you don’t use display lists, the 
animation in this program is ridiculously slow!  Truthfully, Python is not the ideal 
language for rendering quaternion fractals.  C or another compiled language would be 
much better. 
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Alternate Quaternion Julia Set and Mandelbrot Set 
 
 Several years ago I decided to make an attempt to write my own quaternion 
fractal program.  Since I am not a math professor, I had to rely on a “brute strength and 
ignorance” approach and I think that the resulting program turned our rather well (in my 
humble opinion) despite my lack of a comprehensive mathematical education.  I wrote 
the original program in C using Professor Francis’ illiSkel.c (illiTorus) framework.  Here is 
the Python adaptation: 
 
# pyRandQuat.py 
# Dr. Blank's version 
# of the Quaternion Julia Set 
# with a Mandelbrot option 
 
from OpenGL.GL import * 
from OpenGL.GLUT import * 
from OpenGL.GLU import * 
from math import * 
from random import * 
import sys 
 
# we need some help with computational speed! 
import psyco 
psyco.full() 
 
#define some globals 
global vv 
global aff 
global wd 
global ht 
global MouseX 
global MouseY 
 
# for the complex arithmetic calculations 
global cr 
global ci 
global cj 
global ck 
global wk 
global count 
global mand 
global iter 
global maxpoints 
global quatpoints 
 
# initial values for complex parameters 
# change these for a different set 
cr = -0.2 
ci = 0.8 
cj = 0.0 
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ck = 0.0 
wk = 0.0 
 
# start out in the Julia Set... mand = 0 
# mand = 1 is the Mandelbrot set 
mand = 0 
iter = 10 
 
# one million random points to test 
# be patient! 
maxpoints = 1000000 
quatpoints = 0 
 
# variable to store the display list 
global ptcloud 
 
#define the vertex points 
vv = [] 
 
#define the affine identity matrix 
aff = (1.0,0.0,0.0,0.0, 
  0.0,1.0,0.0,0.0, 
  0.0,0.0,1.0,0.0, 
  0.0,0.0,0.0,1.0) 
   
#initial window and mouse settings 
wd = 600 
ht = 600 
MouseX = wd/2 
MouseY = ht/2 
 
# calculate the quaternion fractal 
def calcit(): 
    global vv 
    global count 
    global quatpoints 
    vv = [] 
    count = 0 
    n = 0 
    quatpoints = 0 
 
    while count < maxpoints: 
        count = count + 1 
        x = 4*random() - 2 
        y = 4*random() - 2 
        z = 4*random() - 2 
 
        leng = calcleng(x, y, z) 
         
        # the point is constrained, plot it! 
        if leng < 4: 
            quatpoints = quatpoints + 1 
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            vv = vv + [(x,y,z)] 
 
    dolist() 
 
def calcleng(x, y, z): 
    n = 0 
    w = wk 
    if mand == 1: 
        kr = x 
        ki = y 
        kj = z 
        kk = 0 
    else: 
        kr = cr 
        ki = ci 
        kj = cj 
        kk = ck 
     
    while n < iter: 
        n = n + 1  
 
        # quaternion multiplication 
        temp = x+x 
        x = x*x - y*y - z*z - w*w + kr 
        y = temp*y + ki 
        z = temp*z + kj 
        w = temp*w + kk      
         
        # a form of the distance formula 
        dist = x*x + y*y + z*z + w*w 
         
        # if the point escapes to infinity, don't store it! 
        if dist > 4: 
            break    
     
    return dist             
     
def dolist(): 
    global ptcloud 
     
    # start storing the display list in ptcloud 
    ptcloud = glGenLists(1) 
     
    # compile the ptcloud points 
    glNewList(ptcloud, GL_COMPILE) 
    glPointSize(2.0) 
    glBegin(GL_POINTS) 
    for n in range(quatpoints): 
        glColor3f(sin(n),cos(n),4*sin(n)*cos(n)) 
        glVertex3fv(vv[n]) 
    glEnd()         
    glEndList() 
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def display(): 
 global vv 
 global count 
 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
 glMatrixMode(GL_MODELVIEW) 
 glPushMatrix() 
 glLoadIdentity() 
 glMultMatrixf(aff) 
  
 glCallList(ptcloud) 
   
 glPopMatrix() 
 glFlush() 
 glutSwapBuffers() 
 
def keyboard(key, x, y): 
    global mand 
     
    # toggle between the Julia and Mandelbrot sets 
    if key == 'm': 
        mand = 1 
        calcit() 
    if key == 'j': 
        mand = 0 
        calcit() 
    if key == chr(27) or key == 'q': 
        sys.exit(0) 
    glutPostRedisplay() 
 
#if we change the screen dimensions 
def reshape(width, height): 
 global wd 
 global ht 
 glClearColor(0.0, 0.0, 0.0, 0.0) 
 if height == 0: 
  height = 1 
 wd = width 
 ht = height 
 glViewport(0,0,wd,ht) 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 if wd<=ht: 
  glOrtho(-2.0,2.0,-2.0*ht/wd,2.0*ht/wd,-2.0,2.0) 
 else: 
  glOrtho(-2.0*wd/ht,2.0*wd/ht,-2.0,2.0,-2.0,2.0) 
   
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
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#does nothing at this point 
#def motion(): 
# return 0 
 
def chaptrack(): 
 global MouseX 
 global MouseY 
 global wd 
 global ht 
 global aff 
 dx = (MouseX-wd/2)/128.0 
 dy = (MouseY-ht/2)/128.0  
 glMatrixMode(GL_TEXTURE) 
 glPushMatrix() 
 glLoadIdentity() 
 glRotatef(dx,0,1.0,0.0)  
 glRotatef(dy,1.0,0.0,0.0) 
 glMultMatrixf(aff)  
 aff = glGetFloatv(GL_TEXTURE_MATRIX) 
 glPopMatrix() 
 
def idle(): 
 chaptrack() 
 glutPostRedisplay() 
 
def mousemotion(x,y): 
 global MouseX 
 global MouseY 
 MouseX = x  
 MouseY = y 
 
def init(): 
    glEnable(GL_DEPTH_TEST) 
    glShadeModel(GL_SMOOTH) 
 
def main() : 
 global wd 
 global ht 
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(wd, ht) 
 glutInit([]) 
 glutCreateWindow("Quaternion Fractals!") 
 glutKeyboardFunc(keyboard) 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(display) 
 #glutMotionFunc(motion) 
 #glutMouseFunc(mouse) 
 glutIdleFunc(idle) 
 glutPassiveMotionFunc(mousemotion) 
  
 init() 
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 # calculate the fractal  
 calcit() 
 
 glutMainLoop() 
  
main() 
 
 
 Here is an image of the Quaternion Julia set fractal from the preceding program: 
 

 
    Quaternion Julia Set 
 
 And here is the Quaternion Mandelbrot Set from the same program: 
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        Quaternion Mandelbrot Set 
 
 You can toggle back and forth between the Mandelbrot and Julia Sets by using 
the ‘m’ and ‘j’ keys respectively.  If you are not the patient type, then you can set the 
maxpoints variable to 100000 instead of 1 million.  The C version of this program 
calculates billions of points in the time it takes the Python version to work through 1 
million point candidates.  This was a fun program to research and create! 
 
 Based on the visual representations, what is the difference between the first 
quaternion fractal program and the one just presented?  For an exploratory exercise, try 
changing the values in this section: 
 
# initial values for complex parameters 
# change these for a different set 
cr = -0.2 
ci = 0.8 
cj = 0.0 
ck = 0.0 
wk = 0.0 
 
 I would recommend reducing the value of the maxpoints variable to about 
100000 while experimenting so that you do not have to wait too long for the object to be 
rendered.  If you see something interesting, you can then increase maxpoints to 
enhance the detail. 
 
