
BASIC∗Pocket†Graphics‡Programs§

George Francis

Orinial text 6jan97. Revised 6jan01.¶

1 The Sierpinski Gasket

Pocket programs are simple programs that do non-simple things. They also
contain examples of useful programming techniques. Once upon a time,
when everyone had access to a computer that understood basic, and when
everyone knew how to speak such simple languages, this chapter also served
as an introduction to programming. Regrettably, this is no longer true.
To work with the pocket programs on a computer you will need additional
resources.

We will use a basic dialect (originally for a Tandy TRS80 computer) as
pseudo-code because its simple syntax and the mnemonic function names
make it easy to guess the meaning from the context. Besides, the line
numbers make it easy to reference. However, since this document is as
much about what the programs do as how they were written, you should
implement the pocket programs in your currently favorite computer language
on your most accessible computer. In the current edition of the notes are

∗Kemeny and Kurtz invented this lingua franca of computing languages at Dartmouth,
in the mid sixties.

†Originally they were called “hip-pocket programs”, being small enough to carry them
around in your hip-pocket and program them from memory when convenient.

‡They produce moving pictures instead of text.
§And they are short enough to fit on a single computer screen or paper page, which

simplifies life.
¶Correction 15jan01.

1



2 Hippocket Graphics Program

sections that refer to such an implementation in C/OpenGL/GLUT.1 We
label such section by mnemonic basiCglut. Sections dealing specifically
with programming in basic will be labeled basicBASIC. But the pocket
programs do not really need such an elaborate environment. Any language
that can plot points and lines in a rectangle will do as well. The pocket
programs translate very nicely into java.

10 REM SIERPINSKI GASKET

15 X=100 : Y=50

19 CLS : REM CLEAR SCREEN

20 DATA 0, 32, 100, 0, 100, 63

30 READ X(0),Y(0),X(1),Y(1),X(2),Y(2)

40 I = INT(3*RND(1)) : REM INTEGER PART

50 X=(X+X(I))/2 : Y=(Y+Y(I))/2

60 PSET(X,Y) : REM PLOT POINT

70 GOTO 40 : REM PICK I=0,1,2 RANDOMLY

This 8-line program draws a famous fractal, the Sierpinski Gasket. It doesdynamical system
this by means of a dynamical system.2 A dynamical system is a (usually mul-
tidimensional) process which moves points to successive positions according
to a rule. If this rule determines the next position of a point strictly from its
current position, the system is said to be deterministic and autonomous.3

The rule here randomly chooses one of three strategies to compute the next
position. This makes it an iterated function system (IFS).4 The Sierpinski
Gasket is the attractor of this IFS. An attractor of a dynamical system is an
invariant subset of its configuration space. such that every orbit converges
to it. The set of successive positions of a point is called the orbit of its ini-
tial point. A geometrical interpretation of the physical states of a dynamical

1For such simple programs we prefer C over C++ for its brevity. We use OpenGL
because it is the standard way of doing 3-dimensional graphics. We use Mark Kilgard’s
GLUT library because it greatly simplifies programming in OpenGL. Kilgard has written
an excellent single volume reference work on the subject: OpenGL: Programming for the
X Window System, Addison-Wesley, 1996.

2Customarily, the first time a technical term appears it should be italicized so you can
find it again when you’re looking for its definition. Sometimes, however, it is useful to
use a term before defining it. This custom is called “prototyping” in modern computer
languages and is much encouraged.

3Non-autonomous dynamical systems also depend on time. Non-deterministic, or
stochastic dynamical systems contain an element of chance. Since a random-number gen-
erator on a computer is itself a deterministic process, we don’t need to make the distinction
here.

4The notion of an IFS is due to Michael Barnsley, who wrote about it in Fractals
Everywhere, Academic Press, 1988.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 3

system is called its configuration space.5 A subset is invariant if the orbits
of its points stay in the set.

The Sierpinski Gasket looks like the remains of a triangle whose center
quarter6 was recursively removed. That is to say, the center quarter of the
remaining three triangles is also removed, and so ad infinitum.

A geometric description of the algorithm goes like this. The configuration
space is a triangle. To compute an orbit of a point, choose one of the three
vertices randomly, move the point half-way towards that vertex, and choose
again. Note that this is a non-deterministic dynamical system, since the
next time an orbit is computed for the same initial position it will probably
be different.

Here is the way you would write, test, debug, and modify the program in basicBASIC
basic.7 You would start by writing line 50 because that is the essence of the
program. Here, the current position (X,Y), is replaced by a point halfway
to the I-th vertex, which was chosen randomly in line 40. Then we want to
plot the new point (X,Y). The exact command to use depends on the flavor
of basic you’re using. After this, we are ready to repeat.

Prior to moving the point, we must choose which vertex to move towards.
For this we use a pseudo-random number generator which is language/system
dependent. Here, the value of the expression RND(1) is a decimal fraction
(a floating point number between 0 inclusive and 1 exclusive.) Line 40 takes
the integer part (also called the floor) of a decimal between 0 and 3. Thus,
I is 0,1, or 2 with roughly equal probability.

That’s all we need each time through the iteration. so close the body of the
loop here with the GOTO 40 statement. In different languages you would use loop body
another way of writing an eternal loop.8

The loop itself still has some indeterminates. That is, some variables ap-

5This is also called state space, phase space, and even, iteration space by some.
6Connect the midpoints of the sides.
7Recall that basic is an interpreted language, a rarity nowadays. Most of its syntac-

tically correct phrases can be executed by entering them without the initial line number.
That initial line number serves the dual purpose of deferring execution until a whole pro-
gram was written, in any order. The order of execution, then, is determined by the order
of the line numbers.

8Be sure that you also know how to interrupt an eternal loop you’ve written before
executing it. Often CTL-C or CTL-D stops a runaway loop. If that fails, try closing the
window. More drastic measures may be needed.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



4 Hippocket Graphics Program

pearing on the right side of the assigment symbol, =, are themselves not yet
assigned. So, in the preparatory part of the program (sometimes called theloop preamble
preamble of the loop) assign some values.

In this program, the triangle data is a list, line 20, which is assigned to
variables listed on line 30 in the same order.9 In BASIC there is only one
data buffer. The BASIC interpreter fills this buffer, using all the DATA
statements, such as on line 20, anywhere in the program, before executing
the first line. Each READ advances a pointer which points to the next datum
to be read. If, for some reason, you wish to restore the data pointer all the
way to the beginning of the data buffer, while the program is being executed,
then use the RESTORE command. In many BASIC dialects, writing and
drawing is done on the same screen, hence clearing the screen is desirable
for drawing. In others, the graphics needs to be invoked first, and sometimes
elaborate initializations must be made before anything can be drawn on the
screen. This is always local, which means that it not only depends on the
language, but also on the particular hardware the language is running on.

We next look as the way this translates into C. The entire forty-six linebasiCglut
program is at the back of this section. The stars separate the program into
five sections.

In the top section we tell the compiler where to look for words we use
but do not explicitly define in the program. We include the appropriate
header files. Lines beginning with the pound-symbol,#, are messages to thecompiler directives
compiler, called compiler directives. They end at the end of the line, and
are processed by the pre-compiler.Other lines are for the compiler to read
and process. Text we don’t want the compiler to read, such as comments,
is bracketed between /* and */. Another compiler directive,#define , is
used to define macros. A macro is a single, short expression (traditionallymacro
all in caps) standing for a longer expression. The compiler substitutes the
longer expression wherever it finds the macro in the code. So, wherever
RND appears later in the code, the pre-compiler substitutes the expression
((float)rand()/RAND_MAX). That is why there are so many parentheses
around it. Careless construction of macros leads to errors which are difficult
to debug.10

9This is an example of a FIFO-buffer (first-in-first-out) being written and read. It is
an efficient and common way of passing data between and within computer programs.
Friendlier ways of doing this are are common, but not essential.

10In a customary overreaction to a programming abuse, the architects of object-oriented
languages (such as C++ and Java) frown on or forbid compiler macros. A similar over-

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 5

In C, all globally meaningful variables should be defined at the top, before
any functions are defined. That way you are not likely to use a variable
before it exists. A variable foo is defined by first stating its type, then
its name, and (optionally) assigning is some values. Here we define the 3
vertices of the triangle to have two floating point coordinates each, and then
say what they are. Note that v[][] is an array of 3 arrays of 2 floats each,
just as vv[] is an array of just two floats, i.e. it is a point.

