
Geometrical Computer Graphics 29

/***/
/* illiSkel */
/***/
/* (C) 1996 George Francis, Chris Hartman, Glenn Chappell */
/* TeX version, 7 September 1996, 12 January 1997 */

#include <gl.h> /* graphics library */
#include <device.h> /* mouse and keyboard */
#include <math.h> /* for the atof */
#include <sys/time.h> /* for the speedometer */
#include <stdio.h> /* standard io stuff */

#define ABS(x) (((x)<0)?-(x):(x))
#define DOT(p,q) ((p)[0]*(q)[0]+(p)[1]*(q)[1]+(p)[2]*(q)[2])
#define NRM(p) fsqrt(DOT(p,p))
#define FOR(i,a,b) for(i=a;i<b;i++)
#define FLYMODE modus == 0
#define TURNMODE modus == 1
#define IF(K) if(getbutton(K))
#define SOAK(K) while(getbutton(K))
#define TOGGLE(K,f) IF(K){f = !f;SOAK(K);}
#define IFCLICK(i,K,a) {static flg=i; TOGGLE(K,flg); if(flg){a};}

/**************** illiSkel’s "private" variables *****************************/
Matrix id={{1.,0.,0.,0.},{0.,1.,0.,0.},{0.,0.,1.,0.},{0.,0.,0.,1.}},aff,starmat;
int ii,jj,kk, modus,binoc,win,msg;
float lux[3]={1.,2.,3.},lu[3],gnd,torq,nose,mysiz,focal,speed,far,star[1000][3];
char phrase[256];
long mx,my,xorig,yorig,xcen,ycen;

/*************** your global variables***/
int cube,thick;
long znear,zfar;

/***************** Parameter management functions ****************************/

void arguments(int argc,char **argv){ /* from Pat Hanrahan, 1989 */
while(--argc){

++argv; if(argv[0][0]==’-’)switch(argv[0][1]){
case ’w’: win = atoi(argv[1]); argv++;argc--;break;
case ’s’: speed = atof(argv[1]); argv++;argc--;break;
case ’t’: torq = atof(argv[1]); argv++;argc--;break;
case ’L’: lux[0] = atof(argv[1]);

lux[1] = atof(argv[2]);
lux[2] = atof(argv[3]); argv+=3;argc-=3;break;

} /*end switch */
}/*end while */

}/* to add/subtract commandline arguments insert/delete like code */

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801

30 illiSkeleton

void deFault(){ /* reusable initialization in the key of Z */
win = 2; msg = 1; torq = 0.02; speed = 0.5; nose= 0.06;
mysiz = 0.1; focal = 1.5; far = 20; modus = 1; binoc = 0; gnd = 0;
{float tmp=NRM(lux); FOR(ii,0,3) lux[ii] /= tmp;};/* light direction */
FOR(ii,0,4)FOR(jj,0,4)starmat[ii][jj] = aff[ii][jj] = id[ii][jj];
aff[3][0]= 0.; aff[3][1]= 0.; aff[3][2]= -4.2; /* move it away */
thick=4; cube=1;

} /* end deFault */

void keyboard(){ /* control keys */
#define IFSHIFT if(getbutton(LEFTSHIFTKEY)||getbutton(RIGHTSHIFTKEY))
#define PRESS(K,A,b) IF(K){IFSHIFT{A;}else{b;}}
#define PRES_S(K,A,b) IF(K){IFSHIFT{A;}else{b;};SOAK(K);}
#define CYCLER(K,f,m) PRES_S((K), (f)=(((f)+(m)-1)%(m)), (f)=(++(f)%(m)))