 The remainder of the text will present several miscellaneous programs that may 
be of interest. 
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Chapter 11  Miscellaneous Programs 
 
 The miscellaneous programs are going to be presented without explanation.  I 
chose these programs, some original and some from other sources, to illustrate various 
concepts in OpenGL/GLUT that may be of interest to you.  My intent is to have you 
research the topics that you find useful or that pique your imagination.  At this point, you 
should be well on your way to independent learning!  The first program is entitled 
pyRandomWalk.py. 

The Random Walk 
 
# pyRandomWalk.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from numpy import * 
from random import * 
import sys 
 
global width 
global height 
global nRange 
 
#  Initial values 
width = 500 
height = 500 
nRange = 1.0 
     
def init(): 
 glClearColor(0.0, 0.0, 0.0, 0.0) 
 
def plotFunc(): 
    glClear(GL_COLOR_BUFFER_BIT) 
    total = 0 
    c = 0 
 
    # 5 random walk trials  
    while c < 5: 
        glColor(random(), random(), random()) 
        c += 1 
        n = 0 
        x = 0 
        y = 0 
  
   # up to 100000 points per walk  
        while n < 100000: 
            n += 1 
 
   # choose random directions 
            xw = randint(-1,1)/250.0 



 389

            yw = randint(-1,1)/250.0 
            glBegin(GL_POINTS) 
            glVertex2f(x, y) 
            glEnd() 
            glFlush() 
 
   # add the random direction to x and y 
            x += xw 
            y += yw 
 
   # distance formula… if we ever get farther 
   # away than 1 unit, stop and then start again 
   # using a new color 
 
            if sqrt(x**2 + y**2) >= 1: 
                total += n 
                break 
        print "rounds", c, "ave", total/c 
 
def Reshape(  w,  h): 
  
 # To insure we don't have a zero height 
 if h==0: 
  h = 1 
  
 #  Fill the entire graphics window! 
 glViewport(0, 0, w, h) 
  
 #  Set the projection matrix... our "view" 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 #  Set the aspect ratio of the plot so that it 
 #  Always looks "OK" and never distorted. 
 if w <= h: 
  gluOrtho2D(-nRange, nRange, -nRange*h/w, nRange*h/w) 
 else: 
  gluOrtho2D(-nRange*w/h, nRange*w/h, -nRange, nRange) 
  
 #  Set the matrix for the object we are drawing 
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
def keyboard(key, x, y): 
 #  Allows us to quit by pressing 'Esc' or 'q' 
 if key == chr(27): 
  sys.exit() 
 if key == "q": 
  sys.exit() 
 
def main(): 
 global width 
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 global height 
  
 glutInit(sys.argv) 
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE) 
 glutInitWindowPosition(0,0) 
 glutInitWindowSize(width,height) 
 glutCreateWindow("Random Walk") 
 glutReshapeFunc(Reshape) 
 glutDisplayFunc(plotFunc) 
 glutKeyboardFunc(keyboard) 
  
 init()  
 glutMainLoop() 
 
main() 
 
 Here is a display image of a typical random walk: 
 

 
 
 After researching random walk, can you extend this program into 3D space?  
Can you also add the chaptrack rotation function? 
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The 3D Sierpinski Sponge 
 
 You recall the Sierpinski gasket?  Here is a program to create a 3D Sierpinski 
sponge.  A mathematical sponge has no volume. 
 
# pySierpinski3D.py 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from random import * 
import sys 
 
def init(): 
 glClearColor(0.0, 0.0, 0.0, 0.0)  #Black background 
 glColor3f(1.0, 0.0, 0.5) 
 #Uncomment the glColor line below and comment 
 #the glColor above for random colors 
 #Where would you put the line below IF you 
 #Want each dot to have a random color? 
  
 #glColor3f(random(),random(),random()) 
 gluPerspective(45,1.0,1.0,40.0) 
 
def chaos(): 
 glClear(GL_COLOR_BUFFER_BIT) 
   
 # You can start at ANY random point 
 x = random() 
 y = random() 
 z = random() 
  
 for n in range(0,50000): 
  n+=1 
  vertx = randint(1,4) 
  if vertx == 1: 
   x = x/2.0 
   y = (y+2.0)/2.0 
   z = (z+2.0)/2.0 
  if vertx == 2: 
   x = (x-2.0)/2.0 
   y = (y-2.0)/2.0 
   z = (z+2.0)/2.0 
  if vertx == 3: 
   x = (x+2.0)/2.0 
   y = (y-2.0)/2.0 
   z = (z-2.0)/2.0 
  if vertx == 4: 
   x = (x+2.0)/2.0 
   y = (y-2.0)/2.0 
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   z = (z+2.0)/2.0 
   
  if n > 30: 
   glBegin(GL_POINTS) 
   glVertex3f(x,y,z-8) 
   glEnd() 
   glFlush() 
  
def main(): 
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(800, 800) 
 glutInit(sys.argv) 
 glutCreateWindow("Sierpinski") 
 glutDisplayFunc(chaos) 
 init() 
 glutMainLoop() 
  
main()  
 
 Here is the Sierpinski sponge: 
 

 
 
 As presented, the 3D Sierpinski program is missing a keyboard exit routine.  The 
Sierpinski sponge does not rotate.  Can you fix the program and add some features to 
make it interactive?  How about using chaptrack and a display list? 
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Rendering Teapots  
 
 The following program is not an original program, but I don’t remember and can’t 
easily find the author and/or the source.  It is presented here as an illustration of the 
various colors and metallic textures available for GLUT and the use of successive 
glTranslate commands to position the teapots.  One important note:  the 
renderTeapot statements are LONG and each should be typed on ONE line if 
possible.  If you can’t type them on one line, Python allows you to press return and 
continue on the next line.  The right parenthesis “)” acts as the endline character.  There 
is also a timing function using the time library.  Timing programs can be useful when 
you are trying to determine the performance or how fast a program executes. 
 
#  pyTeapots.py 
#  This program demonstrates lots of material properties. 
#  A single light source illuminates the objects. 
 
import sys 
import time 
 
from OpenGL.GLUT import * 
from OpenGL.GL import * 
from OpenGL.GLU import * 
 
# Initialize depth buffer, projection matrix,  
# light source, and lighting 
# model.  Do not specify a material property here. 
 
def init(): 
   ambient = [0.0, 0.0, 0.0, 1.0] 
   diffuse = [1.0, 1.0, 1.0, 1.0] 
   specular = [1.0, 1.0, 1.0, 1.0] 
   position = [0.0, 3.0, 3.0, 0.0] 
 
   lmodel_ambient = [0.2, 0.2, 0.2, 1.0] 
   local_view = [0.0] 
 
   glLightfv(GL_LIGHT0, GL_AMBIENT, ambient) 
   glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse) 
   glLightfv(GL_LIGHT0, GL_POSITION, position) 
   glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient) 
   glLightModelfv(GL_LIGHT_MODEL_LOCAL_VIEWER, local_view) 
 
   glFrontFace(GL_CW) 
   glEnable(GL_LIGHTING) 
   glEnable(GL_LIGHT0) 
   glEnable(GL_AUTO_NORMAL) 
   glEnable(GL_NORMALIZE) 
   glEnable(GL_DEPTH_TEST)  
 
   #  be efficient--make teapot display list  
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   global teapotList 
   teapotList = glGenLists(1) 
   glNewList (teapotList, GL_COMPILE) 
   glutSolidTeapot(1.0) 
   glEndList () 
 
