
illiSkel in C/OpenGL/GLUT

George Francis

3 January 2002

1 History of the program.

The real-time interactive computer animation (RTICA) illiSkeleton.c is a
practical derivative of the classic 1994 illiShell.c. It maintains the general
structure of its parent but is restricted to animating the monitor of the console.
The illiShell.c is a fully functional prototype application for the CAVE which
also compiles and runs on the console without proprietary CAVE libraries.

Originally written in C and IrisGL, the illiShell and its evolutes have gone
through many linguistic permutations, including C++ and OpenGL, with and
without the GLUT extensions. Its C/OpenGL/GLUT derivative skel.chas been
the basis of almost all RTICAs written since 1997 by students in illiMath courses
and workshops. As such, the illiSkel lends some kind of minimal structural
unity to illiMath, without resorting to proprietary libraries and packages which
impede portability and hamper creativity. The 2002 version of illiSkel is intro-
duced here. A subsequent chapter treats the extension to a CAVE and a CUBE
application.

2 Programming with illiSkel.

To minimize the time it takes to master the illiSkel, and maximize the freedom to
modify, extend or rewrite it, the program consists of a single source file of fewer
than 365 lines of code. We assume only the most rudimentary programming
skills, and have kept things brief and simple. The main() function appears at
the end of the program, in keeping with the (now unpopular) philosophy of not
working with a concept before knowing exaclty what it means. In particular,
factors of a function precede it in the linear order of the code. Like listing
the ingredients of a recipe before the instructions on how to cook the soup,
you have to be able to read the program backwards as well as forward. Thus
keystroke editors with nimble searching (vi or emacs) are better for studying
skel.cthan menu-driven scrolling editors. The reader displeased with this design
is encouraged to rewrite the skel in a more conventional style, but with an
agreement that every feature will work at least as well in the improved version.

To work with the illiSkel means to subtract and add functions, factor func-
tions that are getting too verbose, and divide the functions into affinity groups

1

by what they do and how they relate to each other. Such “arithmetic” also leads
to a better understanding of the illiMath system of writing real-time interactive
computer animation.

By subtracting functions you produce a derivative RTICA which is more
easily understood and built up again into a different one. You add functions to
produce an extension of the original, integrating new features, better graphics,
subtler navigation, etc. When a concept has grown too big to keep in mind
all at once, we factor it into smaller concepts. Similarly, a function that has
grown so big that it no longer fits on a page or a screen should be factored into
more manageable bites. But also when you plan to make many experimental
modifications to the same piece of a longer function, it wise to factor that section
out. Finally, functions fit into groups by how they share variables and purposes.

2

3 Function dependency tree.

To get an idea of how how the RTICA works when it is running (rather than
compiling) we use an easily edited function dependency tree. For the illiSkel
this might look like this.

main()
arguments()
deFault()
glut-initializions
glut-mainloop
with callbacks:
drawcons()
open-gl functions
glFrustum()
drawstars()
random()

drawall()
drawtor()
drawvert()

drawcube()
messages()
char2wall()
speedometer()

glutSwapBuffers()
keyboard()
deFault()
autotymer()

bump()
hasnumber()
getnumber()

specialkeybo()
mousepushed()
mousemoved()
reshaped()
idle()
autotymer()
glutPostRedisplay()
chaptrack()

Here is how to read this dependency tree. The main() function executes
arguments(), deFault() and registers the names of the callback functions
drawcons(), keyboard(), ... , idle(). Then the RTICA enters an end-
less main-loop. The display function here is called drawcons() and its alterna-
tive in the illiShell, drawcave(), is a callback function for the CAVE library.
On a single processor computer the display function is executed (almost) as fre-
quently as the speed of the graphics card allows. This loop is interrupted when

3

a key is pressed on the keyboard, a button pushed on the mouse, the mouse is
moved, or the window is reshaped, and the corresponding callback function is
executed. The global parameters and flags changed by the suite of input call-
backs are processed by the idle() function, which may be thought to be called
at least once per display cycle.1

We distinguish three groups of functions in the illiSkel:
Parameter management functions steering
arguments() //takes command line input
deFault() //re-usable initialization
keyboard() //non-queued keypress input
messages() //optional heads-up display
speedometer() //reports average frame rate
autotymer() //a simple clockwork animator
idle() //done between graphics frames
Scenery production functions: scenery
initstars(), drawstars() // factored star drawer
drawall() // draw everything else like
drawtor() // a painted torus
drawcube() // a hypercube
drawcons() // graphics on the console
Navigation functions: navigation
chaptrack() //mouse operated navigator

This document
normally fits
into a sequence
of lessons,
starting with the
illiOctahedron,
illiTorus,
illiQub, and the
exercises
associated with
them. However,
it is
self-contained
and can be
profitably
mastered with,
perhaps, one or
two
micro-derivatives
(ca 100 lines of
code) such as
oc1.c, qub.c.