TOGGLE(PRINTSCREENKEY, msg); /* messages */
CYCLER(VKEY,binoc,2); /* cross-eyed */
PRESS(IKEY, mysiz /= 1.1, mysiz *= 1.1) /* rescale world */
PRESS(OKEY, focal *= 1.1 , focal /= 1.1) /* telephoto */
PRESS(PKEY, far *= 1.01 , far /= 1.01) /* beware of this */
PRESS(NKEY, nose -= .001 , nose += .001); /* for binoculars */
TOGGLE(QKEY,cube) /* stick cube */
TOGGLE(SPACEKEY,modus); /* FLY/TURN mode */
PRES_S(PADASTERKEY,gnd=0 , gnd=0xffffffff); /* white background */
PRESS(SKEY,speed /= 1.02, speed *= 1.02); /* flying speed */
PRESS(TKEY,torq /= 1.02, torq *= 1.02); /* turning speed */
PRESS(ZKEY, deFault(), deFault()); /* zap changes */
if (getbutton(HOMEKEY)) while(!getbutton(ENDKEY)); /* po’ man’s freezer*/

}/* end keyboard */

float speedometer(){ /* returns average of last 8 frames per second/ */
double dbl; static double rate; static int ii=0;
static struct timezone notused; static struct timeval now, then;
if(++ii % 8 == 0){ /* 8 times around measure time */

gettimeofday (&now, ¬used); /* elapsed time */
dbl = (double)(now.tv_sec - then.tv_sec)

+(double)(now.tv_usec - then.tv_usec)/1000000 ;
then = now; rate = 8/dbl; }

return((float)rate);
}

Renaissance Experimental Laboratory and UIMATH.grafiXlab.

Geometrical Computer Graphics 31

void messages(long xt, long yt){ /* text information as heads-up display */
float horz, vert;
#define LF (vert-=0.035) /*as in line-feed */
#define LAB_L(s,u) sprintf(phrase,s,u); cmov2(horz,vert); charstr(phrase);

reshapeviewport(); /*fit viewport to window */
zclear(); /* so writing is always in front */
ortho2(-(float)xt/yt,(float)xt/yt,-1.,1.); /* new projector */
cpack(TURNMODE?0xffdd8822:0xff00cccc); if(!binoc)circ(0.,0.,.01);
horz= -1.2; vert = -.95; LAB_L("%0.1f ",speedometer());

/*so that speedometer and bullseye is visible also in small windows */
viewport(0,getgdesc(GD_XPMAX),0,getgdesc(GD_YPMAX));
horz=-.6; vert=.90;
LAB_L("| (ESC)ape rtica | (Z)ap changes |(BAR)fly/turn | stereo(V)iew |",0);LF;
LAB_L("| (PRINT) messages| (PAD*) ground |(LOCK)keyboard| (HOME)/(END) |",0);LF;
horz=-1.2; vert=.90; /* in world coordinates for the viewport */
LAB_L ("(S)peed %0.4f",speed); LF;
LAB_L ("(T)orque %0.4f",torq); LF;
LAB_L ("(N)ose %0.3f",nose); LF;
LAB_L ("f(O)cal factor %g",focal); LF;
LAB_L ("my s(I)ze %g",mysiz); LF;
LAB_L ("near clipper %g", mysiz*focal); LF;
LAB_L ("far clip(P)er %g",far); LF;LF;
horz=0.0; vert=-.95;
LAB_L ("illiSkeleton: George Francis, Chris Hartman, U. Illinois, 1996",0);

}/* end messages */

/******************** Scene production functions *****************************/

initstars(){ /* Glenn Chappell 1991, CMH 1994 */
FOR(ii,0,1000)FOR(jj,0,3)star[ii][jj] = random()/(float)0x40000000-1.;
}

drawstars(){
pushmatrix();
multmatrix(starmat);
cpack(0xffffffff);
bgnpoint(); FOR(ii,0,1000)v3f(star[ii]); endpoint();
popmatrix();
zclear();

}

drawcube(){ /* Steve Kommrusch, 1984, uses Gray code */
/* Self-initializing function draws a cube.*/
static int first=1; static float vq[8][3];
static int fr[]= {0,1,5,1,3,7,3,2,6,2,0,4,5,7,6,4};
if(first){FOR(ii,0,8)FOR(jj,0,3)vq[ii][jj]=(ii&(1<<jj))?1.:-1.; first=0;}
linewidth(thick);
bgnline(); FOR(ii,0,16)v3f(vq[fr[ii]]); endline();