# Move object into position.  Use 3rd through 12th  
# parameters to specify the material property.  Draw a teapot. 
 
def renderTeapot(x, y, ambr, ambg, ambb, difr, difg,  
       difb, specr, specg, specb, shine): 
   mat = [0, 0, 0, 0] 
 
   glPushMatrix() 
   glTranslatef(x, y, 0.0) 
   mat[0] = ambr; mat[1] = ambg; mat[2] = ambb; mat[3] = 1.0 
   glMaterialfv(GL_FRONT, GL_AMBIENT, mat) 
   mat[0] = difr; mat[1] = difg; mat[2] = difb 
   glMaterialfv(GL_FRONT, GL_DIFFUSE, mat) 
   mat[0] = specr; mat[1] = specg; mat[2] = specb 
   glMaterialfv(GL_FRONT, GL_SPECULAR, mat) 
   glMaterialf(GL_FRONT, GL_SHININESS, shine * 128.0) 
   glCallList(teapotList) 
   glPopMatrix() 
 
 
#  First column:  emerald, jade, obsidian, pearl, ruby, turquoise 
#  2nd column:  brass, bronze, chrome, copper, gold, silver 
#  3rd column:  black, cyan, green, red, white, yellow plastic 
#  4th column:  black, cyan, green, red, white, yellow rubber 
#  NOTE:  Each of the renderTeapot statements are LONG 
#  and should be on the same line!   
 
def display(): 
   start = time.clock() 
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
   renderTeapot(2.0, 17.0, 0.0215, 0.1745, 0.0215, 
   0.07568, 0.61424, 0.07568, 0.633, 0.727811, 0.633, 0.6) 
   renderTeapot(2.0, 14.0, 0.135, 0.2225, 0.1575, 
   0.54, 0.89, 0.63, 0.316228, 0.316228, 0.316228, 0.1) 
   renderTeapot(2.0, 11.0, 0.05375, 0.05, 0.06625, 
   0.18275, 0.17, 0.22525, 0.332741, 0.328634, 0.346435, 0.3) 
   renderTeapot(2.0, 8.0, 0.25, 0.20725, 0.20725, 
   1, 0.829, 0.829, 0.296648, 0.296648, 0.296648, 0.088) 
   renderTeapot(2.0, 5.0, 0.1745, 0.01175, 0.01175, 
   0.61424, 0.04136, 0.04136, 0.727811, 0.626959, 0.626959, 0.6) 
   renderTeapot(2.0, 2.0, 0.1, 0.18725, 0.1745, 
   0.396, 0.74151, 0.69102, 0.297254, 0.30829, 0.306678, 0.1) 
   renderTeapot(6.0, 17.0, 0.329412, 0.223529, 0.027451, 
   0.780392, 0.568627, 0.113725, 0.992157, 0.941176, 0.807843, 
   0.21794872); 
   renderTeapot(6.0, 14.0, 0.2125, 0.1275, 0.054, 
   0.714, 0.4284, 0.18144, 0.393548, 0.271906, 0.166721, 0.2) 
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   renderTeapot(6.0, 11.0, 0.25, 0.25, 0.25, 
   0.4, 0.4, 0.4, 0.774597, 0.774597, 0.774597, 0.6) 
   renderTeapot(6.0, 8.0, 0.19125, 0.0735, 0.0225, 
   0.7038, 0.27048, 0.0828, 0.256777, 0.137622, 0.086014, 0.1) 
   renderTeapot(6.0, 5.0, 0.24725, 0.1995, 0.0745, 
   0.75164, 0.60648, 0.22648, 0.628281, 0.555802, 0.366065, 0.4) 
   renderTeapot(6.0, 2.0, 0.19225, 0.19225, 0.19225, 
   0.50754, 0.50754, 0.50754, 0.508273, 0.508273, 0.508273, 0.4) 
   renderTeapot(10.0, 17.0, 0.0, 0.0, 0.0, 0.01, 0.01, 0.01, 
   0.50, 0.50, 0.50, .25) 
   renderTeapot(10.0, 14.0, 0.0, 0.1, 0.06, 0.0, 0.50980392,     
   0.50980392,0.50196078, 0.50196078, 0.50196078, .25) 
   renderTeapot(10.0, 11.0, 0.0, 0.0, 0.0, 
   0.1, 0.35, 0.1, 0.45, 0.55, 0.45, .25); 
   renderTeapot(10.0, 8.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 
   0.7, 0.6, 0.6, .25) 
   renderTeapot(10.0, 5.0, 0.0, 0.0, 0.0, 0.55, 0.55, 0.55, 
   0.70, 0.70, 0.70, .25) 
   renderTeapot(10.0, 2.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 
   0.60, 0.60, 0.50, .25) 
   renderTeapot(14.0, 17.0, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, 
   0.4, 0.4, 0.4, .078125) 
   renderTeapot(14.0, 14.0, 0.0, 0.05, 0.05, 0.4, 0.5, 0.5, 
   0.04, 0.7, 0.7, .078125) 
   renderTeapot(14.0, 11.0, 0.0, 0.05, 0.0, 0.4, 0.5, 0.4, 
   0.04, 0.7, 0.04, .078125) 
   renderTeapot(14.0, 8.0, 0.05, 0.0, 0.0, 0.5, 0.4, 0.4, 
   0.7, 0.04, 0.04, .078125) 
   renderTeapot(14.0, 5.0, 0.05, 0.05, 0.05, 0.5, 0.5, 0.5, 
   0.7, 0.7, 0.7, .078125) 
   renderTeapot(14.0, 2.0, 0.05, 0.05, 0.0, 0.5, 0.5, 0.4, 
   0.7, 0.7, 0.04, .078125) 
   glFlush() 
   end = time.clock() 
   print start, end, end-start 
 
def reshape(w, h): 
   glViewport(0, 0, w, h) 
   glMatrixMode(GL_PROJECTION) 
   glLoadIdentity() 
   if (w <= h): 
   glOrtho(0.0, 16.0, 0.0, 16.0*h/w, -10.0, 10.0) 
   else: 
   glOrtho(0.0, 16.0*w/h, 0.0, 16.0, -10.0, 10.0) 
   glMatrixMode(GL_MODELVIEW) 
 
def keyboard(key, x, y): 
   if key == chr(27): 
   sys.exit(0) 
 
# Main Loop  
glutInit(sys.argv); 
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH); 
glutInitWindowSize(500, 600); 
glutInitWindowPosition(50,50); 
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glutCreateWindow(sys.argv[0]); 
init(); 
glutReshapeFunc(reshape) 
glutDisplayFunc(display) 
glutKeyboardFunc(keyboard) 
glutMainLoop() 
 
 Notice that there is no def main(): function.  This is not generally a problem 
as long as the proper GLUT initialization commands are present.  Here is an image of 
the output, although the text can’t do justice to the metallic colors. 
 

 
       Teapots! 
 
 Can you make the teapots rotate as an entire group?  Can you make them 
rotated individually (hint:  glPushMatrix()).  Can you make each one rotate 
independently from the others?  You can look up “mouse picking”24 in GLUT or OpenGL. 

                                            
24 No, it isn’t the same as pointing and saying “That’s the mouse I want”. 
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A Midpoint Conjecture 
 
 This is an original program written to help answer the following question:  If you 
begin with a set of random line segments connected end to end in space and joined in a 
loop, what happens if you form a new object by connecting the midpoints of the previous 
segments?  In other words, over time, what shape will you eventually end up drawing?  
My midpoint conjecture is that no matter how crazy the original object, you will always 
end up with a circle.  My friend George Francis disagrees and conjectures that you will 
end up with a single point.  He is probably correct; after all, he is a math professor!  
Anyway, the program was great fun to write and I hope you enjoy it.  By the way, you 
can use much of some of the previous programs (illiTorus, etc.) to write this one! 
 
