
20 illiTorus

/************************************/
/* tr1.c = Torus with illiLight */
/* RTICA by G. Francis, U. Illinois */
/* This version (C)1996 August 31 */
/************************************/

#include <gl.h>
#include <device.h>
#include <math.h>
#define MAX(u,v) ( u<v ? v : u)
#define MIN(u,v) ( u<v ? u : v)
#define CLAMP(x,u,v) (x<u? u : (x>v ? v: x))
#define FOR(i,a,b) for(i=a;i<b;i++)
#define DG M_PI/180
#define S(u) fsin(u*DG)
#define C(u) fcos(u*DG)

float lu[3], vv[3],lux[]={0.3,0.5,0.8}, amb=.3, pwr=10., lmb ; int ii,jj;

int paint(float lmb, int cat, int dog){
int rr,gg,bb; float spec; /* illiPaint, Chris Hartman 1993 */
rr = dog; /* map R^2(dog,cat) -> R^3(RGBspace */
gg = 64 + abs(cat-128);
bb = 255 - cat; /* illiLight by Ray Idaszak 1989 */
lmb= MAX(lmb,amb); /* clamp lmb to ambient below */
spec = MIN(255, 255*(1.-pwr +pwr*lmb)); /* clamp spec below maximum */
rr = MAX(lmb*rr,spec); gg = MAX(lmb*gg,spec); bb = MAX(lmb*bb,spec);
return( (bb<<16) + (gg<<8) + rr); /* hex for cpack */

}
hair(int th,int ta){ /* of the dog that bit you */

float nn[3]; /* torus = circle of circles */
nn[0] = C(th)*C(ta); vv[0] = C(th) + .5*nn[0];
nn[1] = S(th)*C(ta); vv[1] = S(th) + .5*nn[1];
nn[2] = S(ta); vv[2] = .5*nn[2];
lmb = nn[0]*lu[0] + nn[1]*lu[1] + nn[2]*lu[2]; /* Lambert cosine */
lmb = CLAMP(lmb,0.,1.);

}
drawit() {int th, ta;

for(th=10; th < 346; th += 15){
bgntmesh();
for(ta=5; ta< 346; ta +=15){

hair(th,ta);
cpack(paint(lmb,255*th/360,255*ta/360));
v3f(vv);
hair(th+15,ta);
cpack(paint(lmb,255*(th+15)/360,255*ta/360));
v3f(vv);

}endtmesh();
} /* end theta */

}

Renaissance Experimental Laboratory and UIMATH.grafiXlab.



Geometrical Computer Graphics 21

calculite(Matrix aff){ /* fix light source relative to rotation */
FOR(ii,0,3){lu[ii]=0; FOR(jj,0,3)lu[ii]+= aff[ii][jj]*lux[jj];}

}
void arguments(int argc,char **argv){ /* Pat Hanrahan 1989 */

while(--argc){
++argv; if(argv[0][0]==’-’)switch( argv[0][1]){

/* case ’w’: win = atoi(argv[1]); argv++;argc--;break; */
case ’a’: amb = atof(argv[1]); argv++;argc--;break;
case ’p’: pwr = atof(argv[1]); argv++;argc--;break;
case ’L’: lux[0] = atof(argv[1]);

lux[1] = atof(argv[2]);
lux[2] = atof(argv[3]); argv+=3;argc-=3;break;

} /*end switch */
}/*end while */

}/* to add/subtract commandline arguments insert/delete like code */

main(int argc, char **argv){ Matrix id, aff;
FOR(ii,0,4)FOR(jj,0,4)id[ii][jj]=aff[ii][jj]=(ii==jj);
arguments(argc,argv);

winopen("torus with illiLight ");
zbuffer(1); doublebuffer(); RGBmode(); gconfig();

while(!getbutton(ESCKEY)){
int dx = (getvaluator(MOUSEX)-640)/4;
int dy = (getvaluator(MOUSEY)-512)/4;
loadmatrix(id);
rotate(dx ,’y’); rotate(-dy,’x’);
multmatrix(aff); getmatrix(aff);
calculite(aff);
reshapeviewport();
ortho(-2.0,2.0,-2.0,2.0,-2.0,2.0);
multmatrix(aff);
cpack(0); clear(); zclear();
drawit(); swapbuffers();

} /* end while loop */
} /* end it all */

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801



illiLesson 2.

George Francis

September 24, 2009

1 Introduction

The rtica tr1.c introduces a painted1 surface, the torus, which is generated
by a simple, trigonometric parametrization. Indeed, the normal to this sur-
face is unusually simple and thus need not be computed with cross-products.
The normal is need for every kind of lighting. Here we use a lighting model
which is considerably simpler, more robust, and surprisingly versatile. Its
motivation is discussed below.

