
UIUC Math 198 Hypergraphics 2001 Class Notes 1

Logistic Chaos

Another application of the figure-ground reversed manner of drawing a function
graph you saw in sinewheel is this introduction to logistic chaos. You may not
be familiar with the mathematics behind this progam, so we shall start with that.

Consider a population of something, say mosquitos in a swamp, which grow at
a rate ρ. That is, the next generation of mosquitos is directly proportional to
the current generation, y = ρx. By substitution you can calcuate that successive
populations, starting with x0, comprise the geometric sequence,

x0, αx0, α2x0, ...

which has one of three equally dull outcomes. If α 6= 1, the mosquito population
either dies out or increases indefinitely.

Since the latter is unlikely, we improve the model a tiny bit. Let us agree that
there is a maximum possible population determined by the food available in the
swamp. This is called the carrying capacity of the environment. We take this to be
1, which automatically makes our population variable x a fraction of the carrying
capacity. Thus normalized, we obtain a manageable geometric problem. We can
express the effect of nearing the population limit by making the reproductive rate
ρ itself proportional to how close we are to 1. Thus our equation becomes

y = 4 ∗ ρ(1− x)x .

This is called a logistic growth model. The factor 4 is chosen so that the propor-
tionality constant α exactly measure the maximum altitude of this parabolic arch
which touches the x-axis at 0 and 1.

You can discover some rudimentary properties of this system by drawing pictures
accurately with pencil, paper and a right angled ruler. The trick is to plot the
values of the logistic function not along the x or y-axes, but along the diagonal of
the unit square. For example, starting from the input value x = .33 roughly a third
of the way along the diagonal, find the point above or below on the parabola, and
proceed horizontally to the output value f(x). You are now ready to repeat the
procedure forever, generating a discrete dynamical system based on the feedback
loop x← f(x).

Exercise 15. With pencil, paper and ruler check that the population must become extinct

for α < 1
4
. For then the parabola remains below the diagonal, and every orbit steps its way to

oblivion. Next convince yourself that for 1
4

< α < 1
2

the population converges to a single, positive,

steady-state value, no matter where it begins. But past α > 1
2

life is not so simple.

We can speed up our graphical investigations with a computer. First we describe basicBASIC
the essential part of our visualization, in basic. Then we describe an interactive
extension, but now in basiCglut, which faithfully emulates the way it was origi-

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801

2 Hippocket Graphics Program Logistic Chaos

nally written in basic. This gives a glimpse of the evolution of computer graphics
languages.1

5 REM CHAOS

10 CLS

20 DATA 63, 63, .5, .01

21 READ XM, YM, A, D

90 X = .9

100 REM ETERNAL LOOP

140 Y = 4*A*(1-X)*X

150 XX=X*XM : YY = Y*YM

155 XY=X*YM : YX = Y*XM

160 LINE (XX,XY)-(XX,YY),1

165 LINE (XX,YY)-(YX,YY),1

170 X=Y : REM NEW REPLACES OLD

180 GOTO 100 : REM FEEDBACK

199 END

In order to play with this program, i.e. to make it interactive, you might proceed
as follows. The line

25 INPUT "A= "; A

asks you for a value of A.2 Can you change line 90 to accept a user chosen initial
value?

Exercise 16. Apply the skills you have gained by completing the exercise for the sinewheel

program to add a subroutine to your chaos program which draws the graph of the parabola. This
time you do not want a fancy way of graphing the function, the dynamical system already uses
this device. Here is a hint. Enter these lines.

10

30 INPUT "GRAPH? (Y?N) "; A$

35 IF A$="Y" THEN GOSUB 200 ELSE CLS

200 REM GRAPHIT

210 CLS

299 RETURN

The blank line 10 erases the clear-screen command, saving it for when you really want it at 35

or 210. The line 299 returns the program to the place from where the subroutine starting at line

200 was called. Of course, you need to write the parabolic graphing routine and perhaps the unit

box and diagonal in the 200’s.