# Midpt.py... Stan Blank 
# An exploration into geometry 
# January 2005 
 
# import important GL stuff 
from OpenGL.GL import * 
from OpenGL.GLUT import * 
from OpenGL.GLU import * 
 
# Might need some math stuff 
from math import * 
from random import * 
import sys 
 
#define some globals 
global vv 
global aff 
global wd 
global ht 
global MouseX 
global MouseY 
global flag 
global count 
global n 
 
# for zooming in and out 
global zoom 
zoom = 0.0 
 
# Vertices 
n = 500 
 
# define the vertex point array 
vv = [] 
 
#define the affine identity matrix 
aff = (1.0,0.0,0.0,0.0, 
  0.0,1.0,0.0,0.0, 
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  0.0,0.0,1.0,0.0, 
  0.0,0.0,0.0,1.0) 
   
#initial window and mouse settings 
wd = 1000 
ht = 1000 
MouseX = wd/2 
MouseY = ht/2 
 
def calcit(): 
 # DO need these... first global assignment 
 global vv 
 global count 
 global flag 
 global n 
  
 flag = -1 
 count = 0 
 
 # Assign n random vertices within 
 # a -2 to 2 box on in all 3 axes 
 while count <n:  
  x = 4*random()-2 
  y = 4*random()-2 
  z = 4*random()-2 
   
  # Store the x,y,z coordinates in the array 
  vv = vv + [[x,y,z]] 
   
  # Keep track of how many vertices there are 
  count = count + 1 
  
#The usual display routine 
def display(): 
 #don't need these IF already assigned 
 #values as globals... weird 
 #global vv 
 #global count 
  
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
 glMatrixMode(GL_MODELVIEW) 
 glPushMatrix() 
 glLoadIdentity() 
  
 glTranslatef(0.0,0.0,zoom) 
 # Prep for the rotations 
 glMultMatrixf(aff) 
 
 # try glTranslatef here and see what happens 
 #glTranslatef(0.0,0.0, zoom)  
 glLineWidth(2.0) 
 # Draw the 3D polygon from the stored values 
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 glBegin(GL_LINE_STRIP) 
 for n in range(0,count): 
  #glColor3f(random(),random(),random()) 
  glVertex3fv(vv[n]) 
 glVertex3fv(vv[0])  
 glEnd() 
  
 glPopMatrix() 
 glFlush() 
 glutSwapBuffers() 
  
def midpt(): 
 #global count 
 #global vv 
  
 #  Calculate the midpoint of each segment 
 #  An store this new vertex back in the  
 #  Original array... this was not easy 
 #  To figure out! 
 x0 = vv[0][0] 
 y0 = vv[0][1] 
 z0 = vv[0][2] 
 for n in range(0,count-1): 
  # the next two lines belong on ONE line 
  vv[n] = [((vv[n][0] + vv[n+1][0])/2),((vv[n][1] + 
vv[n+1][1])/2),((vv[n][2] + vv[n+1][2])/2)] 
    
 # the next two lines belong on ONE line 
 vv[count-1] = [((vv[count-1][0]+x0)/2),((vv[count-
1][1]+y0)/2),((vv[count-1][2]+z0)/2)] 
 
 glutPostRedisplay() 
 
#keyboard stuff 
def keyboard(key, x, y): 
 global flag 
 if key == chr(27) or key == 'q': 
  sys.exit(0) 
  
 #  This starts and stops the animation 
 if key == "a": 
  flag = -1*flag 
  midpt() 
 glutPostRedisplay() 
 
# if we change the screen dimensions 
# Everything still looks normal 
def reshape(width, height): 
 global wd 
 global ht 
 global zoom 
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 glClearColor(0.0, 0.0, 0.0, 0.0) 
 if height == 0: 
  height = 1 
 wd = width 
 ht = height 
 glViewport(0,0,wd,ht) 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 #  Since we are rotating and moving about 
 #  A perspective view is much nicer! 
 gluPerspective(45.,1.,.1,400.) 
  
 #  Look this up to see what it means! 
 gluLookAt(0,0,5.0, 
     0,0,0, 
     0,1,0) 
    
 #if wd<=ht: 
 # glOrtho(-2.0,2.0,-2.0*ht/wd,2.0*ht/wd,-2.0,2.0) 
 #else: 
 # glOrtho(-2.0*wd/ht,2.0*wd/ht,-2.0,2.0,-2.0,2.0) 
   
 glMatrixMode(GL_MODELVIEW) 
 glLoadIdentity() 
  
#does nothing at this point 
def motion(x,y): 
 #print x,y 
 return 0 
 
def chaptrack(): 
 global MouseX 
 global MouseY 
 global wd 
 global ht 
 global aff 
 dx = (MouseX-(wd/2))/164 
 dy = (MouseY-(ht/2))/164  
 glMatrixMode(GL_TEXTURE) 
 glPushMatrix() 
 glLoadIdentity() 
 glRotatef(dx,0,1.0,0.0)  
 glRotatef(dy,1.0,0.0,0.0) 
 glMultMatrixf(aff)  
  
 #this line is different from the C 
 #version.  Python handles it a bit 
 #differently... was a pain to figure out! 
 aff = glGetFloatv(GL_TEXTURE_MATRIX) 
 glPopMatrix() 
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def idle(): 
 chaptrack() 
 glutPostRedisplay() 
  
 #  Whether or not to keep on calculating 
 if flag == 1: 
  midpt() 
  
def mousemotion(x,y): 
 global MouseX 
 global MouseY 
 MouseX = x  
 MouseY = y 
  
def arrowkeys(key, x, y): 
 global zoom 
  
 #  Zoom in and out 
 if key == GLUT_KEY_UP: 
  zoom = zoom + .1 
 if key == GLUT_KEY_DOWN: 
  zoom = zoom - .1 
   
 #  Reset back to the original distance  
 if key == GLUT_KEY_HOME: 
  zoom = 5.0 
     
 glutPostRedisplay() 
 
#Traditional main subroutine  
def main() : 
 global wd 
 global ht 
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(wd, ht) 
 glutInit(sys.argv) 
 glutCreateWindow("Mid-Point Exploration") 
 glutKeyboardFunc(keyboard) 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(display) 
 glutMotionFunc(motion) 
 glutSpecialFunc(arrowkeys) 
 ##glutMouseFunc(mouse) 
 glutIdleFunc(idle) 
 glutPassiveMotionFunc(mousemotion) 
 glEnable(GL_DEPTH_TEST) 
 glShadeModel(GL_SMOOTH) 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
 #glOrtho(-2.0,2.0,-2.0,2.0,-2.0,2.0) 
 glMatrixMode(GL_MODELVIEW) 



 402

 glLoadIdentity() 
  
 #Could add additional function calls   
 calcit() 
 ##lists() 
 
 glutMainLoop() 
main() 
 
 Press the “a” key to animate.  You can rotate the figure while it runs.  Be patient 
and let the program do its work.  So, what do you think?  A circle or a point?  Of course, 
nothing short of a mathematical proof will reveal the truth, but it is fun to do experimental 
mathematics on the computer!  Again, a program in C would run much faster (and I do 
have a C version!).  Here is a picture of the initial set of segments: 
 
 

 
   Initial Set of Connected Line Segments 
 
 
And on the next page is an image of the segments after a couple of minutes: 
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 What will it look like in an hour?  A day?  The C version allows the user to zoom 
in toward the closed curve.  The next figure is a much zoomed image from the C version 
after a few minutes.  Remember that C is MUCH faster than Python!  The C program 
used 100000 random line segments while the Python program only used 500.  Do you 
see why I conjecture that you will eventually get a circle? 
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 Computers and modern graphics cards allow exploration of mathematical 
concepts that were unimaginable even a few years ago.  A graphic image on a compuer 
display is NOT a mathematical proof, but mathematical visualization may help us 
understand mathematics and geometry in ways never foreseen just a few decades ago.  
Of course, we must be certain that the image is CORRECT! 
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Fog 
 
 In addition to depth testing, perspective, and rotations, another method for 
providing the illusion of 3D space is to use fog.  Here is a fantastic program to illustrate 
fog effects.  This program is not original, but I can’t remember where I got it! 
 