4 Defines, includes and global variables.

In the interest of compactness, items usually found in a private header file ap-
pears at the top of skel.c. After including the public header files associated
with the standard libraries, we list a sequence of useful if debatable compiler
directives, also known a pound-defines. They are a species of macros. The pre-
compiler rewrites the code you hand it2 by substituting one string of symbols
for another. Thus, we shorten Brahma-Gupta’s constant (355/113) approxi-
mating π to M PI.3 The parenthesis are advisable, because the precompiler just
substitutes strings, not values. Many a bug develops by ignoring this fact of
life.4

The precompiler is, however, more obliging than that: it also substitutes
functional argument names. Thus the string MAX(foo, 5) in your code is

1On a multiprocessor computer, or in a distributed graphics cluster, the idle function
may be executed asynchronously with the graphics display functions. Thus, graphics calls
should should be made only by the display function, and data should be updated in the idle
function and its factors. That the navigation function chaptrack appears to violate this rule
is discussed below.

2Originally, before C++ specific compilers were created, the C++ precompiler rewrote the
code into C before submitting to a standard C-compiler.

3In Unix this actually redefines a more accurately defined constant by the same name. The
windows compiler is happy to be told a value of pi.

4The less permissive syntax of C++ methodically uses inline functions instead of pound-
defined macros.

4

rewritten to (((foo)<(5)?(5):(foo)). The extra parentheses prevent possible
misunderstandings in more complicated contexts.5

Macros make subsequent code shorter and more readable. It is cutomary
to use all caps for their names to make them easier to spot in the source code.
Do not expect to find them in compiler error messages, because the compiler
sees only only their expansions. Though replacing macros with function calls
is an alternative, it makes the program run more slowly and leads to verbose,
tortured code. Take the macro IFCLICK, which uses the function getbutton()
to set a switch bypassing a segement of code. The argument of getbutton() getbutton()

is the name of a key, and the function returns 1 if the key had been pressed.6

Inserting an IFCLICK macro anywhere in a function creates a block with a
static flag whose value persists from one call to the next. A keypress toggles the
flag. If the flag is down, the code segment is bypassed. In the idle() function,
for example, pressing the (=)-key will freeze navigation because the function
chaptrack(), which updates navigation, is not called again until you press (=).
Try the (–)-key and see what the OpenGL depth test does for a living.7

Exercise. Since all interrupts from the keyboard or the mouse are medi-
ated by the GLUT mainloop, you cannot bypass a callback function as easily.
But you can prevent the effect of a function by setting a flag right at its be-
ginning which makes it return empty-handed, as it were. For instance, write
IFCLICK(’+’, return;) as the first line of mousemoved() and mouse motion
will be ignored when you toggle the (+)-key. This won’t work right for the
keyboard callback. Why? Sometimes you’ll really want to write text into one
window while watching the RTICA in another, and wish that the RTICA were
deaf. Modify the code of keyboard() which solves this problem.

Exercise. Some macros are temporary constants, which you wish to change
between recompilations. For instance, the default skel.chas 32 meridians and
latitudes on its torus. After you have understood how illiGadget work, write
one which makes it possible to change how many strings make up the mesh of
the torus while it is running.

5 Parameter management functions.

We next discuss the those functions which are involved with the management
of control parameters. They are concerned with how something is rendered

5And, for the reader meeting the expression B?T:F for the first time, know that the compiler
evaluates it to the expression F if the value of B is 0, and otherwise to T.

6In IrisGL, getbutton() was a system function which really interrupted the program flow
and told the truth. In OpenGL, such interrupts are not allowed for reasons of inter-system
portability. So we must simulate this function as explained further on.

7Using IFCLICK transgresses the very tidy habit of processing all keypresses in the same
(two) input funtions keyboard(), specialkeyo(). Moreover, some C++ evangelists say that
one should not use such tricks at all. Too many IFCLICKs scattered throughout your code
will make the operation of your RTICA amusing, if not aggravating. Use it sparingly during
development or your code and for analysing someone elses code. Use it for hacking, debugging
and experimenting, especially when it is not clear yet what features should become permanent
options.

5

by the RTICA , not with what is rendered. The clockwork animation function
autotymer() appears first in the source code only for convenience of editing.
The first factor of of main() is arguments, which picks up the input you wrote
on the command line. It is not possible to settle on a best linear ordering
of the functions in the source code, so we keep the historical order for easier
comparison with RTICAs based on older versions. Use your editor to find the
functions in the code, and to trace its variables forward and backward.

A typical factor of main(int argc, char **argv) is a function that man- arguments()

ages the command line arguments(). The system reads the entire command
line and provides main() with a counter, argc, and a pointer of pointers, argv.
Initially, argc equals the number of words on your command line, argv[0][0]
is the the first character in the first word. The arguments() function we use
in skel.cwas designed by Pat Hanrahan to make it easy for you to add and
subtract command line switches. These are items marked with a single “dash-
letter” followed by one or more integers or floats.8

Entering a command line that looks like this,
iris % skel.x -w 0 -L 0. 0. 10. -g .8
sets the global flag win to 0. This specifies a particular size and location of

the drawing window, as specified by the calls to the GLUT library initialization
in main(). The function atoi() converts alphameric strings to integers, while
atof() does the same thing for floats. Thus, the final -g .8 sets the default
gap0 size to .8.9

The light direction vector also comes twice, lux[], luxx[], but for different
reasons. The default direction is (1,2,3), but it can be changed on the command
line with the -L option. We have capitalized the flag to remind you that is a
vector, not a number. In order for the bright spot (signifying the light source)
to move across a rotating object correctly, our lighting method, illiLight rotates
the light direction appropriately with luxx[].