Subroutines in C are called functions and always have () right after their function();
names.11 Functions also have types, and the void type says that the function
does not return a value, even though it does other usefule things. Note that
the main() function is declared to return an integer value, and its last line
tells you that it shall be 0. There are no obviously good reasons for this, and
C is full of such mysterious conventions. Functions may or may not have
arguments. Note that neither display() nor idle() have arguments. Good
C-style would require the void in the definition of the former as it appears
in that of the latter. Both keyboard() and main() do have arguments, and
in their definition we declare their types and give them dummy names, used
in the definition of the function. The body of a function definition is a block,
a code fragment between braces. Because braces are easy to lose track of, block
C-programmers regularly close a brace, bracket, or parenthesis the moment
they open one, preferring to insert-edit the content later. Later, when the
function is called, its dummy arguments take on a particular identity.

Every C-program has one last function, invariably named main, which is
actually executed first. The main() of a program using the GLUT-library is
difficult to understand even if you already know how to program in C. So we
will discuss this (much) later. What you need to know about it now is the callbacks
the GLUT library uses callbacks.12 For example, when you press any key,
the keyboard() function is called by GLUT and executed. Whenever the
graphics system on your computer is ready, the display() function is called
and executed by GLUT. The idle() function, which is called whenever
nothing else is being done by GLUT, here refreshes the display window if

reaction to the GOTO command in BASIC and Fortran led the authors of structured pro-
gramming languages (like Pascal and C) to all but eradicate its use.

11In these notes we also adopt a convention referring to a function by its name decorated
with (). Sort of like the honorific “Prof.”

12“The way GLUT informs a program when operations need to be performed on partic-
ular windows is by triggering a callback . A callback is a routine that the GLUT program
registers to be called when a certain condition is true.” Kilgard, p147.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



6 Hippocket Graphics Program

warranted. 13 After main has completed its discussion with GLUT, it falls
into an infinite glutMainLoop(); which our keyboard()knows how to exit.

We next turn to the subsidiary function which are used by each other, and
ultimately by main() . We take a classical approach in basiCglut of never
using a function before it has been defined. Of course, we use library func-
tions, which are defined elsewhere.14

display() uses a local integer variable, ii, as an index.15 It also assign it
a new random value each time around. Then comes the midpoint formula
calculating the new position, followed by the actual graphics. Note how the
graphics portion is bracketed betwen commands glBegin() and glEnd().
Every command in C is a function, in the sense that it takes zero or more
arguments, and returns zero or more values.16 The prefix ”gl” tells you these
are OpenGL functions. There are different graphics routines to glBegin.
Here it is just drawing GL_POINTS.17

keyboard() is called whenever you press a key. In the body of this function
(and nowhere else!) the variable key holds the identity of the key you
pressed, and x,y hold the location of the mouse at that moment.18 Instead
of the “if-then-else” syntax we use a “switch-case” statement here so you
have an example to copy. Much of C-syntax is easier to plagiarize than to
puzzle out from its absract description. If you press the (ESC)ape key, the

13That GLUT distinguishes two automatic activities, the display of a picture and the
recalculation of its data, enables you to develop a programming discipline which is very
useful for multi-processor multi-display systems like the CAVE.

14The contemporary style of prototyping functions so that they can be used without
definining them leads to verbose and redundant code which is as difficult to read as the
old spaghetti code in basic .

15The custom of using ii instead of a single letter iis well established. It helps dis-
tinguish between mathematical notation and its computer code. In mathematics we use
fancy symbols and strange alphabets to keep the names of objects as short as possible.
In computing we replace the elaborate symbols with longish nonsense words which are
unlikely to already mean something to the compiler. That is why we would not try to
name an integer variable int nor a pseudo-real number float .

16In keeping with such constructs as counting from zero, the empty set in math, and
certain iterators in regular expressions, this makes perfectly good sense.

17This is a macro which the pre-compiler replaces by a number you need never know
what it is.

18This assignment was performed by the GLUT-library. The GLUT-library “knows”
the name of your keyboard function because you told it with the glutKeyboardFunc()

in main() . You could have named this function Tastatur() and the first variable clef,
just as long as you’re consistent. The GLUT library is pretty smart, and this sort of
anthropomorphism is customary in code-speak .

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 7

infinite glutMainLoop() we are trapped in is broken and everything stops.
If you press the (W)-key, the gl-library does ... well, why don’t you see
what it does! You can experimentally see what glutPostRedisplay() does
leaving it out, or putting it somewhere else in the program. But the latter
is not recommended.

Exercise 1. Show that you understood the basic idea of buffering data; write a basic or
pseudo-codefragment19 that reads the j-th member of a data buffer of length n, n ≥ j. Of
course, you can write it in a real language provided you can make it work.

Exercise 2. You may wish to convince yourself that the initial position has no visible
effect on the outcome. Do this by assigning the initial position of (X,Y) by some other
means, for example, randomly, or with an INPUT statement in basicBASIC or the mouse
in basiCglut. Does changing the probabilities make a difference?

Exercise 3. The algorithm can be interpreted in terms of three affine transformations.20

What are they in this case? Morever, each of these is a contraction. This means that the
distance between the images of two points is less than it was before their transformation.
In other words, linear contractions map line segments into shorter line segments. Show
geometrically that the contraction factor is 1

2
. Write a program using another set of three

linear contractions.

Exercise 4. We can give the Sierpinski Gasket following precise definition. Let A0 denote
the original triangle, including its boundary. Let A1 denote A0 minus the interior of the
middle quarter triangle. We do not remove the points on its boundary. And so forth.
Then

A0 ⊃ A1 ⊃ A2 ⊃ ... ⊃ A∞

where A∞ = ∩∞n=0An is the Sierpinski Gasket. The existence and properties of this
intersection of infinitely many sets is a matter of real-number theory. But can you prove
that An ⊃ An+1 ? Sure you can.

Exercise 5. Number the three original points of the triangle V0, V1, V2, and let Tj denote
the Barnsley generator which takes any point P half way to Vj

Tj(P ) =
P + Vj

2
.

Now prove that
Tj(An) ⊂ An+1.

Exercise 6. How does the previous fact demonstrate that A∞ is an attractor?

Exercise 7. Can you locate an argument, perhaps in Barnsley’s book, proving that the
Sierpinski Gasket is an invariant set?

Exercise 8. On a color computer choose three colors, one for each J . What difference
does it make to set the color of the point on line 75 as opposed to 85.

19A set of lines which could be grafted into another program.
20This exercise is for people who know some linear algebra.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



8 Hippocket Graphics Program

We close this section with a brief demonstration why the gasket is a fractal.21

As defined in Exercise 4, A∞ is a planar Cantor set, obtained by recursively
removing the central quarter of a triangle. Connecting the midpoints of the
sides of a triangle decomposes the area into four congruent triangles, each
similar to the parent triangle by a scale facter of 2. This self-similarity shows
that doubling the side-size of the Gasket triples the measurable content of
the figure.22 If, by analogy to lines, squares, cubes and tesseracts, dimension
is defined to be that power d of 2 the content of a figure must be multiplied
by in order for it to equal the content of a similar figure obtained by doubling
its linear scale,23 then

d =
log2(3)
log2(2)

.

/* Sierpinski Gasket in GLUT, for VC98, gkf jan01 */
#include <stdlib.h>
#include <stdio.h>
#include <gl/glut.h>
#include <math.h>
float v[3][2] = {{1.,0.},{0.,1.},{0.,0.}}; /* a triangle */
float vv[2]={.2,.9}; /* initial pos’n */
#define RND ((float)rand()/RAND_MAX) /* random fraction */
#define INT(X) ((int)floor(X)) /* integer part */
/***********************************************************/
void display(){

int ii = INT(3*(RND)); /* pick random ii = 0,1,2 */
vv[0]= (vv[0] + v[ii][0])/2; /* move half-way toward that vertex */
vv[1]= (vv[1] + v[ii][1])/2;

glBegin(GL_POINTS); /* draw a */

21There is no agreement on the best definition of a fractal. Originally it denoted a set
with a fractional dimension, as defined by Haussdorff. Because it is sometimes impossible
(and usually impractical) to compute this dimension less demanding and definitions have
been adopted. But these are nevertheless very precise, and vulgar corruptions of the term
should be avoided.