# Fog! 
 
import sys, time 
from math import * 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
 
viewRotX = 0 
viewRotY = 0 
viewDistance = 25 
 
def draw(): 
 glClearColor(0.5, 0.8, 1.0, 0.0) 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
 glEnable(GL_DEPTH_TEST) 
  
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
 gluPerspective(50.0, 1.75, 1.0, 100.0) 
 glMatrixMode(GL_MODELVIEW) 
 
 glLoadIdentity() 
  
 glTranslatef(0.0, 0.0, -viewDistance) 
 glRotatef(viewRotX, 1.0, 0.0, 0.0) 
 glRotatef(viewRotY, 0.0, 1.0, 0.0) 
  
 glEnable(GL_FOG) 
 glFogi(GL_FOG_MODE, GL_LINEAR) 
 glFogfv(GL_FOG_COLOR, [0.5, 0.8, 1, 0]) 
 glFogf(GL_FOG_START, 5.0) 
 glFogf(GL_FOG_END, 40.0) 
 
 defineLight() 
 glEnable(GL_LIGHTING) 
 global floorMeshDList 
 glCallList(floorMeshDList) 
 drawTeapot() 
 drawPedestal() 
 drawBall() 
 glDisable(GL_LIGHTING) 
 
 glutSwapBuffers() 
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def defineLight(): 
 glEnable(GL_LIGHT0) 
 glLightfv(GL_LIGHT0, GL_DIFFUSE, [1, 1, 1, 1]) 
 glLightfv(GL_LIGHT0, GL_POSITION, [-1, 2, 1]) 
 
 
def drawFloorMesh(columns,rows): 
 green = [ 0, 0.8, 0.1, 1 ] 
 black = [ 0, 0, 0, 1 ] 
 glMaterialfv(GL_FRONT, GL_AMBIENT, green) 
 glMaterialfv(GL_FRONT, GL_DIFFUSE, green) 
 glMaterialfv(GL_FRONT, GL_SPECULAR, black) 
 glNormal3f(0.0, 1.0, 0.0) 
 for j in range(0,rows): 
  glBegin(GL_TRIANGLE_STRIP) 
  for i in range(0,columns): 
   x = ((float(i)) / columns) * 40.0 - 20.0 
   z = ((float(j)) / rows) * 40.0 - 20.0 
   glVertex3f(x, -2.0, z) 
   z = ((float(j)+1) / rows) * 40.0 - 20.0 
   glVertex3f(x, -2.0, z) 
  glEnd() 
 
 
def drawTeapot(): 
 red = [ 0.8, 0, 0, 1 ] 
 white = [ 1, 1, 1, 1 ] 
 glMaterialfv(GL_FRONT, GL_AMBIENT, red) 
 glMaterialfv(GL_FRONT, GL_DIFFUSE, red) 
 glMaterialfv(GL_FRONT, GL_SPECULAR, white) 
 glMaterialf(GL_FRONT, GL_SHININESS, 90.0) 
 glPushMatrix() 
 glTranslatef(2.0, 4.0, -1.0) 
 glRotatef(currentTime() * 30.0, 0.0, 1.0, 0.0) 
 global teapotDList 
 glCallList(teapotDList) 
 glPopMatrix() 
 
 
quadric = None 
def drawPedestal(): 
 global quadric 
 grey = [ 0.6, 0.6, 0.6, 1 ] 
 white = [ 1, 1, 1, 1 ] 
 if not quadric: 
  quadric = gluNewQuadric() 
 glMaterialfv(GL_FRONT, GL_AMBIENT, grey) 
 glMaterialfv(GL_FRONT, GL_DIFFUSE, grey) 
 glMaterialfv(GL_FRONT, GL_SPECULAR, white) 
 glMaterialf(GL_FRONT, GL_SHININESS, 30.0) 
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 glPushMatrix() 
 glTranslatef(2.0, -2.0, -1.0) 
 glRotatef(-90.0, 1.0, 0.0, 0.0) 
 gluCylinder(quadric, 4.0, 4.0, 4.0, 16, 1) 
 glTranslatef(0.0, 0.0, 4.0) 
 gluDisk(quadric, 0.0, 4.0, 16, 1) 
 glPopMatrix() 
 
 
def drawBall(): 
 cyan = [ 0, 1, 1, 1 ] 
 black = [ 0, 0, 0, 1 ] 
 glMaterialfv(GL_FRONT, GL_AMBIENT, cyan) 
 glMaterialfv(GL_FRONT, GL_DIFFUSE, cyan) 
 glMaterialfv(GL_FRONT, GL_SPECULAR, black) 
 glPushMatrix() 
 glTranslatef(-10.0, fabs(sin(currentTime())) * 3.0, -15.0) 
 glutSolidSphere(2.0, 16, 8) 
 glPopMatrix() 
 
 
def drawBitmapString(text, font=GLUT_BITMAP_TIMES_ROMAN_24): 
 for c in text: 
  glutBitmapCharacter(font, ord(c)) 
 
 
startTime = time.time() 
def currentTime(): 
 return time.time() - startTime 
 
 
def keyboard(key, x, y): 
 global viewDistance 
 if key == chr(27): 
  sys.exit(0) 
 elif key == '.': 
  viewDistance -= 1 
 elif key == ',': 
  viewDistance += 1 
 
 
def specialkey(k, x, y): 
 global viewRotX, viewRotY 
 if k == GLUT_KEY_LEFT: 
  viewRotY += 3 
 elif k == GLUT_KEY_RIGHT: 
  viewRotY -= 3 
 elif k == GLUT_KEY_UP: 
  viewRotX += 3 
 elif k == GLUT_KEY_DOWN: 
  viewRotX -= 3 
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glutInit([]) 
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH) 
glutInitWindowSize(700,400) 
glutCreateWindow(sys.argv[0]) 
glutDisplayFunc(draw) 
glutKeyboardFunc(keyboard) 
glutSpecialFunc(specialkey) 
glutIdleFunc(glutPostRedisplay) 
glEnable(GL_DEPTH_TEST) 
glEnable(GL_LIGHTING) 
glEnable(GL_LIGHT0) 
 
floorMeshDList = glGenLists(1) 
glNewList(floorMeshDList, GL_COMPILE) 
drawFloorMesh(32,32) 
glEndList() 
 
teapotDList = glGenLists(1) 
glNewList(teapotDList, GL_COMPILE) 
glutSolidTeapot(2) 
glEndList() 
 
glutMainLoop() 
 
 Here is an image from the Fog program on the following page.  You can just 
make out a ball moving in the background, nearly obscured by the fog.  Fog is a very 
useful special effect for depicting distance. 
 

 



 409

PyLorenz 
 
 The C version of this program inspired my students and me to write a program 
for the CUBE virtual reality room.  You should be somewhat patient as the spheres “do 
their thing”, but the end result is interesting.  Some of the program statements are 
lengthy and span more than one line in the listing below.  When you write the program, 
make certain that these statements are on a single line or errors will occur.  I have made 
comments in the program to help guide you. 
 