} /* end drawcube */

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801

32 illiSkeleton

skeldraw(long xt, long yt){ /* drawing factored out of main */
if(binoc) viewport(0,xt/2,yt/4,3*yt/4);
window(-mysiz*xt/yt,mysiz*xt/yt,-mysiz,mysiz,mysiz*focal,far);
drawstars(); /* no parallax on the stars */
translate(-binoc*nose,0,0);
multmatrix(aff); drawcube();
if(binoc)

{
viewport(xt/2,xt,yt/4,3*yt/4); /* left is right */
window(-mysiz*xt/yt,mysiz*xt/yt,-mysiz,mysiz,mysiz*focal,far);
drawstars();
translate(binoc*nose,0,0);
multmatrix(aff); drawcube();
}

} /* end skeldraw */

/****************************Navigation functions****************************/

calculite(){ /* transpose = inverse for orthogonal matrices */
FOR(ii,0,3)for(lu[ii]=jj=0;jj<3;jj++) lu[ii] += aff[ii][jj] * lux[jj];

}

chaptrack(int mx,int my){ /* Chappell’s flyor */
int dx = getvaluator(MOUSEX) - mx;
int dy = getvaluator(MOUSEY) - my;
dx = ABS(dx)>5?dx:0; dy = ABS(dy)>5?dy:0; /* dead zone */
loadmatrix(id);
rot(dx*torq,’y’); rot(-dy*torq, ’x’);
PRESS(RIGHTMOUSE, rot(-10,’z’), rot (-1,’z’));
PRESS(LEFTMOUSE, rot(10,’z’), rot (1,’z’)); /* rotation is now complete */
if(FLYMODE){pushmatrix();multmatrix(starmat);getmatrix(starmat);popmatrix();}
PRESS(MIDDLEMOUSE, translate(0.,0.,-speed), translate(0.,0., speed));
if(TURNMODE){ Matrix temp;

getmatrix(temp);
loadmatrix(id);
translate(aff[3][0],aff[3][1],aff[3][2]); /*conjugate to rot center*/
multmatrix(temp);
translate(-aff[3][0],-aff[3][1],-aff[3][2]);

}/* end TURNMODE */
multmatrix(aff); getmatrix(aff); calculite();

}/* end chaptrack*/

Renaissance Experimental Laboratory and UIMATH.grafiXlab.

Geometrical Computer Graphics 33

/**********************main main main ***************************************/

void main(int argc, char **argv){ long xt,yt,xo,yo;
deFault();
arguments(argc,argv);
initstars();

switch(win){
case 0: break; /* mouse window */
case 1: noborder(); prefposition(0,640,0,480); break;
case 2: prefposition(0,getgdesc(GD_XPMAX),0,getgdesc(GD_YPMAX)); break;

}
foreground(); winopen("name me");
zbuffer(1); doublebuffer(); RGBmode(); gconfig();

while(!getbutton(ESCKEY)){ /* eternal loop */
IFCLICK(1,KKEY,keyboard(););
reshapeviewport();
czclear(gnd,getgdesc(GD_ZMAX));
getsize(&xt,&yt);getorigin(&xo,&yo);
IFCLICK(1,SCROLLLOCKKEY, chaptrack(xo+xt/2,yo+yt/2);)
skeldraw(xt,yt);
if(msg) messages(xt,yt);
swapbuffers();
} /* end while loop */

} /* end it all */

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801

illiSkeleton Short Summary

George Francis

September 24, 2009

The real-time interactive computer animation illiSkeleton.c1 is an abstrac-
tion of the classic 1994 illiShell.c. It maintains the structure, but is re-
stricted to the console and, initially, omits lighting. It is in C/gl and illus-
trates a number of useful features, some in more than one way, to encourage
experimentation. Here is the structure of this program.