22Again, we leave this measuring to the analysts.
23Aren’t you glad you learned algebra. We can translate this mouthful as follows. Let

A(2) denote a figure similar to A(1) constructed on the basis of a linear element twice as
large as that for A(1). Then dimension is defined by |A(2)| = 2d|A(1)|, where the absolute
value means the mysterious content we take for granted. Note that for lines, d = 1, and
for cubes, d = 3 because a cube divides into 8 cubes which are half the linear scale. But
for the Gasket, |A(2)| = 3|A(1)|.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 9

glColor3f(1.0,1.0,1.0); /* white */
glVertex2fv(vv); /* point */

glEnd();
}
/***********************************************************/
void keyboard(unsigned char key, int x, int y){

switch(key){
case 27: exit(0); break; /* escape with the (ESC) key */
case ’w’: glClear(GL_COLOR_BUFFER_BIT); break; /* (W)ipe screen */

}
}
/***********************************************************/
void idle(void){ glutPostRedisplay(); }
/***********************************************************/
int main(int argc, char **argv){ /* pure GLUTtery here */

glutInitWindowSize(400, 400);
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB);
glutCreateWindow("<< Sierpinski in GLUT >>");
glutDisplayFunc(display);
glutKeyboardFunc(keyboard);
glutIdleFunc(idle);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-2.0,2.0,-2.0,2.0,-2.0,2.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glutMainLoop();
return 0; /* ANSI C requires main to return int. */ }

2 The Lorenz Mask

For the Sierpinski iterated function system we could give an adequate math-
ematical presentation in few pages. For the Lorenz dynamical system this
is not possible. Here we devote a commensurate space to visualizing its There is a separate

chapter on the Lorenz
Attractor.

famous 3-dimensional attractor, the Lorenz Mask, in a minimal graphical
environment. There is a basiCglut version of the following program at the
end of the section.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



10 Hippocket Graphics Program

10 REM LORENZ ATTRACTOR

12 CLS

15 DATA 120,32,1 ,-1,1,.1

16 READ XO,YO,UX,UY,X,Y

20 DATA .05,-50,.01

21 READ E, N, D

90 XR = XO-N : XL = XO+N

100 YP = YO + Y*UY

110 PSET(XL+(X-E*Z)*UX,YP)

120 PSET(XR+(X+E*Z)*UX,YP)

130 X1 = X + (10*Y-10*X)*D

140 Y1 = Y +(28*X-X*Z-Y)*D

150 Z = Z + (X*Y-8*Z/3)*D

160 X=X1:Y=Y1:GOTO 100

This also illustrates a dynamical system insofar as a rule inside an eternal
loop moves a point to a new position. But this is a deterministic system
because there is no choice in rules. It is a 3-dimensional system because the
point being moved about has 3 components. This raises the problem of how
to represent 3-dimensional data in the two dimensions of a picture. The
most efficient thing to do on a slow, monochrome (b/w), and coarse grained
screen is to use stereo pairs.24

Stereopairs are viewed with the help of devices which insure that your right
eye sees one image, while your left eye sees the same image, slightly rotated
( and sheared,25 to be exact.) In the absence of such aids, you can reverse
the right and left images, and then cross your eyes, until you see three rather
than four fuzzy images. Then wait until the middle one comes into sharp
focus. On the printed page, the images are smaller and closer together.
Here the view for the right eye is on the right. These can be viewed unaided
by focusing your eyes at infinity (not crossed). One way of achieving this
is to place your nose right up to the image until your eyes are relaxed
(unconverged, unfocused). Then move the page back slowly until the fused,
3-D image jumps into focus.26 To reverse right with left in the program,
change the sign of the nose offset, N, or the eye-shear fraction, E, but not
both.

24Some others possibilities, to be dealt with later, are: linear perspective, depth-cueing,
motion parallax, occlusion by z-buffering, lighting and shading, shadows, and VR (if you
put them all together and add head-tracking.)

25A distortion that moves a rectangle to a parallelogram, without changing its base or
altitude, is called a shear. Think of a stack of playing cards pushed uniformly to one side.

26Don’t do this with a CRT, though.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 11

The basiCglut examples you should look at while reading this go somewhat
further and solve some of the exercises proposed further down. The C-code basiCglut
mimics the BASIC-code. It also is a modification of the C-code for the Sierpi-
enski gasket. But, here we have factored out a function plotAdot(x,y,r,g,b)
from display() to simplify writing the position and color of each dot as it
is plotted.27 Moreover, we add some sophistication in C-programming as
we progress from one pocket program to the next. Here, the display()
function combines initialization and iteration.28 Note that the display-block
is divided into three subblocks, suggesting future factorizations. The second
block draws the right and left images of the current point, and the third up-
dates it. Note that within a block you can define local variables. They exist
only inside the block. Ordinarily they also exist only for the duration of one
execution of the block. But you can preserve the value of a variable from
one iteration to the next by declaring it static, as in the first sub-block.29

In the first block, the integer first begins its exisence with the value 1,
for true. The first time the display function is called, the window in which
the mask appears is cleared to black. You no longer need to (W)ipe30 the
screen manually, as in the gasket examples. Since you don’t want to clear
the screen the next time (you want the positions of the point to accumulate
on the screen), you lower the flag by setting first=0.

The shape you see developing is called the Lorenz Mask and it is a very mathematics
popular example of a strange attractor.31 Two dimensional dynamical sys-
tems do not need the complication of stereo-viewing. On the other hand,
they don’t have strange attractors. The Lorenz is also a favorite character
in Nonlinear Mechanics because the rule (lines 130–150) that calculates the

27In the future we shall not always explain each factorization. It involves isolating a part
of the function code by replacing it with a call to a new, subsidiary function containing
that code segment. Look for factors when comparing two neighboring versions of the same
program. Reflect why the subsidiary code was factored out. After all, we could write a
C-program with only one function, main().

28The former is done once, the first time the function is called. The latter is done each
time the function is called. It is better programming style to write separate initialization
and iteration functions, but this requires more careful modifications when grafting this
routine in other programs.

29Global variables are “static” for the program.
30We adopt this typographical convention, both in the text and in the heads-up displays

on the screen, to mean that the action is accomplished by pressing that key.
31There is no agreement as to what features makes one attractor “stranger” than an-

other. Points of equilibrium and limit cycles are not strange but fractals are. More
significant is the unpredictable way the trajectory of a single initial point switches from
orbiting about one or the other equilibrium points in the Lorenz Mask.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



12 Hippocket Graphics Program

velocity at a point is not a linear function of the coordinates of the point
(note the products xz and xy.)32

The stereographic model used here goes something like this. The problem tographics
be solved is how to project an object to the image plane so that when viewed
by the corresponding eye, the image on the retina is the same as if the object
were seen live. If all aspects of perspective, including depth-of-field, were
considered, this would be nearly impossible. The eye-mind combination is,
fortunately, very forgiving. Here the shortcut is to ...

• ... ignore anything but a tiny (about 2.5 degrees) rotation of one image
against the other,

• ... replace this rotation by a shear.33

The endless iteration loop begins at line 100. This program uses both world
and screen coordinates. On line 100, the vertical screen coordinate, YP is
obtained by adding the fraction Y of the vertical unit UY to the vertical
origin YO. This interprets the world coordinate Y as a fraction (proper and
improper) of the fixed vertical displacement. It is an example of the axono-
metric34 approach to Cartesian coordinatization.

In the next two lines, 110 and 120, the horizontal displacement from the
left and right origins, XL, XR , is computed. The true displacement, X, is
seen only by the cyclopean eye (in the middle of your forehead). Both eyes
see this only when Z = 0 . It becomes progressively greater as the point
recedes into the background, ie as the Z-coordinate becomes greater.

The iteration rule here is the simplest (and least accurate) numerical inte-numerical integra-
tion of differential
equations

gration method, known as Euler’s Method. Here is how it works on a system
of first order differential equations,

Ẋ = F (X),
32Nonlinearity has interesting features also in 2-dimensions which linear systems don’t

have. One of the most interesting examples is the Liénard-Van der Pol system we treat
further on.