#PyLorenz.py 
#This program illustrates the Lorenz attractor 
#in a much different manner 
#Feb 24, 2005 
 
#import important GL stuff 
from OpenGL.GL import * 
from OpenGL.GLUT import * 
from OpenGL.GLU import * 
from numpy import * 
import sys 
 
#run faster! 
import psyco 
psyco.full() 
 
#define some globals 
global aff 
global wd 
global ht 
global MouseX 
global MouseY 
 
#Lorenz globals 
global dt 
global a 
global b 
global c 
global numspheres 
global trails 
global colors 
 
#For lighting 
global whiteLight 
global sourceLight 
global lightPos 
 
dt = .005 
numspheres = 3000 
trails = [] 
colors = [] 
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whiteLight = (0.5, 0.5, 0.5, 1.0) 
sourceLight = (0.3, 0.3, 0.3, 1.0) 
lightPos = ( 20.0, 20.0, 20.0, 1.0 ) 
 
#define the affine identity matrix 
#for mouse motion 
aff = (1.0,0.0,0.0,0.0, 
  0.0,1.0,0.0,0.0, 
  0.0,0.0,1.0,0.0, 
  0.0,0.0,0.0,1.0) 
   
#initial window and mouse settings 
wd = 800 
ht = 800 
MouseX = wd/2 
MouseY = ht/2 
 
#The usual display routine 
def display(): 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 
  
 glMatrixMode(GL_MODELVIEW) 
  
 glPushMatrix() 
 glLoadIdentity() 
  
 glTranslatef(0,0,0) 
 glMultMatrixf(aff) 
  
 #draw the Lorenz attractor 
 for n in range(0,numspheres/3): 
  glColor3ub(colors[n][0],colors[n][1],colors[n][2]) 
   
  # each of the a, b, and c statements should 
  # be on one line… they are a bit lengthy 
  a = (10*trails[n][1] - 10*trails[n][0])*dt + 
trails[n][0] 
  b = (28*trails[n][0] - trails[n][1] - 
trails[n][0]*trails[n][2])*dt + trails[n][1] 
  c = (-2.66667*trails[n][2] + 
trails[n][0]*trails[n][1])*dt + trails[n][2] 
   
  trails[n] = [a,b,c] 
 
  glPushMatrix() 
  glTranslatef(a,b,c-30) 
  glutSolidSphere(1.0,10,10) 
  glPopMatrix() 
  
 glPopMatrix() 
 glutSwapBuffers() 
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#keyboard stuff 
def keyboard(key, x, y): 
 if key == chr(27) or key == 'q': 
  sys.exit(0) 
 glutPostRedisplay() 
 
#if we change the screen dimensions 
def reshape(width, height): 
 global wd 
 global ht 
 glClearColor(0.0, 0.0, 0.0, 0.0) 
 if height == 0: 
  height = 1 
 wd = width 
 ht = height 
 glViewport(0,0,wd,ht) 
 glMatrixMode(GL_PROJECTION) 
 glLoadIdentity() 
  
 gluPerspective(45.,1.,1.,180.) 
  
 gluLookAt(80,0,0, 
    0,0,0, 
    0,1,0) 
  
 glMatrixMode(GL_MODELVIEW)  
 glLoadIdentity() 
 glLightfv(GL_LIGHT0, GL_POSITION, lightPos) 
  
def chaptrack(): 
 global MouseX 
 global MouseY 
 global wd 
 global ht 
 global aff 
  
 dx = (MouseX-wd/2)/96 
 dy = (MouseY-ht/2)/96  
 glMatrixMode(GL_MODELVIEW) 
 glPushMatrix() 
 glLoadIdentity() 
  
 glRotatef(dx,0,1.0,0.0)  
 glRotatef(dy,1.0,0.0,0.0) 
 glMultMatrixf(aff)  
  
 #this line is different from the C 
 #version.  Python handles it a bit 
 #differently... was a pain to figure out! 
 aff = glGetFloatv(GL_MODELVIEW_MATRIX) 
 glPopMatrix() 
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def idle(): 
 chaptrack() 
 glutPostRedisplay() 
 
def mousemotion(x,y): 
 global MouseX 
 global MouseY 
 MouseX = x  
 MouseY = y 
 
def setup(): 
 #setup the spheres 
 global trails 
 global colors 
  
 # z position of first sphere 
 zpos = 23.990 
  
 #Places the spheres NEARLY on top of each other 
 for n in range(0,numspheres,3): 
  zpos+=.0001 
  trails = trails + [[8.0,8.0,zpos]] 
  
 #Give the spheres a range of colors 
 for n in range(0,numspheres,3): 
  if n <= numspheres/10.: 
   red = 255 
   green = 0 
   blue = 0 
  elif n > numspheres/10. and n <= numspheres/5.: 
   red = 255 
   green = 128 
   blue = 0 
  elif n > numspheres/5. and n <= numspheres/3.3333: 
   red = 255 
   green = 255 
   blue = 0 
  elif n > numspheres/3.3333 and n <= numspheres/2.5: 
   red = 128 
   green = 255 
   blue = 0 
  elif n > numspheres/2.5 and n <= numspheres/2.: 
   red = 0 
   green = 255 
   blue =0 
  elif n > numspheres/2. and n <= numspheres/1.66667: 
   red = 0 
   green = 255 
   blue = 128 
  # the next line is one line 
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  elif n > numspheres/1.66667 and n <= 
numspheres/1.428571: 
   red = 0 
   green = 128 
   blue = 255 
  elif n > numspheres/1.428571 and n <= numspheres/1.25: 
   red = 0 
   green = 0 
   blue = 255 
  elif n > numspheres/1.25 and n <= numspheres/1.11111: 
   red = 128 
   green = 0 
   blue = 255 
  else: 
   red = 255 
   green = 0 
   blue = 255 
    
  colors = colors + [[red,green,blue]] 
  
 glShadeModel(GL_SMOOTH) 
 glEnable(GL_DEPTH_TEST) 
 glEnable(GL_LIGHTING) 
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, whiteLight) 
 glLightfv(GL_LIGHT0, GL_DIFFUSE, sourceLight) 
 glEnable(GL_LIGHT0) 
 glEnable(GL_COLOR_MATERIAL) 
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE) 
  
def main() : 
 global wd 
 global ht 
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE) 
 glutInitWindowPosition(50, 50) 
 glutInitWindowSize(wd, ht) 
 glutInit() 
 glutCreateWindow("Lorenz Attractor") 
 glutKeyboardFunc(keyboard) 
 glutReshapeFunc(reshape) 
 glutDisplayFunc(display) 
 glutMotionFunc(motion) 
 glutIdleFunc(idle) 
 glutPassiveMotionFunc(mousemotion) 
  
 setup() 
 glutMainLoop() 
   
main() 
 
 This was an enjoyable program to write and it was very rewarding to have the 
computer gurus at the Beckman Institute decide that it was worthy of being included in 
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their CUBE Syzygy distribution software.  PyLorenz, in its CUBE/CAVE form is still being 
used by REU Math 198 students as a model to write VR software for the CAVE and 
CUBE.  Here is an image of the program after it has been running for several minutes.  
Of course, the C/C++ version runs MUCH faster. 
 

 
     PyLorenz 
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Nate Robins and Multiview 
 
 Nate Robins is responsible, as far as I know, for porting Mark Kilgard’s GLUT 
toolkit to Microsoft Windows.  Here is an OLD program of his that demonstrates 
windowing and multiple viewports.  It is fascinating to watch.  Can you improve the 
code? 
 