Parameter management functions
arguments() //takes command line input
deFault() //re-usable initialization
keyboard() //non-queued keypress input
speedometer() //reports average frame rate
messages() //optional heads-up display
Scenery production functions:
initstars(), drawstars() // factored star drawers
drawcube() // one-piece cube drawer with first flag
skeldraw() // all graphics is done here
Navigation functions:
chaptrack() //mouse operated navigator
main() // setup+loop

Dependency chart:
All functions are factors of main() with the following exceptions. The
speedometer() is a factor of messages() . The deFault() is also called
by certain resetting keypresses in keyboard() . The arguments() and
initstart() functions are called only in the set-up part of main() . Both
drawstars() and drawcube() are factors of skeldraw(). The factor calculite()
of chaptrack(), and the normalization of the light direction in deFault()

are not used in this initial version of the illiSkeleton.c, but are placed in
the appropriate locations for future use.

1Long names being a nuisance, this family of rticaare also called isk.c and skel.c on
occasion.

34

Geometrical Computer Graphics 35

In this summary description, it is assumed that the student is moving directly
from oc1.c to iSkel.c, without necessarily working throught the intermediate
lessons and tutorials. Thus comparisons are with oc1.c directly.

Additional #include header files are needed here. The speedometer() re-
quires the sys/time.h header file for the gettimeofday() function. math.h
is used for the atof() function in arguments(). The stdio.h is always
useful and a nuisance to forget.

A number of #define (read “pound-define”) macros are used here. These
are expanded into the corresponding code by the compiler before compila-
tion. Thus errors are not caught until the compiler reads the expanded code.
Do not expect to see the macros in the error message. It is customary to
use capital letters for pound-defines. For example, the macro TOGGLE(K,f)

changes the truth-value of the bit-flag “f” every time the “K”-key is pressed
and released.2 The purpose of the IFCLICK(i,K,a) gadget is to enable you
to make a small detour anywhere in your code without any rewriting at an-
other location.3 You can switch back and forth without exiting the running
rtica.4

A typical factor of main(int argc, char **argv) is a function that man-
ages the command line arguments(). It allows the user to assign flags
and parameters from the command line before the rticais started. This
arguments() function was designed by Pat Hanrahan so that it is easy for
the programmer to add and subtract socalled command line switches, namely
items marked with a single “dash-letter” followed by none or more integers
or floats.

Entering a command line that looks like this,

iris % skel.x -w 1 -L 1. 2. 3.

sets the global flag win to 1. This specifies a particular size and location of the
drawing window in skeldraw() . The function atoi() converts alphameric
strings to integers, while atof() does the same thing for floats. The -L

2We call these objects illiGadgets since they are not, strictly speaking, “widgets”,
though they serve a similar purpose.

3For example, in main() we have isolated the keyboard with an IFCLICK so that we
can type in one window while looking at the rticawithout messing it up. This is much
nicer than having to keep pushing the mouse into windows to re-establish the “focus.”

4Some C++ evangelists say that one should not use such things because they may
lead to mistakes. Too many IFCLICKs scattered throughout your code will make the
operation of your rticaamusing, if not aggravating. Use it for hacking, debugging and
experimenting. With some care, however, these tricks make C-code much easier to read,
write and experiment with.

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801

36 illiSkeleton

switch specifies a direction for the light, which requires three floats to follow
the “dash-ell”5.

All parameters should be assigned in the deFault() function.6 It is also
possible to assign “constant” parameters at the time of their definition. This
was done for the identity matrix id , and the light direction vector, lux . It
is very common for programmers to neglect to update the deFault() code
when hacking an rtica, or to neglect to document the reasons for placing
something among the default assignments and calculations.

The keyboard() function converts the user’s wishes into the state of the
rtica. It is heavily aliased with compiler #defines for readability and
programming. Note that the scope of a compiler #define is from its first
occurrence to the end of the program. Thus it is harmless to delay the defini-
tion of these aliases until they become useful in the keyboard() function. It
might be safer but less elegant to define them at the beginning of the rtica.