33In effect, replacing the Cosine of a small angle by 1, and its Sine by a small number.
34The official description of an axonometric projection goes like this. In a plane, draw

three line segments, the x, y, z-axes, from a common point, the origin. The axonometric
image of a point (ξ, η, ζ) in 3-space is found by moving parallel to the axes, a fraction
ξ, η, ζ, of the length of the corresponding axis.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 13

where X is a vector and F (X) is a vector valued function of the components
of X. First, switch from Newton to Leibniz notation,

dX

dt
= Ẋ,

then multiply through by dt,

dX = Ẋdt = F (X)dt.

Now replace the infinitesimal time step dt by a finite one h,35 and the in-
finitesimal displacement of X by the corresponding finite one,

4X = Xnew −Xold.

We can now solve for Xnew

Xnew = Xold + F (Xold)h.

If this reminds you of the beginning of a Taylor’s series then you have learned
something in your calculus class.

In lines 130-150, the point (X,Y,Z) is moved the small fraction 36 D along graphics
a displacement, the velocity vector, which itself depends on the current po-
sition. That is why temporary values, X1,Y1, are used until Z has been
updated too. Some default values are set in the preamble, lines 0-99. To
understand them better, you should experiment by changing variables. In
basic, insert an INPUT statement.37 To modify the C-code you will need
some standard I/O functions. The visualization of stereo-images can be Examine how the

non-graphical program
heron.c accepts input
from and prints output
to the command line
window.

enhanced by adding more graphical information, which the eye-brain inter-
prets as spatially. One of these is depth-cueing. This means that points
further back are drawn more dimly than those in front.38

Exercise 9: Lorenz Attractor

35In the programs we use more dramatic names for the time-step h, D and dd respectively.
36Our h in the previous paragraph.
37After the defaults!
38In the decade of the UIMATH.Applelab, Ted Emerson and Cary Sandvig, inter alia

, extended Applesoft BASIC on our Apple IIs with machine language subroutines. They
not only achieve animation speed acceleration but built remarkably mature 2-D graphics
language, called GS&. Depth-cued with 16 levels of gray, or painted with 16 colors the
Lorenz Mask achieved great popularity, leading to a generation of 3-D implementations
in 3-D graphics and in the CAVE.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



14 Hippocket Graphics Program

Modify lorenz.c to implement depthcueing and painting the third dimension.39 Vary the
parameters40 (r, p, b) = (28, 10, 8/3) used by Lorenz. Try (16, 45.9, 4). Vary the starting
place of the orbit. Draw four views of the 3-D object on the screen simultenously (in the
tradition of drafting) by drawing the 3 orthographic views.41 The fourth view should be
an axonometric general view.

Exercise 10: Liénard-Van der Pol.

This 2-dimensional dynamical system depends on a function y = f(x), for example the
cubic f(x) = x3 − αx, where α is a parameter. Note that for α > 0, f factors into

f(x) = x(x−
√

α)(x +
√

α)

and its graph is an inflected cubic with two humps. What happens to this graph as α goes
negative?

Exercise 11: LVdP continued

The velocity, (ẋ, ẏ), at a point P = (x, y) is obtained geometrically as follows. Drop a
perpendicular from P to the graph of f at (x, f(x)), proceed horizontally to (0, f(x)) on
the y-axis, return from there to P along vector (x, y − f(x)), turn right, facing down
(y − f(x),−x):

ẋ = y − f(x)

ẏ = −x

which becomes

Xnew = X + (Y − F (X)) ∗D

Ynew = Y −X ∗D

by Euler’s Method. To see what this dynamical system looks like you should write a
program. But it is also possible to do this graphically provided you are willing to follow
Liénard’s construction accurately enough. If you own a drawing board, a T-square and a
right-angle, this construction is almost faster than programming it.

Exercise 12: LVdP concluded

To give this system physical meaning, and reveal its historical origin, eliminate the phase-
variable y by differentiating the first differential equation, and substitute the second:

ẍ = −x− f ′(x)ẋ

or

ẍ + g(x)ẋ + x = 0,

39Also called “color-coding” and “false-coloring”, we assign colors to spots in the picture,
not so much to emulate nature as to transmit information.

40These are sometimes called the Reynold Number, r, Prandtl Number, p, and Box
Ratio, b, respectively. Perhaps a web-search will discover the reasons for the names.

41The plan-view is from the top, the two elevations are side views, 90 degrees apart.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 15

where g(x) = f ′(x) = (3x2 − α) represents a non-linear, position dependent, frictional

term. For negative α we have positive friction, which will eventually damp out this

oscillator. But for positive α, there is always a region on either side of the equilibrium

x = 0 where this system is given a kick (negative friction). Demonstrate42 that this

sustains the oscillator. The LVdP system has a globally attracting limit cycle. This is

the toy-version of the vacuum tube equation. Find a reference and relate it to the LVdP

equation.

/* Lorenz Mask in GLUT, gkf 3jan2K */
#include <stdlib.h>
#include <stdio.h>
#include <gl\glut.h>
#include <math.h>
/***********************************************************/
/* assuming the window has an 800 x 400 pixels */
float xo = 400 , yo = 200 , /* screen origin */

ux = 8 , uy =-8 , /* screenunits */
xx = 5, yy = -1 , zz = 0., /* world particle */
ee = .05, /* epsilon eye shear */
ns = 200, /* nose displacement */
dd = .01; /* delta stepsize */

/***********************************************************/
void plotAdot(float xx, float yy, float red, float green, float blue){

glColor3f(red,green,blue);
glBegin(GL_POINTS); glVertex2f(xx,yy);
glEnd();

}
/***********************************************************/
void display(){

{static first=1; if(first) /* first time clear the slate */
glClear(GL_COLOR_BUFFER_BIT);
glClearColor(0.,0.,0.,0.); /* to black */
first =0;}

{ /* draw the dots */
float xleft = xo - ns, xriht = xo + ns;
plotAdot(xleft + (xx - ee*zz)*ux, yo - yy*uy, 1.,0.,1. ) ;
plotAdot(xriht + (xx + ee*zz)*ux, yo - yy*uy, 0.,1.,1. ) ; }

42By drawing board or computer.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



16 Hippocket Graphics Program

{ /*update a dot */
float xn,yn,zn; /*local variables */
xn = xx + (10*yy - 10*xx)*dd;
yn = yy + (28*xx - xx*zz - yy)*dd;
zn = zz + (xx*yy - 8*zz/3)*dd;
xx = xn; yy = yn; zz = zn; }

/* usleep(NAP); */
}
/***********************************************************/
void keyboard(unsigned char key, int x, int y){

switch(key){
case 27: printf(" Thanks for using GLUT !\n"); exit(0); break;
case ’w’: {glClear(GL_COLOR_BUFFER_BIT);

glClearColor(0.,0.,0.,0.); break;};
}

}
/***********************************************************/
void idle(void){ glutPostRedisplay(); }
/***********************************************************/
int main(int argc, char **argv){

glutInitWindowSize(800, 400);
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB);
glutCreateWindow("<< Sierpinski in GLUT >>");
glutDisplayFunc(display);
glutKeyboardFunc(keyboard);
glutIdleFunc(idle);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0,800,0,400,-10.0,10.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glutMainLoop();
return 0; /* ANSI C requires main to return int. */

}

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 17

3 Sinewheel

The inexpensive, handheld graphing calculator has replaced (for the most
part) the slide-rule and handbook43 as primary assistant in graphing func-
tions. But there are times when one wants to probe ever deeper into specific
aspects of a particular function. This is done on a programmable graphics
gadget. Consider the following “poem” which plots the sine function in an
unusual, and in an unusually interesting way.

10 REM SINEWHEEL

11 CLS : REM CLEAR SCREEN

14 DATA .01745 : REM 1 DEGREE

15 DATA 6, 28, 28, 32

16 READ DG, DX, R, XO, YO

50 FOR X=0 TO 360 STEP DX

60 XR = XO + R*COS(X*DG)

61 YR = YO - R*SIN(X*DG)

62 XX = XO + R + R*X*DG

69 REM DRAW LINE WITH PEN DOWN

70 LINE (XO,YO)-(XR,YR),1

71 LINE (XR,YR)-(XX,YR),1

72 LINE (XX,YR)-(XX,YO),1

80 NEXT

Since the original basic was not graphics oriented, its graphical syntax varies
among different implementations. If you are trying this out on an Apple II
you should replace lines 70-72 and 11 with this.