## multiview.py 
## Nate Robins, 1997 
##  shows how to use multiple viewports 
 
from OpenGL.GL import * 
from OpenGL.GLU import * 
from OpenGL.GLUT import * 
from sys import * 
 
# some object oriented stuff 
class struct : pass 
GBL = struct()  # globals 
 
GBL.torus_list = 0  
GBL.spin_x = 0.0  
GBL.spin_y = 0.0  
 
GBL.width, GBL.height = 0, 0  
GBL.old_x, GBL.old_y = 0, 0  
 
def text(s) : 
 # the next statement should be on one line! 
 map(glutBitmapCharacter,(GLUT_BITMAP_HELVETICA_18,)*len(s), 
map(ord, s)) 
 
def lists() : 
 gold_Ka = ( 0.24725, 0.1995, 0.0745, 1.0 )  
 gold_Kd = ( 0.75164, 0.60648, 0.22648, 1.0 )  
 gold_Ks = ( 0.628281, 0.555802, 0.366065, 1.0 )  
 gold_Ke    = 41.2  
 silver_Ka  = ( 0.05, 0.05, 0.05, 1.0 )  
 silver_Kd  = ( 0.4, 0.4, 0.4, 1.0 )  
 silver_Ks  = ( 0.7, 0.7, 0.7, 1.0 )  
 silver_Ke   = 12.0  
  
 GBL.torus_list = glGenLists(1)  
 glNewList(GBL.torus_list, GL_COMPILE)  
 glMaterialfv(GL_FRONT, GL_AMBIENT, gold_Ka)  
 glMaterialfv(GL_FRONT, GL_DIFFUSE, gold_Kd)  
 glMaterialfv(GL_FRONT, GL_SPECULAR, gold_Ks)  
 glMaterialf(GL_FRONT, GL_SHININESS, gold_Ke)  
 glMaterialfv(GL_BACK, GL_AMBIENT,  silver_Ka)  
 glMaterialfv(GL_BACK, GL_DIFFUSE,  silver_Kd)  
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 glMaterialfv(GL_BACK, GL_SPECULAR, silver_Ks)  
 glMaterialf(GL_BACK, GL_SHININESS, silver_Ke)  
 #glutWireTorus(0.3, 0.5, 16, 32)  
 glutWireTeapot(0.5)  
 glEndList()  
 
def init() : 
 light_pos = (1.0, 1.0, 1.0, 0.0)  
 glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE)  
 glLightfv(GL_LIGHT0, GL_POSITION, light_pos)  
 glEnable(GL_LIGHTING)  
 glEnable(GL_LIGHT0)  
 glEnable(GL_DEPTH_TEST)  
 glDisable(GL_CULL_FACE)  
 
def reshape(width, height) : 
 glClearColor(0.0, 0.0, 0.0, 0.0)  
 
def projection(width, height, perspective) : 
 ratio = float(width)/height  
 
 glMatrixMode(GL_PROJECTION)  
 glLoadIdentity()  
 if (perspective) : 
  gluPerspective(60, ratio, 1, 256)  
 else : 
  glOrtho(-ratio, ratio, -ratio, ratio, 1, 256)  
 glMatrixMode(GL_MODELVIEW)  
 glLoadIdentity()  
 gluLookAt(0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)  
 
def bottom_left() : 
 glViewport(0, 0, GBL.width, GBL.height)  
 glScissor(0, 0, GBL.width, GBL.height) 
 
def bottom_right() : 
 glViewport(GBL.width, 0, GBL.width, GBL.height)  
 glScissor(GBL.width, 0, GBL.width, GBL.height) 
 
def top_left() : 
 glViewport(0, GBL.height, GBL.width, GBL.height)  
 glScissor(0, GBL.height, GBL.width, GBL.height) 
 
def top_right() : 
 glViewport(GBL.width, GBL.height, GBL.width, GBL.height)  
 glScissor(GBL.width, GBL.height, GBL.width, GBL.height) 
 
def front() : 
 projection(GBL.width, GBL.height, 0)  
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)  
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0) 
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def back() : 
 projection(GBL.width, GBL.height, 0)  
 glRotatef(180.0, 0.0, 1.0, 0.0)  
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)  
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0) 
 
def right() : 
 projection(GBL.width, GBL.height, 0)  
 glRotatef(90.0, 0.0, 1.0, 0.0)  
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)  
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0) 
 
def left() : 
 projection(GBL.width, GBL.height, 0)  
 glRotatef(-90.0, 0.0, 1.0, 0.0)  
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)  
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0) 
 
def top() : 
 projection(GBL.width, GBL.height, 0)  
 glRotatef(90.0, 1.0, 0.0, 0.0)  
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)  
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0) 
 
def bottom() : 
 projection(GBL.width, GBL.height, 0)  
 glRotatef(-90.0, 1.0, 0.0, 0.0)  
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)  
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0) 
 
def perspective() : 
 projection(GBL.width, GBL.height, 1)  
 glRotatef(30.0, 0.0, 1.0, 0.0)  
 glRotatef(20.0, 1.0, 0.0, 0.0)  
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)  
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0) 
 
def display() : 
 GBL.width = glutGet(GLUT_WINDOW_WIDTH)  
 GBL.height = glutGet(GLUT_WINDOW_HEIGHT)  
 
 glViewport(0, 0, GBL.width, GBL.height)  
 glMatrixMode(GL_PROJECTION)  
 glLoadIdentity()  
 gluOrtho2D(0, GBL.width, 0, GBL.height)  
 glMatrixMode(GL_MODELVIEW)  
 glLoadIdentity()  
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)  
 
 glDisable(GL_LIGHTING)  
 glColor3ub(255, 255, 255)  
 glBegin(GL_LINES)  
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 glVertex2i(GBL.width/2,0)  
 glVertex2i(GBL.width/2,GBL.height)  
 glVertex2i(0,GBL.height/2)  
 glVertex2i(GBL.width,GBL.height/2)  
 glEnd()  
 
 glRasterPos2i(5, 5)  
 text("Front")  
 glRasterPos2i(GBL.width/2+5, 5)  
 text("Right")  
 glRasterPos2i(5, GBL.height/2+5)  
 text("Top")  
 glRasterPos2i(GBL.width/2+5, GBL.height/2+5)  
 text("Perspective")  
 
 glEnable(GL_LIGHTING)  
 
 GBL.width = (GBL.width+1)/2  
 GBL.height = (GBL.height+1)/2  
 
 glEnable(GL_SCISSOR_TEST)  
 
 bottom_left()  
 front()  
 glCallList(GBL.torus_list)  
  
 bottom_right()  
 right()  
 glCallList(GBL.torus_list)  
 
 top_left()  
 top()  
 glCallList(GBL.torus_list)  
 
 top_right()  
 perspective()  
 glCallList(GBL.torus_list)  
 
 glDisable(GL_SCISSOR_TEST)  
 
 glutSwapBuffers()  
 
def keyboard(key, x, y) : 
 if key == chr(27) or key == 'q' : 
  sys.exit(0)  
 glutPostRedisplay()  
 
def mouse(button, state, x, y) : 
 GBL.old_x = x  
 GBL.old_y = y  
 glutPostRedisplay()  
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def motion(x, y) : 
 GBL.spin_x = x - GBL.old_x  
 GBL.spin_y = y - GBL.old_y  
 glutPostRedisplay()  
 
def main() : 
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)  
 glutInitWindowPosition(50, 50)  
 glutInitWindowSize(512, 512)  
 glutInit()  
 glutCreateWindow("Multiple Viewports")  
 glutKeyboardFunc(keyboard)  
 glutReshapeFunc(reshape)  
 glutDisplayFunc(display)  
 glutMotionFunc(motion)  
 glutMouseFunc(mouse)  
   
 init()  
 lists()  
 
 glutMainLoop()  
 
main() 
 
 Even though this is an OLD program in terms of OpenGL/GLUT, it is still a nice 
example of using independent viewports.  If you’ve entered the code correctly, you 
should see the image on the following page.  You can click in any of the small viewports 
and manipulate ALL of the teapots at the same time.  If you perform a websearch for 
Nate Robins, you may be able to find some of his other fine GLUT program examples, 
some of which have been ported to Python.  It would be a great programming project to 
choose one of his more complex GLUT examples and translate the code from C to 
python. 
 