2 illiTorus

You should think of the main() function of the program as the locomotive
which pulls along a train of factor functions. In oc1.c there are two functions,
the array of octahedral vertices vv[6][3], and the t-mesh, drawit(), which
drew the painted faces of the surface. In tr1.c we separate the drawing
function drawit() into two factors2 paint() and hair(). The latter gener-
ates what is to be drawn, the former says how it is to be colored and lighted.
The main() function has two new factors, arguments(), which handles input

1To use color in a mathematically useful manner, it is necessary that the rtica can
assign a color to each computed point on the surface. One can do better than that with
texture maps, which we introduce later on. We would not need texture maps for painting
surfaces if we could draw a sufficiently fine mesh and still animate the surface interactively.

2Factoring functions has an aesthetic, conceptual and practical purpose. A phrase of
computer code that does not fit into a space that can be read in its entirety is difficult to
scan, either for content or for misprints. As a rule, a C-block should fit into a paragraph,
or into a computer screen window. Poems are easier to understand in their entirety than
a novel. Finally, smaller pieces of code are easier to edit and rearrange.

22



Geometrical Computer Graphics 23

from the command line in an extensible manner,3 and calculite(), which,
together with paint(), subsitutes for the enormously complicated business
of light and shadow in the standard gl-lighting model.

In oc1.c the drawit() function displayed all vertices and their colors in a
single list. Since the torus is a surface which is parametrized by two angles,
we can draw this surface with a pair of nested loops. The inner one draws a
triangulated ribbon by generating a stream of vertex pairs. Their position,
vv[3] is calculated by the function hair()4 The same function uses the
surface normal, nn[3], to compute the Lambert cosine, lmb. This, in turn,
is used by paint() to set the color for the vertex as the argument for the
cpack(), and the vertex is sent to the t-mesh algorithm, vf3(vv).

The Lambert cosine is that of the angle between the light-source and the unit-
normal. This simplified Lambert-Phong lighting model includes an ambient
fraction and a pseudo-specular bright spot.5 To keep the bright-spot (more
or less) stationary relative to the observer while the torus rotates, the light
direction is recalculated by the function calculite().

Here then are the new features:

• Generating a torus as an ovalesque, which is a successsion of circular6

ribbons. A surprisingly large number of interesting surfaces are ovalesques.7

• Defining position and normal for points on a parametric surface.8

• A paint function9 which interprets a two dimensional surface attribute

3Command line arguments are data you place after the name of the program, usually
with an indicator in the form of a dash followed by a letter, followed by one or more
numbers. While Hanrahan’s code presents a instructive puzzle in C-syntax, it is easy to
modify. You can remove or add a case, as we have done by commenting out code between
case and break;, or writing in a new one.

4Which also computes the unit normal to the surface at each vertex, hence its silly
name.

5The prefix ‘pseudo’ signifies that the spot is not quite at the correct location on the
surface.

6More generally, ellipses.
7All of the rounded graphical primitives: cylinders, cones, spheres, ellipsoids, tori and

knot-tubes. But also more artistic shapes, such as the Etruscan Venus are generated by a
moving ellipse.

8For general parametric surfaces it is always a question whether it is more efficient to
compute their normals analytically or approximating them by taking cross-products. For
ovalesques, the radius of the circles, while not always a normal, is at least transverse to
the surface, and can serve as a pseudo-normal for lighting purposes.

9Color wheel would be the more traditional term. But color already has too many
different meanings. So we use the term paint for the pigment assigned to a vertex as
distinct to the rgb-point in 3-dimensional color space.

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801



24 illiTorus

as a 3-dimensional surface color.

• How to rotate an object under stationary illumination using a rudi-
mentary rotor.

3 Ovalesques

Just as a ruled surface is one generated by a moving line, an ovalesque is a
surface generated by an oval curve. A plain torus is swept out by a smaller
circle centered and perpendicular to a larger circle10. The generating circle
itself can be created by a trigonometric interpolation from the equatorial
(horizontal) vector which rotates with theta, and a fixed vertical vector. The
radius of this circle is 1

2
. Each such circle is displaced a distance 1 along the

equatorial vector. This may be expressed thus cos(θ)
sin(θ)

0

 +
1

2


 cos(θ)

sin(θ)
0

 cos(τ) + sin(τ)

 0
0
1


 .

Other surfaces are constructed differently, and we wish to separate the def-
inition of a surface logically from its drawing on the Iris. Here, drawit()
uses a nested loop, the θ parameter making not quite a circle in the outer
loop, and the τ parameter making not quite a circle in the inner loop, which
is t-meshed.