75 HPLOT XO,YO TO XR,YR TO XX,YR TO XX,YO

11 HGR : HCOLOR = 15 : REM WHITE

Even without a computer, you can figure out what the picture will look like
simply by drawing (with a pencil) what the program is telling the computer
to do. Lines 50 through 80 form a package called a loop. In essence, this
loop generates the 60 points XR,YR on a circle centered at XO,YO and radius
R in 6 degree steps. Does the circle go clockwise or counterclockwise ?44

Now things become tricky. Notice how line 62 computes the x-coordinate
43My constant companion in the fifties at homework and study sessions was the “Bur-

ington: Handbook of Mathematical Tables and Formulas”. Sometimes, when the professor
wanted us to improve our scores, we were allowed to take the Burington to exams.

44In a right handed coordinate system, it is clockwise. Many early computers saved
resources by making the y-axis go down the screen instead of up the screen.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



18 Hippocket Graphics Program

of a point that unrolls the circle on a line. Surely you have seen such an
animation illustrating the meaning of the sine function.

The picture drawn by this animation45 reveals a sine-graph only as an il-
lusion. Most of the time, one wants to draw a polygonal line through the
points spaced closely enough to give another illusion, that of a smooth curve.
To trace the circle, connect successive values of XR,YR in the loop. In Ap-
plesoft basic the HPLOT TO XR,YR command connect the current point to
the previous point drawn, a syntactic structure suitable for loops. The
one point drawing command HPLOT XR, YR completes the plotting suite
in Applesoft. The same idea is expressed in basiCglut by replacing the
glBegin(GL_POINTS) by glBegin(GL_LINE_STRIP); bracketing the stream
of point plotting commands.46

Exercise 13. Modify the Sinwheel to trace a “continuous” sine curve. Add color to the

lines drawn. Generalize the concept to other functions. Make it interactive.

4 Functificator

There are two ways to go from here. We could continue the previous exercise
until you can build a general function grapher. To this end we include
an pocket program on automatic scaling. But a more interesting way of
applying the trick in Sinewheel to visualizing Chaos is described in the next
section.

A persistent problem with simple graphics systems is one of scaling. The
screen coordinates, in pixel-units, are ill adapted for computing. One uses
world coordinates for computation, and grown-up function graphers auto-
scale. That is, they automatically scale the function values to fit inside a
prescribed rectangle on your screen, called a viewport. The Functificator,
below, is such an autoscaler in basic. The following version served us well in
the Apple Lab, see if you can implement it efficiently in a modern language.

45On slow computer the drawing proceeds slowly enough to understand what is going on.
On a fast computer one would “slow it down” by putting a pause into the loop. If you don’t
know the correct syntax for the official pause function in the particular computer language
at hand, use a long enough “empty” loop FOR P=0 TO 10000 : NEXT , for example.

46As with human languages, OpenGL syntax has several ways of modifying a stem. The
glBegin()accepts a word as its argument telling it what to begin. But the vertex drawing
stem glVertex has many variants. The one closest to HPLOT is glVertex2f() , the “2f”
specifies that the arguments of the function will be the two (floating point) coordinates.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 19

10 REM FUNCTIFICATOR

11 READ P, Q, A, B

12 DATA 9, 1, 0, 1

20 READ XM, YM

21 DATA 300,200

30 DIM Y(XM)

39 DX = (B-A)/XM

40 FOR X = A TO B STEP DX

50 Y = X^P*(1-X)^Q

60 IF Y < MIN THEN MIN = Y

61 IF Y > MAX THEN MAX = Y

70 I=I+1 : Y(I)=Y

80 NEXT X

90 DY = (MAX-MIN)/YM

100 CLS

110 FOR I=0 TO XM

120 PSET(I,(Y(I)-MIN)/DY)

130 NEXT I

It graphs the function47 (line 50)

y = xp(1− x)q,

whose parameters (the powers, p, q and the domain [0, 1] of its independent
variable, x) are set on lines 11 and 12. XM and YM hold the dimensions, in
pixels, of the viewport. On line 30 basic allocates an array XM of values of
Y , one for each pixel. There are exactly XM steps of size DX (line 39) on the
interval [A,B]. We can write a loop as in line 40, using world coordinates,
or, we could write it as a counted loop in pixel coordinates, as we do in line
110.

In theory, we need only one loop to draw the graph of the function. But, since
we do not know a priori the range of the values, we use two loops. The first,
40–80, finds the minimum and maximum of the values at the same time, and
we use these to scale the resulting graph into the available vertical space in
the viewport. In basic, the first time the name of a variable is encountered
it has value 0. Critique the way this loop determines the extreme values of
a function. How might it fail and why doesn’t it for the parabola?

Once we know the range of the y-values, we can scale them into the available

47These functions are of central importance in the construction of splines, which are
curves whose shape are controlled by a few points on or near them. They serve as weights
or basis functions for Bezier splines.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



20 Hippocket Graphics Program

range, line 90. Note that substitution yields

Y(I)− MIN

MAX− MIN
YM

for vertical screen coordinate in line 120.

Exercise 14. A linear mapping of a range a ≤ x ≤ b into the range A ≤ X ≤ B can be
easily remembered from this formula

X = A
b− x

b− a
+

x− a

b− a
B.

A clever way of reading this expression is that when x = a then X = A, and when x
finally gets to b then the formula reduces to B. In between, the two fractions always add
up to 1. Thus you can think of this as a weighted average of A and B. Incidentally, there
is nothing that requires A, B to be numbers. They can be vectors, matrices, anything
mathematical that adds and scales. Now, here’s the exercise. Write a functificator that
automatically scales a parametrized curve,

(x, y) = (f(t), g(t)), tmin ≤ t ≤ tmax

into an arbitrary viewport. To keep things interesting, try Lissajoux figures, where the

functions are sinusoidal, f(t) = α cos(λt − φ), with differeing amplitudes, α, frequencies,

λ, and phase angles, φ.

5 Logistic Chaos

Another application of the figure-ground reversed manner of drawing a func-
tion graph you saw in sinewheel is this introduction to logistic chaos. You
may not be familiar with the mathematics behind this progam, so we shall
start with that.

Consider a population of something, say mosquitos in a swamp, which grow
at a rate ρ. That is, the next generation of mosquitos is directly proportional
to the current generation, y = ρx. By substitution you can calcuate that
successive populations, starting with x0, comprise the geometric sequence,

x0, αx0, α2x0, ...

which has one of three equally dull outcomes. If α 6= 1, the mosquito
population either dies out or increases indefinitely.

Since the latter is unlikely, we improve the model a tiny bit. Let us agree that
there is a maximum possible population determined by the food available

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 21

in the swamp. This is called the carrying capacity of the environment. We
take this to be 1, which automatically makes our population variable x a
fraction of the carrying capacity. Thus normalized, we obtain a manageable
geometric problem. We can express the effect of nearing the population
limit by making the reproductive rate ρ itself proportional to how close we
are to 1, ρ = 4α(1− x). Thus our equation becomes

y = 4 ∗ ρ(1− x)x .

This is called a logistic growth model. The factor 4 is chosen so that the
proportionality constant α exactly measure the maximum altitude of this
parabolic arch which touches the x-axis at 0 and 1. Other authors absorb
the 4 into the parameter.

You can discover some rudimentary properties of this system by drawing
pictures accurately with pencil, paper and a right angle, a filing card for
example. The trick is to plot the values of the logistic function not along the
x or y-axes, but along the diagonal of the unit square. For example, starting
from the input value x = .33 roughly a third of the way along the diagonal,
find the point above or below on the parabola, and proceed horizontally to
the output value f(x). You are now ready to repeat the procedure forever,
generating a discrete dynamical system based on the feedback loop x ←
f(x).

Exercise 15. With pencil, paper and ruler check that the population must become extinct

for α < 1
4
. For then the parabola remains below the diagonal, and every orbit steps its

way to oblivion. Next convince yourself that for 1
4

< α < 1
2

the population converges to a

single, positive, steady-state value, no matter where it begins. But past α > 1
2

life is not

so simple.

We can speed up our graphical investigations with a computer. First we
describe the essential part of our visualization, in basic. Then we describe basicBASIC
an interactive extension, but now in basiCglut, which faithfully emulates
the way it was originally written in basic. This gives a glimpse of the
evolution of computer graphics languages.48

5 REM CHAOS

10 CLS

48The biological principle that “ontogeny recapulates philogeny” says that the stages
an embryo of an animal of passes through mimics the stages of the animal’s evolution.
Perhaps this principle applies elsewhere too?