 Early in the text, I mentioned the http://nehe.gamedev.net website.  You should 
take the time to visit this site and examine the OpenGL/GLUT code examples found 
there.  Many of the programs have been translated to Python, but several have not.  This 
is a great source of information and can serve as a springboard for future projects. 
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   Nate Robins Multiview 
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Chapter 12    VPython 

 
 Where do you want to go from here and what do you want to accomplish?  There 
are other computer languages to learn… and don’t think for a moment that you have 
mastered Python!  I certainly haven’t.  Also, we have not touched on object-oriented 
programming, gaming, pygame, pyode and its physics engine, network gaming… the list 
is endless.  If you want to move on to a different language, then go right ahead.  Nobody 
is stopping you.  But if you like Python, I might suggest that you take a look at VPython 
(www.vpython.org) and/or PyGame (www.pygame.org).  I am particularly fond of 
VPython and it is easily installed whether you use Windows or Linux.  Here is a simple 
example (2 lines and 1 comment!) of a VPython program from the VPython website 
tutorial: 

The Sphere 
 
# simple vpython program 
from visual import * 
sphere() 
 
 Save and run the program and this is what you see: 
 

 
 
 How easy was that?  Here is a second program example from the website and/or 
the installed VPython example programs: 

The Bouncing Ball 
 
# pyBall.py 
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# a ball bouncing under gravity 
from visual import * 
  
floor = box (pos=(0,0,0), length=4, height=0.5, width=4, 
color=color.blue) 
ball = sphere (pos=(0,4,0), radius=1, color=color.red) 
ball.velocity = vector(0,-1,0) 
dt = 0.01 
  
while 1: 
rate (100) 
ball.pos = ball.pos + ball.velocity*dt 
if ball.y < ball.radius: 
ball.velocity.y = -ball.velocity.y 

else: 
ball.velocity.y = ball.velocity.y - 9.8*dt 
 

 
 When this program is running, you should see a red ball bouncing on a blue 
platform under gravitational influence.  It should look something like this: 
 

 
 
 I am a huge fan of VPython!  13 lines of code… 13 lines!  Right-click on the 
picture and move the mouse.  VPython also has built-in mouse routines!  Here is another 
VPython example program: 
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Bouncing Ball 2 
 
# bounce2.py 
 
from visual import * 
 
print """ 
Right button drag to rotate "camera" to view scene. 
  On a one-button mouse, right is Command + mouse. 
Middle button to drag up or down to zoom in or out. 
  On a two-button mouse, middle is left + right. 
  On a one-button mouse, middle is Option + mouse. 
""" 
 
side = 4.0 
thk = 0.3 
s2 = 2*side - thk 
s3 = 2*side + thk 
wallR = box (pos=( side, 0, 0), length=thk, height=s2,  width=s3,  
color = color.red) 
wallL = box (pos=(-side, 0, 0), length=thk, height=s2,  width=s3,  
color = color.red) 
wallB = box (pos=(0, -side, 0), length=s3,  height=thk, width=s3,  
color = color.blue) 
wallT = box (pos=(0,  side, 0), length=s3,  height=thk, width=s3,  
color = color.blue) 
wallBK = box(pos=(0, 0, -side), length=s2,  height=s2,  
width=thk, color = (0.7,0.7,0.7)) 
 
ball = sphere (color = color.green, radius = 0.4) 
ball.mass = 1.0 
ball.p = vector (-0.15, -0.23, +0.27) 
 
side = side - thk*0.5 - ball.radius 
 
dt = 0.5 
t=0.0 
while 1: 
  rate(100) 
  t = t + dt 
  ball.pos = ball.pos + (ball.p/ball.mass)*dt 
  if not (side > ball.x > -side): 
    ball.p.x = -ball.p.x 
  if not (side > ball.y > -side): 
    ball.p.y = -ball.p.y 
  if not (side > ball.z > -side): 
    ball.p.z = -ball.p.z 
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 That’s it… that’s all the code needed to produce a nice bouncing ball inside a 
box.  The image is on the next page.   
 

 
 
 All of the VPython programs here are either from the VPython website or from 
the example programs installed with VPython.  Here is a Lorenz program.   

VPython Lorenz 
 
# VPython.py Lorenz 
 
from visual import * 
 
print """ 
Right button drag to rotate "camera" to view scene. 
  On a one-button mouse, right is Command + mouse. 
Middle button to drag up or down to zoom in or out. 
  On a two-button mouse, middle is left + right. 
  On a one-button mouse, middle is Option + mouse. 
""" 
scene.title = "Lorenz differential equation" 
scene.center = vector(25,0,0) 
 
lorenz = curve( color = color.black, radius=0.3 ) 
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# Draw grid 
for x in arange(0,51,10): 
    box(pos=(x,0,0), axis=(0,0,50), height=0.4, width=0.4, 
color=0.6) 
for z in arange(-25,26,10): 
    box(pos=(25,0,z), axis=(50,0,0), height=0.4, width=0., 
color=0.6 ) 
 
dt = 0.01 
y = vector(35, -10, -7) 
 
for t in arange(0,10,dt): 
  # Integrate a funny differential equation 
  dydt = vector( - 8.0/3*y[0]           + y[1]*y[2], 
                              - 10*y[1] +   10*y[2], 
                 -  y[1]*y[0] + 28*y[1] -      y[2] ); 
  y = y + dydt*dt 
 
  # Draw lines colored by speed 
  c = clip( [mag(dydt) * 0.005], 0, 1 )[0] 
 
  lorenz.append( pos=y, color=(c,0, 1-c) ) 
 
  rate( 500 ) 
 
 And here is the Lorenz program after a few seconds: 
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 Try some of the icon buttons at the top of the graphics window and see what 
happens.  Also use the mouse buttons to rotate and zoom the image. 
 
 I can’t leave until I give one more Mandelbrot program from the VPython 
examples: 

VPython Mandlebrot 
 
# VPython Mandlebrot 
 
from __future__ import division 
from visual.graph import * 
 
# Bruce Sherwood, Jan. 1, 2008 
# Use points object to make a pixel-like plot of a fractal 
 
XMIN = -2 
XMAX = 0.5 
YMIN = -1 
YMAX = 1 
g = gdisplay(width=750, height=600, xmin=XMIN, xmax=XMAX, 
ymin=YMIN, ymax=YMAX) 
pixels = gdots(shape='square', size=2) 
# Scale factor: 2 units (YMAX-YMIN) equals 600 screen pixels 
# Plot 2 by 2 gdots points 2*(2units/600pixels) apart: 
r = 2*2/600 
 
# Mandelbrot set (see Wikipedia, for example): 
max_iteration = 100 
for y0 in arange(YMIN, YMAX, r): # range over all pixel positions 
    for x0 in arange(XMIN, XMAX, r): 
        z = z0 = complex(x0,y0) 
        iteration = 0 
        while ( abs(z) < 2 and iteration < max_iteration): 
            z = z*z+z0 
            iteration += 1 
        # Leave points black if the iteration quickly escapes: 
        if (.1 < iteration/max_iteration < 1): 
            c = color.hsv_to_rgb((iteration/max_iteration-.1,1,1)) 
            pixels.plot(pos=(x0,y0), color=c) 
 
 
Amazing!  So much output for so little code!  The image is on the next page: 
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 One really nice aspect of VPython is that it’s under constant development and we 
haven’t even scratched the surface of the capabilities found in its features.  You owe it to 
yourself to explore the sample programs in the installaton and the contributed programs 
online.  This is no toy! 
 
 I’ll wrap things up for now.  It has been an enjoyable experience writing this text.  
I am grateful to all the individuals who have inspired me and especially grateful for my 
students who daily challenge me to do my best.  I have tried to cite in an appropriate 
manner when I have borrowed programs, code, and/or ideas.  I do not wish to claim that 
which is not my own!   
 
 Well it’s been fun and now you are on your own.  Go forth and create. 
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