Three illiGadgets are defined here, and have been factored for easier reading.
Remember that the compiler simply substitutes, so that is how you can
unpuzzle these aliases. For example, the soaked toggle negates an integer
flag, but does not take effect until you release the key. This avoids an odd
number of toggles which would leave the rticain its original state. The
PRESS(K,A,b) will execute the code abbreviated by b each time keyboard()

is called, as long as you hold down the key named by K. If you also hold
down either Shift-key, then code phrase A is executed. We might compare
this gadget to a slider. If you do not want the pseudo-continuous action,
then soak the gadget as in PRE S. The CYCLER(K,f,m) advances the integer
flag f modulo m each time K-key is pressed and released. Thus TOGGLE(K,f)
could also be aliased to CYCLER(K,f,2).

Exercise 1. Alternative Slider Gadget.
Design a slider with two different stepsizes, a fine and a coarse one, using the ALTKEY in
addition to the SHIFTKEYs. Design a slider with a variable upper and lower limit of the
range using some other control key. Be sure to display your actions on the message board.

The IFCLICK(f,K,a) macro has a very special function and should be used
only temporarily and for experimental purposes. You can put a “siding” into
the code stream which is toggled with the key named by K. It uses a static
flag whose initial value is f, and whose scope is limited by a set of braces.
If the flg is false, then a is not executed, if it is true, then it is executed.

5This version of arguments() does not tolerate errors and its abuse will dump core
easily. A better protected but less versatile version will be introduced later.

6The capital F distinguishes this function from one with a similar name in some Iris
header files.

Renaissance Experimental Laboratory and UIMATH.grafiXlab.

Geometrical Computer Graphics 37

Whenever the program flow passes by this point while the K-key is depressed,
flg is toggled to its opposite value.

The function of the various keys is discussed at the place where their param-
eters and flags are implemented. The last two merit some discussion. The
ZKEY here simply calls the deFault() function. There is room here for a
second set of defaults on the shifted-ZKEY. However, it is easily converted to
a cycler that permits an even larger choice alternative initial conditions.7

The messages() function takes the dimensions of the current window, xt,
yt , as arguments and does the following. It holds the current position, horz
and vert, in world coordinates that assign (0,0) to the center of the window,
and +1,−1 to its top and bottom, as specified by the ortho2() command
further on. The macro LF is, in effect, a line-feed. The macro LAB L(s,u)

writes the string s in which the value of u is embedded. It does this with
the sprintf() function, whose syntax can be inferred from its usage here, or
from its man pages. We are using 2-dimensional graphics so that the writing
does not rotate with the mouse. Thus we must use cmov2() instead of the
3-dimensional cmov() function .

We clear the z-buffer so that our writing is visible no matter what the scene is
in the window. The ortho2(xmin,xmax,ymin,ymax) establishes world coor-
dinates that maintain the aspect ratio of the window, but not its parameters.
If we are not in binocular mode, we place a bullseye in the center whose color
echoes whether we are in FLYMODE or TURNMODE.

Since there is no good way of laying out text into a window whose size and
position is voluntary, the remainder is usually skipped except for the wide
open window if(win==2).8 Otherwise, we place messages into the window
according to any one of several conventions. It is useful to have the most
commonly used keys in skel.c to continue to have the same function in
the descendants of illiShell.c. The resizable window mode, if(win==0), is
often used in while debugging and testing, so the frame rate as given by the
speedometer is always printed.

The rticaskel.c has two objects, the stars and the stick cube, with distinct
affine matrices, call them M and A, . The background stars are created by
initstars() and rendered by drawstars().9

7We encourage this and similar programming devices to reduce the waste of time in
recompiling or the waste of space in duplicating nearly identical versions of the same
program.

8What is done here instead is a good illustration on the difference between the graphics
window, the viewport and the projection matrix. When a window is opened maximally,
the messages will also appear.

9You may wish to personalize your star chart so you can recognize an rticathat de-

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801

38 illiSkeleton

The drawstars() function can be explained as follows. Duplicate the cur-
rent matrix on top of the geometry pipeline stack. The top copy is com-
posed with star matrix, M=starmat, and a thousand white stars are drawn,
X=star[ii] . Since drawstars() is called in skeldraw() immediately af-
ter the off-axis perspective projection matrix, P = window(), is placed on
the stack, the stars are, in fact, drawn thus: PMX. However, M is updated
for each frame by chaptrack() when it is in the FLYMODE10 Therefore, it is
more correct to say that at time n we draw the stars thus: PM1M2...MnX.