The t-mesh function on the Iris is so designed as to make it easy to code a
triangulated ribbon. Note that this mesh makes no calls to swaptmesh().
To draw the ribbon think of a ladder. If you mention the vertices, beginning
with the lower left, and proceed rung by rung, then the t-mesh requires no
swapping11.

Note that drawit() calls the hair() not only to supply the coordinates
of the current vertex and its normal, vv[], nn[], but also update lmb, the
Lambert Cosine of the angle between the light and normal directions. We use
a global variables here for convenience12 and rely on the reader to remember

10What surface do you get if ‘smaller’ and ‘larger’ are reversed?.
11You might use the backface() function to rig a version of tr1 to show how the

orientation is affected by the order of mention. How many swaps do you need to draw the
backside of the ribbon so that the triangles are the same? An important application of
this secret is the t-meshing of ribbons that are painted differently on one side than on the
other.

12Redesign this rtica so that hair() returns pointers to these items. While you’re at
it, make drawit(int(*hair)()) able to draw different surfaces under button control.

Renaissance Experimental Laboratory and UIMATH.grafiXlab.



Geometrical Computer Graphics 25

their names. Globals need to be justified because they are a source of error
in very large programs, especially when more than one cook stirs the broth.13

To retrieve the argument for cpack() from paint() we send this function the
Lambert cosine and the position of the parameter pair as fractions of the the
rectangular parameter patch. More elaborate ovalesques will be discussed
elsewhere. Actually, drawit() doesn’t care what it is asked to draw, so long
as it is parametrized by a rectangular patch.

4 Parametric Surfaces

The torus is, of course, doubly periodic. So it is natural to use trigonometric
functions to define it. Also, the unit normal, nn[], for the torus is particularly
simple. It points to the position on the generating (meridian) circle after it
has been translated to the origin and adjusted to unit radius. This shows
that the Gauss map of the torus (which assigns to each point on the surface
its unit normal) covers the sphere twice.14

Since the Gauss map is needed to estimate the lighting of an illuminated
surface, and few surfacs other than planes, spheres, cones, cylinders and
tori have simple Gauss maps, this item computationally expensive15. All
things16 being equal, the choice between the simplicity of approximating the
normal by crossing two independent positional displacements17 and deriv-
ing parametric expressions for it, is a trade-off between efficient coding and
mathematical elegance.

5 Paint Functions

The C-phrase prefix int in the definition of

int paint(float lmb, int cat, int dog){...}
13Of course, when hacking a program, globals variables, along with static local variables,

become invaluable.
14See pp 97, 103 of G. Francis, A Topological Picturebook, Springer Verlag, 1987, or any

good geometry book for more on the Gauss map.
15Often more so than the position, since it involves partial derivatives and cross products.
16Like speed.
17Preferably ones that have to be computed anyway.

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801



26 illiTorus

in tr1.c reminds you that it returns one integer.18 Its inputs consist of the
floating point Lambert cosine, and two integers19 which one should think of
as two color bytes. The scheme here is to let red follow the dog, which is
correlated here to the θ parameter. Blue follows cat, but with a negative
correlation;20 and green peaks when the cat is close to the edge. The idea
of this paint scheme is to let one axis linearly interpolate (lirp) two primary
colors, while the second axis pushes this towards a linear interpolation be-
tween the complementary secondary colors. This way one can infer, at least
qualitatively, the parameters preimage of a position on the surface.21

Theories for how to simulate the light on drawings of a surface, whether
by hand or computer, all begin with Lambert’s cosine.22 A perfectly matte
reflector radiates visible energy in all directions proportional to the amount
received from the light-source. This in turn, is proportional to the cosine,
λ = lmb, of the angle between the normal and the light direction. hair()

also clamps λ to 0 when the normal faces away from the light.23 Thus the
backside of a surface facing the light, and the front face of a surface facing
away from the light would both be invisible.24 So paint() next clamps λ
above an agreed upon ambient fraction.

To simulate the bright spot produced by the reflection of a single, white
light source off any colored surface, we locate the region when λ exceeds a
certain threshold, and ramp all three colors steeply to the maximimum. This
threshold is controlled by a parameter, called pwr.25 The higher this number,
the smaller is the diameter of the bright spot.26

18Actually, C-functions return integers by default, and other types by declaration. But
they can only return one item, hence more elaborate outputs of functions, such as vectors
and arrays, have to be transferred by their pointers. C-functions have other peculiarities
the novice would never suspect. In these notes we shall experiment with various C-ish
ways of working around these minefields but not always with much fanfare.

19We retain Chris Hartman’s apt names, since the dog often chases after the cat, or the
other way around.

20For didactic reasons, only.
21Another favorite paint scheme is to map a single scalar associated with a position on

the surface to a rainbow color spectrum. This is considerably more difficult to program
and we leave it as an exercise.