We now turn to an example of how a pocket program can mature into a fairlybasiCglut
useful mathematical tool. The following program is affectionately called Allerton
after a conference in Allerton Park.3

1The biological principle that “ontogeny recapulates philogeny” says that the stages an embryo
of an animal of passes through mimics the stages of the animal’s evolution. Perhaps this principle
applies elsewhere too?

2Incidentally, the keypress CONTROL-C will interrupt your program, and RUN will run it
again. Of course, there are more elegant ways of controlling your program, even in basic.

3The conference on using computers in mathematics instruction was in the early eighties.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu

UIUC Math 198 Hypergraphics 2001 Class Notes 3

We shall analyse this code in the order it is written in the program. You should
be running the program on a computer while reading this. As an exercise, you
could design a tutorial which teaches the student the mathematicasl story using
Allerton without going into the computational details.

/* Logistic Chaos in GLUT, gkf 22jan2K on linux, 10aug on windows */
/* translated into basiCglut form the original Applesoft BASIC */
/* revised 26nov2K and 5jan01 */
#include <stdlib.h>
#include <stdio.h>
#include <gl\glut.h>
#include <windows.h>
#include <math.h>
#define WIN 640 /* size of the square window */
#define NAP 100 /* microseconds for ell() only */
#define SLEEP(u) usleep(u) /* usleep() - inux, sginap() - irix */
#define FOR(i,a,b) for(i=a;i<b;i++)
int ii, jj, kk; float tmp, temp;
float xmax = WIN , ymax = WIN , /* screen size */

x =.9, y = .9, A = .99 , /* world variables */
xx, yy, xy, yx, /* screen variables */
alt = .96, /* altitude of parabola */
pnt = .9 , /* starting point */
del = .01 ; /* graph step size */

int clr =0, /* color index */
til = 10, /* run ells til */
nth = 1; /* iterate */

float rainbow[8][3]={ {1.0, 0.0, 0.0}, /* red */
{1.0, 0.5, 0.0}, /* orange */
{0.8, 0.8, 0.0}, /* yellow */
{0.0, 1.0, 0.0}, /* green */
{0.0, 8.0, 0.8}, /* (blue) cyan */
{0.0, 5.0, 1.0}, /* indigo */
{1.0, 0.0, 1.0}, /* (violet) magenta */
{1.0, 1.0, 1.0} }; /* white */

int hasnumber, number, decimal, sign ; /* SLevy bump gadget */
/**/
void usleep(int nap){int ii; for(ii=0;ii< nap; ii++);} //a bad kludge
/**/

This was the time when the University of Illinois began to switch form its pioneering PLATO
system to microcomputers. Although I had translated this example from PLATO to Applesoft, I
presented only the transparencies. A colleague brought an Apple computer to the conference. He
convinced me once and forever that a single live computer demo is worth a hundred slides and
transparencies.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801

4 Hippocket Graphics Program Logistic Chaos

The preamble of this program is pretty much self-explanatory. The abbreviation
FOR(i,a,b) (starting a counted loop) is easier to type than its more versatile
counterpart in C. It is also less likely to be mistyped. The rainbow contains an
approximation to those colors. You can tweak these RGB values to make the colors
look better.

This program introduces Stuart Levy’s gadget for writing into the graphics window
and reading entries made there. It mimics the command lines at the bottom of
the Applesoft high resolution screen. We will see how it works later.

From the backslash, <gl\glut.h>, and the windows.h header file in the includes
you can see this is the VC98 version of Allerton. Because nobody could find a
counterpart to the Linux pause function, usleep() , it was redefined as a longish
loop.4 it can be quickly replaced or removed.

The function definitions in Allerton begin with the logistic equation. Here you
can write different functions, perhaps using a switch-case statement and a key-
controlled choosing gadged between different functions.