The cube is created and drawn in a somewhat different way. A collection of
static quantities are used. The flag, first, is set, and shunts the drawcube()
function through the initialization the first time it is called. The vertices of
a 3D cube are loaded into a static float array, vq[8][3] . The bit pattern
in the binary numeral, ii , for the current vertex, vq[ii], determines the
coordinate vq[ii][jj] to be +1 or −1, according to whether the jj-th bit
(starting at 0) if ii is 1 or 0. The left-shift 1<<jj moves the single bit in 1
left jj places. The bitwise and-operator, &, determines the parity of the jj-th
bit in ii. The static integer array fr[] describes a polygonal path over the
edges of the cube. Since the 3D cube does not have an Eulerian path, some
edges are drawn twice. This is done in a way that hints how an Eulerian
path may be decribed over a 4D cube.

Exercise 2. Hypercube
Draw a 4D cube, the tesseract, this way. Also, devise a control mechanism using key
presses, that rotates the tesseract in 4-space before projecting it to 3-space. Use several
different projection techniques for visualizing the tesseract. Cf the classic geometrical
movie, “The Hypercube”, by Tom Banchoff.

Exercise 3. illiTorus
Create the modification illiTorus of iSkel by inserting the torus from tr1.c thus. Rename
drawit() to drawtor() in tr1.c and insert the functions paint(), hair(), drawtor(),
near drawcube(). Of course, you will have to expand the pound-includes, pound-defines,
and list of global variables to make drawtor() work. Then, insert it into skeldraw()
instead of, or in addition to drawcube(). You might put those under an IFCLICK()
control for added variety, and you might put four PRESS gadgets in which move the range-
endpoints of the two angle parameters of the torus. This would yields a visible homotopy
from a rectangular patch to a torus.

Since we are constructing graphics programs, the management of the geom-
etry pipeline for each frame is truly the main activity. Generally, the corre-
sponding code is written into main() . It has been factored out here for clar-
ity. The skeldraw() function works like this. If binocular images are to be
drawn, then the viewport is set to be the left quarter of the current window,
but centered vertically. Subsequent drawing is done into this rectangle, and

scended from your own.
10In TURNMODE the sky is stationary.

Renaissance Experimental Laboratory and UIMATH.grafiXlab.

Geometrical Computer Graphics 39

clipped at its edges. First, an general (off-axis) projection matrix P , is placed
on the stack with the function: window(xmin, xmax, ymin, ymax, near, far).11

A useful way to relate the viewport to the window is to imagine looking at
the scene with the camera at the origin, and looking through a rectangular
window with corners as specified, and a distance near from the camera, all in
world coordinates. However, the image in the window is magnified or shrunk
to fit into the viewport. Only the portion of the world located in the frus-
tum of a rectangular cone between near and far is visible. Thus the near

parameter serves two purposes: it establishes the perspective proportion and
the near clipping plane. We decouple these functions by extracting a com-
mon factor, called mysiz. Note that changing mysiz with the IKEY slides
the window back and forth in the rectangular viewing cone. Thus the scene
does not change size, shape or location in the viewport. The front clipping
plane can thus be moved back and forth at will. To change the angle of the
viewing cone, it is necessary to change the effective focal distance with the
OKEY. The two keys are so calibrated that pressing both at the same time,
with or without the SHIFT-KEY, has the desirable effect of keeping the near
clipping plane in the same place.

The stars are drawn next. Being infinitely far away, they are seen the same
way by both eyes. But, to see the finite scene in binocular vision, the object
needs to be shifted right or left half the distance between the eyes, as given
by nose parameter on the NKEY. Since the left viewport is to be seen by the
right eye in the crossed-eye12 viewing mode, we shift the first image to the
left, ER. Thus PERAX is the order of matrix multiplication on a vertex
X. In the monocular viewing mode, ER = I, is the identity and we are
wasting a matrix multiplication, but skip the left eye projection to the right
viewport, PELAX. It is useful to associate the matrix products PR = PER

and PL = PEL. The multiple viewport may be used to other purposes
than for binocular pairs. For example, the front and rear view of the same
object. Or, using many more viewports, a succession of small multiples in a
homotopy.