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



22 Hippocket Graphics Program

20 DATA 63, 63, .5, .01

21 READ XM, YM, A, D

90 X = .9

100 REM ETERNAL LOOP

140 Y = 4*A*(1-X)*X

150 XX=X*XM : YY = Y*YM

155 XY=X*YM : YX = Y*XM

160 LINE (XX,XY)-(XX,YY),1

165 LINE (XX,YY)-(YX,YY),1

170 X=Y : REM NEW REPLACES OLD

180 GOTO 100 : REM FEEDBACK

199 END

In order to play with this program, i.e. to make it interactive, you might
proceed as follows. The line

25 INPUT "A= "; A

asks you for a value of A.49 Can you change line 90 to accept a user chosen
initial value?

Exercise 16. Apply the skills you have gained by completing the exercise for the
Sinewheel program to add a subroutine to your Chaos program which draws the graph of
the parabola.

10

30 INPUT "GRAPH? (Y?N) "; A$

35 IF A$="Y" THEN GOSUB 200 ELSE CLS

200 REM GRAPHIT

210 CLS

299 RETURN

The blank line 10 erases the clear-screen command, saving it for when you really want it

at 35 or 210. The line 299 returns the program to the place from where the subroutine

starting at line 200 was called. Of course, you need to write the parabolic graphing routine

and perhaps the unit box and diagonal in the 200’s.

We now turn to an example of how a pocket program can mature into a
fairly useful mathematical tool. The following program is affectionatelybasiCglut
called Allerton after a conference in Allerton Park.50

49Incidentally, the keypress CONTROL-C will interrupt your program, and RUN will
run it again. Of course, there are more elegant ways of controlling your program, even in
basic.

50The conference, on using computers in mathematics instruction, was in the early
eighties, a time when the University of Illinois began to switch form its pioneering, but

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 23

We shall analyse this code in the order it is written in the program. You
should run the program on a computer while reading this. As an exercise,
you could design a tutorial which tells a mathematical story using Allerton.

/* Logistic Chaos in GLUT, gkf 22jan2K on Linux, 10aug on Windows */
/* translated into basiCglut form the original 1984 Applesoft BASIC */
/* Allerton revised 26nov2K and 5jan01 */
#include <stdlib.h>
#include <stdio.h>
#include <gl\glut.h>
#include <windows.h>
#include <math.h>
#define WIN 640 /* size of the square window */
#define NAP 100 /* microseconds for ell() only */
#define SLEEP(u) usleep(u) /* usleep() in Linux, sginap() in Irix */
#define FOR(i,a,b) for(i=a;i<b;i++)
int ii, jj, kk; float tmp, temp;
float xmax = WIN , ymax = WIN , /* screen size */

x =.9, y = .9, A = .99 , /* world variables */
xx, yy, xy, yx, /* screen variables */
alt = .96, /* altitude of parabola */
pnt = .9 , /* starting point */
del = .01 ; /* graph step size */

int clr =0, /* color index */
til = 10, /* run ells til */
nth = 1; /* iterate */

float rainbow[8][3]={ {1.0, 0.0, 0.0}, /* red */
{1.0, 0.5, 0.0}, /* orange */
{0.8, 0.8, 0.0}, /* yellow */
{0.0, 1.0, 0.0}, /* green */
{0.0, 8.0, 0.8}, /* (blue) cyan */
{0.0, 5.0, 1.0}, /* indigo */
{1.0, 0.0, 1.0}, /* (violet) magenta */
{1.0, 1.0, 1.0} }; /* white */

int hasnumber, number, decimal, sign ; /* SLevy bump gadget */
/********************************************************************/

not portable, PLATO system to microcomputers. I had already translated this example
from PLATO to Applesoft but gave my talk the old way, with transparencies. Tom
Shilgalis brought an Apple computer to the conference and convinced me once and forever
that a single live computer demo is worth a hundred slides.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



24 Hippocket Graphics Program

void usleep(int nap){int ii; for(ii=0;ii< nap; ii++);} //a bad kludge
/********************************************************************/

The foregoing preamble to Allerton is pretty much self-explanatory. The
abbreviation FOR(i,a,b) (starting a counted loop) is easier to type than
its more versatile counterpart in C. It is also less likely to be mistyped. The
rainbow contains an approximation to those colors. You can tweak these
RGB values to make the colors look better.

This program introduces Stuart Levy’s gadget for writing into the graphics
window and reading entries made there. It mimics the command lines at the
bottom of the Applesoft high resolution screen. We will see how it works
later.

From the backslash in <gl\glut.h>, and the windows.h header file in the
include lines you can see this is the Windows version of Allerton. The pause
function is system dependent, so we alias it with the macro SLEEP() . Not
finding the Windows counterpart, we temporarily rewrote the usleep()as
a long loop.51

The body of Allerton begins with the logistic equation. Here you could
put additional feedback functions. Use a switch-case statement and a key-
controlled choosing gadget to compare the different iteration schemes inter-
actively.

/********************************************************************/
float func(int nth, float x){

FOR(ii,0,nth)x= 4 * alt*(1-x)*x; return x;
}
/********************************************************************/
void drawell(void){

y=func(nth,x); /* evaluate */
xx = x*xmax ; yy = y*ymax; /* world to screen coords */
xy = x*ymax ; yx = y*xmax;
glBegin(GL_LINE_STRIP);
glVertex2f(xx,xy); glVertex2f(xx,yy); glVertex2f(yx,yy);
glEnd();
x = y; /*feedback*/

51This is an example of a “hack” involving an inelegant solution, or “kludge”.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 25

SLEEP(NAP);
}
/********************************************************************/
void frame(void){ /* box with diagonal */

int bot=1, top=WIN;
glBegin(GL_LINE_STRIP);
glVertex2f(top,top); glVertex2f(bot,top); glVertex2f(bot,bot);
glVertex2f(top,top); glVertex2f(top,bot); glVertex2f(bot,bot);
glEnd();

}
/********************************************************************/
void wipe(void){glClear(GL_COLOR_BUFFER_BIT); glClearColor(0.,0.,0.,0.);
}
/********************************************************************/
void graph(void){ float x; glColor3fv(rainbow[clr]);

glBegin(GL_LINE_STRIP);
for(x=0; x < 1+del; x += del)

glVertex2f(x*xmax, func(nth,x)*ymax);
glEnd();

}
/********************************************************************/
void run(void){ glColor3fv(rainbow[clr]); FOR(jj,0,10){drawell();} }
/********************************************************************/

Type the keys for (W)ipe, (F)rame, (G)raph, el(L), and (R)un to see what
the four functions do. Look at the code to see why they do it. These four
are also marked on the (H)elp button.

More help is on the (J) button. It refers to the six gadgets that display a
parameter and accept input to change it. How Stuart Levy made this work
inside the graphics window requires more explanation than we give here. If
you are proficient in C, can you figure it out?

/********************************************************************/
float getnumber(float dflt){ /* return new or default number */

if(!hasnumber)return dflt;
tmp = sign ? -number : number;
return decimal>0 ? tmp/(float)decimal : tmp ;

}

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



26 Hippocket Graphics Program

/**********************************************************************/
void graffiti(char strng[128], float par){ /* from avn by SLevy */

char buf[128], *p ;
glColor3f(0,0,0); glRecti(5,3,WIN,20); /* erase old graffiti */
glColor3fv(rainbow[clr]); /* create and draw new graffiti */
sprintf(buf, strng, par);
glRasterPos2i(5,5);
for(p=buf; *p; p++)glutBitmapCharacter(GLUT_BITMAP_8_BY_13, *p);

}
/**********************************************************************/
void altit(void) {

alt= getnumber(alt); graffiti("%0.3f=(A)lt", alt); }
void point(void){

x=pnt = getnumber(pnt); graffiti("%0.3f=(P)nt",pnt); }
void delta(void){

del = getnumber(del); graffiti("%0.3f=(D)el",del); }
void until(void){

tmp = getnumber((float)til); graffiti("%f=(T)il",tmp); til=(int)tmp; }
void power(void){

tmp = getnumber((float)nth); graffiti("%f=(N)th",tmp); nth=(int)tmp;}
void color(void){

tmp = getnumber((float)clr); graffiti("%f=clr",tmp); clr = (int)tmp; }
#if 0
void help(void){ fprintf(stdout,

"(ESC)ape (w)ipe (f)rame (g)raph el(l) (r)un (h)elp \n \
(a)ltitude (p)oint (d)elta (n)th (t)il (c)olor \n ",0);

#endif
void helpH(void){

graffiti("(ESC)ape (W)ipe (F)rame (G)raph el(L) (R)un (H)(J)",0); }
void helpJ(void){

graffiti("(A)ltitude (P)oint (D)elta (N)th (T)il (C)olor",0);}
/********************************************************************/

Both getnumber()and graffiti() are too advanced for now, and we ex-
plain only their operation. They are factors of the next six gadgets, all ofgadgets
which have the same estructure.