/**/
float func(int nth, float x){

FOR(ii,0,nth)x= 4 * alt*(1-x)*x; return x;
}
/**/
void drawell(void){

y=func(nth,x); /* evaluate */
xx = x*xmax ; yy = y*ymax; /* world to screen coords */
xy = x*ymax ; yx = y*xmax;
glBegin(GL_LINE_STRIP);
glVertex2f(xx,xy); glVertex2f(xx,yy); glVertex2f(yx,yy);
glEnd();
x = y; /*feedback*/
SLEEP(NAP);

}
/**/
void frame(void){ /* box with diagonal */

int bot=1, top=WIN;
glBegin(GL_LINE_STRIP);
glVertex2f(top,top); glVertex2f(bot,top); glVertex2f(bot,bot);
glVertex2f(top,top); glVertex2f(top,bot); glVertex2f(bot,bot);
glEnd();

}
/**/
void wipe(void){glClear(GL_COLOR_BUFFER_BIT); glClearColor(0.,0.,0.,0.);
}

4This is an example of a “hack” involving an inelegant solution, or “kludge”.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu

UIUC Math 198 Hypergraphics 2001 Class Notes 5

/**/
void graph(void){ float x; glColor3fv(rainbow[clr]);

glBegin(GL_LINE_STRIP);
for(x=0; x < 1+del; x += del)

glVertex2f(x*xmax, func(nth,x)*ymax);
glEnd();

}
/**/
void run(void){ glColor3fv(rainbow[clr]); FOR(jj,0,10){drawell();} }
/**/

Type the keys for (W)ipe, (F)rame, (G)raph, el(L), and (R)un to see what the
next four functions do. Look at the code to see why they do it. These four are
also marked on the (H)elp button.

The (J) is next to the (H) and brings up the six gadgets that accept your input to
change the value of their parameters. To make this work from inside the graphic
window takes some explaining. Some functions we describe next are advanced and
some elementary.

/**/
float getnumber(float dflt){ /* return new or default number */

if(!hasnumber)return dflt;
tmp = sign ? -number : number;
return decimal>0 ? tmp/(float)decimal : tmp ;

}
/**/
void graffiti(char strng[128], float par){ /* from avn by SLevy */

char buf[128], *p ;
glColor3f(0,0,0); glRecti(5,3,WIN,20); /* erase old graffiti */
glColor3fv(rainbow[clr]); /* create and draw new graffiti */
sprintf(buf, strng, par);
glRasterPos2i(5,5);
for(p=buf; *p; p++)glutBitmapCharacter(GLUT_BITMAP_8_BY_13, *p);

}
/**/
void altit(void) {

alt= getnumber(alt); graffiti("%0.3f=(A)lt", alt); }
void point(void){

x=pnt = getnumber(pnt); graffiti("%0.3f=(P)nt",pnt); }
void delta(void){

del = getnumber(del); graffiti("%0.3f=(D)el",del); }
void until(void){

tmp = getnumber((float)til); graffiti("%f=(T)il",tmp); til=(int)tmp; }
void power(void){

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801

6 Hippocket Graphics Program Logistic Chaos

tmp = getnumber((float)nth); graffiti("%f=(N)th",tmp); nth=(int)tmp;}
void color(void){

tmp = getnumber((float)clr); graffiti("%f=clr",tmp); clr = (int)tmp; }
#if 0
void help(void){ fprintf(stdout,

"(ESC)ape (w)ipe (f)rame (g)raph el(l) (r)un (h)elp \n \
(a)ltitude (p)oint (d)elta (n)th (t)il (c)olor \n ",0);

#endif
void helpH(void){

graffiti("(ESC)ape (W)ipe (F)rame (G)raph el(L) (R)un (H)(J)",0); }
void helpJ(void){

graffiti("(A)ltitude (P)oint (D)elta (N)th (T)il (C)olor",0);}

/**/

Both getnumber()and graffiti() are advanced.5 They are factors of the next
six gadgets, which have similar structure. For example, alt is the altitude of the
parabolic arch. Being a parameter, it is a global variable, used by several functions
independently. First, alt = getnumber(alt); assigns a new value to the altitude
if you typed one in, and otherway keeps the old value by default. Secondly, put
some graffiti on the wall.