Exercise 4. Small Multiples
Modify skeldraw() to show the front and rear view of the same object. Use four viewports,
placing orthographic plan and elevation in three of them, with a perspective in the fourth.
Use four viewports to show the four orthographics projections of a 4D object into 3D.

11It is unfortunate that this aptly named function had to be renamed in the OpenGL
vocabulary. The contemporary identification of “window” with a resizeable viewport is
too strong to allow for a double meaning. Thus it acquired the hardly euphonic name
“frustum”, after a section of any solid between parallel planes, often misspelled “frustrum.”

12Some people call it the “cross-eyed” mode, since it is (erroneously) thought to induce
this malady.

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801

40 illiSkeleton

Devise a system of many viewports that display a homotopy some time steps apart in a
system of temporal small multiples in the sense of Tufte.13

The principal navigation is effected in chaptrack() whose arguments are the
coordinates of the center of the window, mx, my where the bullseye is drawn.
The displacement, dx, dy , of the mouse from the center is clamped to zero if
the mouse is within 5 pixels. This deadzone makes the mouse less responsive.
The displacement is interpreted as a small rotation about the x-axis, which
points East, and the y-axis, which points North. The left and right mouse
buttons are used to effect a large or small rotation about the z-axis, which
points into the screen. The fraction, torq, adjusts the responsiveness of the
mouse. Since rotations are non-destructive, one starts by loading the identity
matrix onto the stack. In the FLYMODE the incremental rotation, U , on the
stack is relative to the camera, which assumed to be at he origin of the world
coordinate system.14 Therefore, the stars must be rotated. A duplicate of
U is left on the stack by the pushmatrix() . It updates the star matrix M
by multiplication. Thus, if the mouse is parked slightly off the bullseye, a
succession of small rotations are applied to M .

Pressing the middle mouse button effects a translation in the Z-direction
by a vector increment, dZ. The fraction speed adjusts the apparent speed
of forward motion. The shifted middle mouse flies backwards. We may
regard the composition dA = dU dZ as an incremental change of the affine
matrix in the Euclidean group. After n frames, the affine matrix, A =
I dAn dAn−1 ... dA2 dA1 , is just the integral of all the little differential affine
motions chaptrack() has implemented.

It should be noted here, that just like a Euclidean translation matrix, T (m)
depends on a single vector m of motion, a Euclidean rotation matrix, U(a)
depends on a vector a whose direction â and magnitude α is the axis and angle
of rotation. We shall consider the arithmetic of the group of rotations later,
and suppress the rotation vector in the notation. For now it is useful to know
that the affine matrix of a Euclidean motion may be factored, A = T (m)U ,
with composition, commutation and inversion rules given by:

T (m1)U1T (m2)U2 = T (m1 + U1m2)U1U2

T (m)U = UT (UTm)

(T (m)U)−1 = T (−UTm)UT .

13Edward Tufte, The Visual Display of Quantitative Information, Graphics Press, 1983.
14The letter R is unsuitable for the name of a rotation matrix. We use U instead.

Renaissance Experimental Laboratory and UIMATH.grafiXlab.

Geometrical Computer Graphics 41

The superscript T emphasizes the fact that the inverse of a rotation matrix
is just its transpose.15

After n-frames, the affine matrix, A = I dAn ... dA2 dA1, is just the integral
of all the little differential affine motions calculated by chaptrack().

However, in the TURNMODE the object is to be rotated about its own center. In
that case, we use the translation vector,m, of A = T (m)U to translate a point
X back to the origin, apply dA, and translate back.16 Thus once through
chaptrack() in TURNMODE with dA = dTdU , has the effect of replacing A by

A1 = T dA T−1 A = T dT dU T−1 T U = dT T dU U.