For example, the altitude of the parabolic arch is a parameter that many
functions may want to use. So it is a global variable. In the gadget, alt =
getnumber(alt); assigns a new value to the altitude if you typed one in

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 27

before pressing the (A). Otherwise, it retains the old value. Then it writes
the current value (new or old) to the screen.

Now experiment with the (A)ltitude, the initial (P)oint, the stepsize (D)elta
for the graph, the (N)th power the logistic is iterated before the next position
is drawn. Check out the interplay of (N) and (G).52 The (C)olor gadget is
even trickier. Not only can input the color, but pressing (C) repeatedly
cycles the colors to help you tell a story with Allerton.

Finally, there are three helpers in Allerton. The original help()is com-
mented out in a peculiar way. The compiler is directed to ignore the code
between #if and #endif because the ”0” is always false.53

You have already met the keyboard() in earlier pocket programs. But this keyboard
one is a step more sophisticated. For one, it has the rest of Stuart Levy’s
gadget. For another it chooses the display callback function for the GLUT
library at your command.

/********************************************************************/
void cycle(int *par, int bas){

if(hasnumber){*par = getnumber(0); return;} /* the 0 is a herring */
*par = (*par + 1)%bas ;

}
/********************************************************************/
void keyboard(unsigned char key, int x, int y){
#define PLOT(foo) glutDisplayFunc(foo); glutPostRedisplay();

switch(key){
case 27: fprintf(stderr," Thanks for using GLUT ! \n"); exit(0); break;
case ’s’: {exit(0); break;}; /* stop */
case ’w’: {wipe(); break;};
case ’f’: {PLOT(frame); break;};
case ’g’: {PLOT(graph); break;};
case ’l’: { glColor3fv(rainbow[clr=(clr++)%7]); /* cycle colors */

PLOT(drawell); break;};
case ’r’: {PLOT(run); break;};

52The gadget saying un(T)il when a (R)un of el(L)s should be drawn is “disabled” by
having hard-coded the default value of til in the loop of run() . Change that!

53This is a useful abuse of the compiler directives. If you don’t like graffiti and want to
write to the command window instead of to the graphics window then use this instead of
the other helpers. In Unix the fprintf(stdout ... works normally. In Windows you’ll
have to experiment.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



28 Hippocket Graphics Program

case ’h’: {helpH(); break;};
case ’j’: {helpJ(); break;};
case ’a’: {altit(); break;};
case ’p’: {point(); break;};
case ’d’: {delta(); break;};
case ’n’: {power(); break;};
case ’t’: {until(); break;};
case ’c’: {cycle(&clr,7); color(); break;};

}
glFlush(); /* superstition ? */
/* Stuart Levy’s gadget parser from avn.c 1998 */
if(key >= ’0’ && key <= ’9’){ hasnumber = 1;

number = 10*number + (key - ’0’); decimal *= 10;}
else if(key == ’.’){ decimal = 1;}
else if(key == ’-’){ sign = -1;}
else {hasnumber = number = decimal = sign = 0;}

}
/********************************************************************/

The “advanced” factor, cycle() , is used for the (C)olor cycler. In the
keyboard function we define a macro PLOT()which does two things. It hands
the GLUT-library to a new display function to “call back” when appropriate.
And it tells the GLUT-library to update itself, in case it has fallen asleep.

The switch-case construction which turns your key-presses into action, can
pretty much be puzzled out. Note the two ways of writing a cycling gadget.54

The rest is advanced wizardry.

We now come the part that uses the GLUT-library.

/********************************************************************/
void nothing(void){ } /* Glut3 forbids glutDisplayFunc(NULL); */
/**********************************************************************/
int main(int argc, char **argv){
glutInitWindowSize(WIN, WIN);
glutInitWindowPosition(10,10);

54In computer graphics there is a well-defined notion of a widget in a graphical user
interface(GUI). A gadget is a poor man’s widget. It gets the job done with a minimum of
fuss, not a minumum of inconvenience. We will discuss gadgets at greater lengths in the
second part of the course.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 29

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB);
glutCreateWindow("<< Logistic Chaos in GLUT >>");
glutDisplayFunc(nothing);
glutKeyboardFunc(keyboard);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0,WIN,0,WIN,-10.0,10.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glutMainLoop();
return 0; /* ANSI C requires main to return int. */

}

6 Bouncing Shapes

This pocket program illustrates the principle of a popular screen saver. It
serves as a portal not only to ever more fanciful and artistic variations,
but also as an introduction to simulations of colliding objects and particle
systems. It depicts one rectangle bouncing inside a larger rectangle, leaving
a trace of its 10 most recent positions.

10 REM BOUNCE

15 CLS: N=10

20 READ XM,YM,DX,DY,DU,DV

21 DATA 239,63,1,2,-2,-1

25 READ X(N),Y(N),U(N),V(N)

26 DATA 10, 42, 42, 54

40 LINE(X(N),Y(N))-(U(N),V(N)),1,B

45 LINE(X(1),Y(1))-(U(1),V(1)),0,B

50 FOR J = 2 TO N

52 X(J-1)=X(J) : Y(J-1)=Y(J)

54 U(J-1)=U(J) : V(J-1)=V(J)

55 NEXT J

60 X = X(N)+DX : Y = Y(N)+DY

62 IF(X<0)OR(X>XM)THEN(DX=-DX)ELSE(X(N)=X)

64 IF(Y<0)OR(Y>YM)THEN(DY=-DY)ELSE(Y(N)=Y)

70 U = U(N)+DU : V = V(N)+DV

72 IF(U<0)OR(U>UM)THEN(DU=-DU)ELSE(U(N)=U)

74 IF(V<0)OR(V>VM)THEN(DV=-DV)ELSE(V(N)=V)

80 GOTO 40

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



30 Hippocket Graphics Program

Line 40 uses a rectangle drawing variant of the line command to draw the
tenth box specified by opposite corners, (X,Y), (U,V). Line 45 erases the
first box, in a sequence of ten boxes.55 The inside loop, lines 50–55, moves
each point one place back in the queue, leaving the N-th point to be updated
on line 60. Now, if the new point is out of bounds in the horizontal or
vertical directions, then, instead of entering an illegal point in the queue,
the displacement increment changes sign, lines 62 and 64. The 70s do the
same thing for dialects and not in others.

Exercise 17. A dynamical system which shows the effect of updating a very large number

of orbits is called a particle system. The above trick suggests a way of displaying a

tracer extending back from the current particle position, perhaps with color or gray-shade

attenuation. Modify the program first to a 2-particle system (omit the boxes but draw

both corners), then to a many particle system. Note that the reassignment in the 50s

is inefficient. Rewrite the algorithm so that an index keeps track of the current head of

the queue. Instead of the Nth point, erase the current point, update it, then draw it,

and advance the index to the eldest place in the queue. In modern graphics systems it is

quicker to erase the entire screen and redraw the entire scene, at animation speed, than

to manipulate individual points. In that case, you can attenuate the color of each tail as

it is redrawn.

7 Julia Set

We complete our sampler of pocket programs with one that generates a Julia
set. There is a basiCglut version you should try before reading any further.
Along with the usual (W)ipe key, be sure to try the lower and upper case
X and Y-keys as well. Also, you should brush up on your complex number
arithmetic to appreciate Lou Kauffman’s algorithm for taking the complex
square root. It is the heart of this pocket program.