Now, please experiment with the (A)ltitude, the initial (P)oint, the stepsize (D)elta
for the graph, the (N)th power the logistic is iterated before the next position is
drawn. Check out the interplay of (N) and (G). There is another loop variable
affecting a (R)un of el(L)s un(T)il you said s(T)op. The (C)olor gadget is even
trickier. Not only can you tell it which color to use, but pressing the key repeatedly
cycles the colors to help you tell a story with Allerton.

Finally, there are three helpers. The original help()is commented out in a peculiar
way. The compiler is directed to ignore the code between #if and #endif because
the ”0” is always false.6 If you don’t like graffiti and want to write to the command
window instead of the graphics window then use this instead of the other helpers.
In Unix the fprintf(stdout ... works normally. In Windows you’ll have to
experiment.

You have already met the keyboard() in prior pocket programs. But this one
is a step more sophisticated. For one, it has the rest of Stuart Levy’s gadget.
For another it chooses the display callback function for the GLUT library at your
command.

/**/
void cycle(int *par, int bas){

5Their operation but not their C-structure is discussed anon.
6This is a useful abuse of the compiler directives.

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu

UIUC Math 198 Hypergraphics 2001 Class Notes 7

if(hasnumber){*par = getnumber(0); return;} /* the 0 is a herring */
*par = (*par + 1)%bas ;

}
/**/
void keyboard(unsigned char key, int x, int y){
#define PLOT(foo) glutDisplayFunc(foo); glutPostRedisplay();

switch(key){
case 27: fprintf(stderr," Thanks for using GLUT ! \n"); exit(0); break;
case ’s’: {exit(0); break;}; /* stop */
case ’w’: {wipe(); break;};
case ’f’: {PLOT(frame); break;};
case ’g’: {PLOT(graph); break;};
case ’l’: { glColor3fv(rainbow[clr=(clr++)%7]); /* cycle colors */

PLOT(drawell); break;};
case ’r’: {PLOT(run); break;};
case ’h’: {helpH(); break;};
case ’j’: {helpJ(); break;};
case ’a’: {altit(); break;};
case ’p’: {point(); break;};
case ’d’: {delta(); break;};
case ’n’: {power(); break;};
case ’t’: {until(); break;};
case ’c’: {cycle(&clr,7); color(); break;};

}
glFlush(); /* superstition ? */
/* Stuart Levy’s gadget parser from avn.c 1998 */
if(key >= ’0’ && key <= ’9’){ hasnumber = 1;

number = 10*number + (key - ’0’); decimal *= 10;}
else if(key == ’.’){ decimal = 1;}
else if(key == ’-’){ sign = -1;}
else {hasnumber = number = decimal = sign = 0;}

}
/**/

The first function is again advanced and is used for the (C)olor cycler. In the
keyboard function we define a macro PLOT()which does two things. It hands the
GLUT-library to a new display funcation to “call back” when appropriate. And
it tells the GLUT-library to update itself, in case its fallen asleep.

The switch-case construction which turns your key-presses into action, can pretty
much be puzzled out. Note the two ways of writing a cycling gadget.7 The rest is
advanced wizardry.

7In computer graphics there is a well-defined notion of a widget in a graphical user interface
(GUI). A gadget is a poor man’s widget. It gets the job done with a minimum of fuss, not a
minumum of inconvenience. We will discuss gadgets at greater lengths in the second part of the
course.

George K. Francis, Mathematics Department, University of Illinois, Urbana, IL 61801

8 Hippocket Graphics Program Logistic Chaos

We now come the part that uses the GLUT-library.

/**/
void nothing(void){ } /* Glut3 forbids glutDisplayFunc(NULL); */
/**/
int main(int argc, char **argv){

glutInitWindowSize(WIN, WIN);
glutInitWindowPosition(10,10);
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB);
glutCreateWindow("<< Logistic Chaos in GLUT >>");
glutDisplayFunc(nothing);
glutKeyboardFunc(keyboard);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0,WIN,0,WIN,-10.0,10.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glutMainLoop();
return 0; /* ANSI C requires main to return int. */

}

Math 198 Hypergraphics, draft 6 January 2001, write gfrancis@uiuc.edu