Consequently, after n iterations, the net change is,

An = dTn dTn−1...dT1 T dUn dUn−1 ... dU1 U.

and the illiRotor has smoothly accumulated the translation and rotation
intended by the mouse displacements.

Exercise 5. Six-way Navigator
Build a navigator which has all six translations. For example, let a click of the middle
mouse button represent a switch into translation mode, with the mouse deviation from
the center representing translation. Note that this way it is not possible to fly because
the mouse manages two modes consecutively instead of simultaneously. To recover the
simultaneity, use buttons to manage translations.

All that remains is to assemble all of these components into main(). In the
overture of main() we set up the state of the rtica. These routines are done
only once, and the order in which they occur does matter somewhat. We
read the arguments() from the command line after the deFault() in case
the user wishes some changes. Since deFault() is called by the (Z)ap-key,
and at present, arguments() does not change the default values, zapping
reverts to the hard coded defaults. Note that a useful modification would

15Care must be taken to distinguish between Euclidean transformations in 3-space, and
their representation as 4-dimensional matrices as they apply to the so-called homogeneous
coordinates of points in 3-space.

16In the column vector mode, the affine matrix T (m)U is represented by

aff[col][row] =

U00 U10 U20 m0

U01 U11 U21 m1

U02 U12 U22 m2

0 0 0 1

 .

In the traditional computer graphics mode, the row vector for a vertex is multiplied into
the transpose of this matrix. However, the code does not have to be changed, because
aff[][] is the same array of arrays in either case.

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801

42 illiSkeleton

be for (Z)ap to become a cycler which moves through various default sets,
including the one from the command line (exercise!)

Since the star-object was factored into initstars() and drawstars(), the
former is called here, the latter in the eternal loop. Recall that the other
object, drawcube(), initializes ‘itself’ the first time it is called.

The switch on the window flag defaults to a voluntary window for win=0, to
a borderless window in the correct position for shipping to an NTSC17 pro-
jector for win=1, and a full screen forwin=2. The foreground() reverses the
default action by the Iris, which runs graphics processes in the background.
Whether or not you wish to run in foreground is a matter for the applica-
tion. Experiment! Similarly, you might see what happens if you don’t use
zbuffer(), doublebuffer(), or RGBmode(). However, except for the sec-
ond one, nothing visible will occur with just the wire-frame cube. You should
put a painted surface, for example the octahedron, into skel. If you IFCLICK

some of these options inside the eternal loop, don’t forget that sometimes
gconfig() needs to be called to implement the changes.

The second part is the eternal loop, which can be (ESC)aped. Sometimes,
it is good to use a shifted (ESC)ape key for quitting, so that one can edit
in another window. Originally, the same sequence of functions are called
each time through the loop. However, for certain purposes, such as editing
text in another window, is may be useful to suppress the keyboard(), or to
freeze the mouse activated chaptrack(). Here IFCLICKs are used for these
options. Note that inserting and deleting such “interrupts” is editorially easy.
Only one place in the code needs changing.

The reshapeviewport() matches the current viewport to the window, which
might have been resized by hand since the last frame was constructed. The
czclear() function is a compound that clears both frame- and z-buffers. The
dimensions xt, yt and the coordinates of the lower left hand corner of the
current window are read by getsize(&xt, &yt), and getorigin(&xo,&yo)

respectively. This way, the computed center of the viewport can be fed to
chaptrack().18 Since chaptrack() sets up all of the geometrical transfor-
mations, we can call skeldraw() next, followed by the messages(). You
might put an IFCLICK around the swapbuffers() to see what happens if
you don’t.

Exercise 6. illiOctahedron
Put the octahedron from oc1.cl into skel.c to obtain illiOctahedron.

17To fit into a standard NTSC video screen we use 540 x 480 pixels
18This function is named after Glenn Chappell, who whose 1990 Math 428 project,

illiFlyer, greatly influenced our navigation algorithms ever since.

Renaissance Experimental Laboratory and UIMATH.grafiXlab.