10 REM JULIA SET

11 CLS

15 READ XO,YO,UX,UY

16 DATA 120,32,40,40

20 READ NX, NY, MX, MY

21 DATA 0, 0.5, -1, 0

100 X = NX - MX : Y = NY - MY

55We chose 10 because basic does not require such short arrays to be specifically al-
located. If your basic can’t draw or erase boxes so conveniently, you’ll have to call
appropriately written subroutines here.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 31

120 R = SQR(X*X+Y*Y)

130 NX = SGN(Y)*SQR((R+X)/2)

140 NY = SQR((R-X)/2)

150 IF(2*RND(1)<1)THEN NX=-NX:NY=-NY

160 PSET (XO+NX*UX, YO+NY*UY)

166 PSET (XO-NX*UX, YO-NY*UY)

180 GOTO 100

The most famous of all fractals, the Mandelbrot Set, is based on the same
discrete dynamical system as logistic chaos, but the function is iterated over
the complex numbers. Recall that complex numbers may be visualized as
points in the coordinate plane, except that we write (x, y) as the polynomial
x+iy. Addition and multiplication is polynomial, except that we may reduce
higher powers of i by the identity i2 = −1. Thus

(x + iy)2 = (x2 − y2) + i(2xy).

We can even divide complex numbers, and take their square roots.56 The
julia program uses the square roots in a creative way. Here is the story.

Suppose we consider the feedback loop w ← w2 + µ, where µ is a (complex)
parameter. From DeMoivre’s formula we can see that if µ = 0 life is exceed-
ingly simple. Every point inside the unit circle converges to the origin, every
point outside the unit circle goes to∞, and points on the unit circle stay on
it. The unit circle is an invariant set that divides two basins of attraction
for the attractor 0 and ∞.

When µ 6= 0 it’s more complicated, but ∞ is still an attractor. It takes
some arithmetic to demonstrate that applying the iteration to a complex
number outside the radius-2 circle always diverges to ∞. What happens if
you apply the iteration to a given starting point, say w = 0, depends on µ.
The Mandelbrot set is by definition the set of all µ for which the orbit of
the origin stays finite. Thus µ = 0 is in the Mandelbrot set. To determine
that a µ is not in the Mandelbrot set, all you need to do is to wait and
see whether the sequence wn, where w0 = 0 and wn+1 = w2

n + µ ever gets
56A cheap way to take roots of a complex number x + iy is to rewrite it in polar form.

That is, factor out the modulus r =
√

x2 + y2,

r(
x

r
+ i

y

r
) = r(cos(θ) + i sin(θ)),

where θ = arctan(y/x). By DeMoivre’s theorem, an n-th root of reiθ, which is how this

expression was abbreviated by Euler, is r
1
n ei θ

n . But this is not the way we take square-
roots in julia.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



32 Hippocket Graphics Program

outside the circle of radius two.57 The pretty pictures you’ve seen of the
crab-like Mandelbrot set are generated by assigning a color to µ depending
on how long it took the corresponding sequence to escape the circle of radius
2. The black pixels correspond to those µ which did not escape before the
patience of the programmer ran out. The boundary of the Mandelbrot set
was thought to be a fractal. But there is some indication that its Hausdorff
dimension is, in fact, integral.

You will find much more exciting and satisfying accounts about this set else-
where.58 here we are interested in a different set of points in the complex
plane, one for each µ. The Julia set of discrete dynamical system in the
complex plane is defined to be the set of points that separates the various
basins of attraction. You could locate the Julia set by reversing the dynam-
ical system. This is somewhat like finding the continental divide by forcing
a drop of water from each ocean to flow backwards in time, flipping a coin
to decide which way to go at each fork in the watershed.

Now let’s see how the julia program reverses the flow w ← w2 + µ by
implementing n ←

√
n− µ. Lines 130 and 140 look like the place n is

updated. Note that

n2
x − n2

y = r+x
2 −

r−x
2 = x

2nxny =
√

r2 − x2 =
√

y2

from which it follows that x + iy = (nx + iny)2.

Exercise 18. Explain why the sign of y, written sgn(y), is needed on line 130 to insure
that we choose the squareroot correctly. Recall DeMoivre’s rule.

Exercise 19. On line 150 we choose one of the two square roots with equal probability.
What happens if you skip this, or choose them one with greater probability?

Exercise 20. What happens when the parameter µ is varied? Implement this program

on a sufficiently fast computer so that the value of µ can be varied in real time with the

mouse. In the basiCglut version of Julia, below, the position of µ already can be moved

by key-presses. Use the techniques from the Sierpinski Gasket to mark a circle about this

point. Later, attach this point to the mouse and paint the orbits to help investigate the

properties of this Julia set.

/* Julia Set in GLUT, gkf 3jan2K */
57Note that w1 = µ, w2 = µ2 + µ, ....
58B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, 1982.

H.-O. Peitgen and P.H. Richter, The Beauty of Fractals.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 33

#include <stdlib.h>
#include <stdio.h>
#include <gl\glut.h>
#include <math.h>
#define RND ((float)rand()/RAND_MAX) /* random fraction */
#define SGN(x) ((x)<0?-1:1) /* signum function */
#define PIXEL 2 /* fat dots */
#define NAP 1000 /* microseconds */
#define SLEEP(u) usleep(u)
float red = 1., green = 1., blue = 1. ; /* default colors */
float nx = 0., ny = 0.5, mx = -1, my = 0; /* julia data */
float x, y, r;
/***********************************************************/
void usleep(int nap){int ii; for(ii=0;ii< nap; ii++);}
/***********************************************************/
void dotit(float xx, float yy){

glPointSize(PIXEL);
glColor3f(red,green,blue);
glBegin(GL_POINTS); glVertex2f(xx,yy); glEnd();

}
/***********************************************************/
void wipeit(){

glClear(GL_COLOR_BUFFER_BIT); glClearColor(0.,0.,0.,0.);
nx = RND; ny = RND; /* also start from a random place */

}
/***********************************************************/
void zapit(){mx = -1; my = 0; wipeit();}
/***********************************************************/
void display(){

float x, y, r;
x = nx - mx ; y = ny - my; /* z = nz - m */
r = sqrt(x*x + y*y); /* r = |z| */
nx = SGN(y)*sqrt((r+x)/2); /* nz = sqrt(z) */
ny = sqrt((r-x)/2);
if(2*RND < 1){ nx = -nx; ny = -ny;} /* choose one */
dotit( nx, ny); /* but plot both */
dotit(-nx, -ny);
SLEEP(NAP);

}
/***********************************************************/

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801



34 Hippocket Graphics Program

void keyboard(unsigned char key, int x, int y){
switch(key){

case 27: fprintf(stderr," Thanks for using GLUT ! \n"); exit(0); break;
case ’x’: mx += .1; break; /* move modulus x-ward */
case ’X’: mx -= .1; break;
case ’y’: my += .1; break; /* move modulus y-ward */
case ’Y’: my -= .1; break;
case ’w’: wipeit(); break; case ’z’: zapit(); break;

}
}
/***********************************************************/
void idle(void){ glutPostRedisplay(); }
/***********************************************************/
int main(int argc, char **argv){
glutInitWindowSize(400, 400); glutInitDisplayMode(GLUT_RGB);
glutCreateWindow("<< Julia Set in GLUT >>");
glutDisplayFunc(display); glutKeyboardFunc(keyboard); glutIdleFunc(idle);
glMatrixMode(GL_PROJECTION); glLoadIdentity();

glOrtho(-2.0,2.0,-2.0,2.0,-2.0,2.0);
glMatrixMode(GL_MODELVIEW); glLoadIdentity();
glutMainLoop();
return 0;

}

8 Conclusion

Here is a table of the the pocket programs we have discussed so far.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu



UIUC Math 198 Hypergraphics 2001 Class Notes 35

S F

I U

N N

G L E C C B J

A O W T H O U

S R H I A U L

K E E F O N I

E N E I S C A

T Z L C E

Draws straight line X X

Graphs a function X X X

Uses a figure macro X X

Pseudo-random nrs X X

Give 3-D illusion X

Continuous dyn sys X X

Iterated function sys X X X

Attractor X X X X

World/screen coords X X X X

IF/THEN structure X X X X

Subroutines X

FOR/NEXT loops X X X X

Trigonometry X

Complex numbers X

Auto-scaling X

Fractal geometry X X X

Strange attractor X X X

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801