22See pp60-64 of the Topological Picturebook for the story of the geometrical theory of
light and shade began with Lambert and Bouguer in the early 18th century.

23The cosine is negative.
24Generally, artists alleviate this by using partial backlighting by replacing a negative λ

by a fraction of its absolute value.
25In conventional lighting models actual powers of fractinons are used. However, the

power of a fraction is essentially zero until it rises steeply to 1. Only the steep ramp is of
interest and we replace the power by a linear function.

26A surprising artifact of this model occurs when the power drops below 1. The contin-
uous change to a monochrome lighting is not possible with conventional lighting models.

Renaissance Experimental Laboratory and UIMATH.grafiXlab.



Geometrical Computer Graphics 27

6 Stop the Sun

To simulate a stationary sun27 shining on a rotating object, we consider our
object stationary, and move the sun about it. We do this because the color
of a vertex needs to be specified the moment its coordinates are started down
the graphics pipeline. And these are in the coordinate system of the object.
We rotate the object by multiplying its coordinates by a rotation matrix after
the color has already been computed. Therefore, we compute where the sun
should have been in the object’s native world so as to appear stationary to
the rotating object. Fortunately, the inverse of a rotation matrix in Euclidean
geometry is its transpose. That is why calculite() is so simple.28

The advantage of our lighting model, illiLight,29 conventional ones30 is its
simplicity and robustness. The object cannot simply dissolve into colorful
nonsense or disappear altogther when its control parameters, amb, pwr, ac-
cidentally are allowed to go out of range31. Instead of polynomial functions
of fractional numbers32, illiLight uses maxima and minima to select the dom-
inant lighting effect. It is not hard to add additional, monochromatic lights,
and to localize them, though for such complicated features it is better to
master33 the Iris lighting model, which comes with library routines for all of
this.

7 Command Line Arguments

Here is how arguments(int arg c, char**argv) works. The C-shell interpreter34

arranges the information on the command line into an array argv of words

27We take the light source to be infinitely distant so that the light-direction does not
have to be recalculated for each vertex.

28More generally, we shall need the inverse of a Euclidean motion, which combines a
rotation with a translation. This is not much more complicated, but will be deferred until
the next chapter.

29This lighting model was first implemented by Ray Idaszak in 1988, when illiView was
started. It was improved over the years, notably by Glenn Chappell’s calculite(), and
Chris Hartman’s ( paint().)

30Like the one provided by the Iris and described in the Guide.
31However, mysterious color artifacts develop if floating point values are passed to inte-

gers functions such as cpack()
32Lambert cosines, for example.
33We do not recommend it to people who are in a hurry or easily frustrated by inscrutable

‘black boxes’.
34The program listening for you to press the Enter-key.

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801



28 illiTorus

argv[0], argv[1], ... argv[argc - 1], each being a character string.35

When -- preceeds the variable name, it means that its value is decremented
before it is used. Since argc is always greater than 0, the while() loop
is never entered unless there is something else besides the name of the exe-
cutable on the input line. If there is, we advance the word pointer, argv, so it
points to the next word. That is why argv[0][0] now is the first character
of the second word on the command line.36 In effect, the action ++argv drops
a word off the front of the list. We next use the letter following the dash,
namely argv[0][1], to decide what to do next. Whatever it is, we pick up
the subsequent words, which are numerals, of course. These numerals have
to be converted to numbers, and for that there are the functions atoi(),

atof(), which are abbreviations for “alphameric data converted to integer,
resp. float values.”

Each time we use a numeral, we have to eliminate it from the command
line, by incrementing the word pointer, argv++, and decrementing the word
count, argc--. The break takes us out of the cascade of cases.

As it appears now, the only items you can change from the command line
are the ambient fraction, the power integer, and the coordinates of the light
source.37

8 Modifications and Improvements

There are, of course, a great many more features and improvements that
come to mind immediately, that should be added to illiTorus to make it
much nicer and versatile rtica . In fact, we do this in the next chapter.
A more profitable outlet of your creative inclinations at this point would
be to use the present structure of oc1.c and tr1.c to explore some other
polyhedra, some other parametric surfaces, and perhaps to combine the two
kinds of geometrical objects in the the same rtica .

35Thus argv[0] is, in fact, the name of the program you are executing.
36And it has to be a dash or we quit.
37The command line is the oldest interactive means of influencing a C-program. The

mouse, keyboard, and latlely widgets, like pull-down menues, sliders etc., have largely
supplanted the command line for data input. One good use remaining is to set a few
switches for alternate operations of your program.

Renaissance Experimental Laboratory and UIMATH.grafiXlab.