All parameters should be assigned their default values in the deFault()
function.10 It is also possible to assign constant parameters at the time of their
definition. This was done for the the light direction vector, lux[]. Note that
we make sure that lux[] is really a unit vector. In deFault() we also reset the
two navigation matrices, aff[], starmat[], to the identity.11 The clockwork
autotymer() is also reset by deFault(). As you hack an RTICA you should
resist the temptation of neglecting to update deFault().

8Hanrahan’s ingenious code is not for the fainthearted. It also does not suffere fools
gladly. It expects to be used by people who know what they’re doing. Therefore, it had been
superceded in illiMath RTICAs by the much more robust but different getopt() command
line argument handlers. Hanrahan’s code was revived when we found just how awkward it was
to make the “getoptery” work in Windows. You are welcome to replace replace Hanrahan’s
arguments with something more foolproof as long as the functionality remains.

9The reason we need two gap variable is this. The deFault() functions resets all variables
to their current default values. Most of these are numbers. But some can be managed from
the command line.

10The capital F distinguishes this function from one with a similar name in some Iris header
files.

11Note the clever way someone in the past discovered how to get a 1 exactly for
ii={0,5,10,15}. Integer division yields the quotient, the mod function yields the remainder.

6

The keyboard() function converts the user’s wishes into the current state
of the RTICA by means of illiGadgets.12 The code here is heavily aliased with keyboard()

macros to make it easier for you to add and subtract gadgets. Since the pre-
compiler handles these, their effective scope is global, but you can wait to define
them to just before their first use.

The arguments of keyboard() are the key name and location of the mouse
(which we don’t use yet). The first thing we do is raise a flag in the key-vector
clefs[] corresponding to the pressed key.13 This way functions other than the
current one can know which keys were pressed. We can even register that several
keys were pressed. It is the duty of the clefs[] readers, such as getbutton()
to unset the flags.

Five classes of illiGadgets are defined here by macros, though we use only
the first three here. If you press the key described by the string K, then
PRESS(K,A,b) will execute code fragment A if the key is capitalized, and other-
wise b. The TOGGLE, CYCLE macros do as they are named. There is an integer
and a float slider wannabe, which you can use advisedly. Be sure to experiment
on a running illiSkel before reading further. Note, in particular, that repeater
keys also repeat the action. This can cause trouble on particularly fast comput-
ers and other measures have to be introduced into the macros to unpredictable
values.

This particular keyboard() has Stuart Levy’s advanced gadgetry partially
installed. With it, you do not need to hunt for a particular value, say of the
speed, torq parameters14 by pressing keys. You type a decimal number, such
as 0.0, or .9, before pressing the (Q)-key, and that is the value of the parameter.
To preserve the ability of changing a value quickly by a keypress, the bump()
function multiplies the current value by (1 + ε). Dividing by that sum is close
to multiplying by 1− ε).

Exercise. The ways of wizards are not lightly to be tampered with. You
could bump the nose, focal, mysiz, wfar, gap, amb, and pwr gadgets.
But the multiplicative nature of bump suggests that it is inappropriate for some
of these. Which? To demonstrate your understanding of SLevy’s gadgets, write
an additive bump, which is useful in integral gadgets, like cyclers.

The function of the keys is discussed later, at the place where their parame-
ters and flags are implemented. But the last two gadgets merit some discussion.
The ZKEY here simply calls the deFault() function. There is room here for a
second set of defaults on the shifted-ZKEY. However, it is easily converted to a
cycler that permits an even larger choice alternative initial conditions.15

12We call these objects “gadgets” to distinguish them from “widgets”, which serve the same
purpose. Unlike widgeteers, we discourage pull-down menus, scroll-bars, simulated dashboards
and the like, all of which distract you from using your eyes to look at the RTICA , and your
hands from controlling its performance. Imagine puppeteers or airline pilots applying their
hands and eyes to pull-down menus.

13We also guard against overrunning the array by making sure that key-numbers higher
than 127 are registered in clef[0].

14These influence the power behind your mouse. Slow computers need higher values of
speed, torq and vice-versa.

15We encourage this and similar programming devices to reduce the waste of time in re-

7

A discussion of two more input functions belongs here but are deferred.
The specialkeybo() is needed because the GLUT library recognizes that the
keycode returned by the non-ascii keys are system dependent. The second is
the function that interprets mouse gestures. Since we use the mouse exclusively
for navigation its discussion is also deferred.

The messages() function manages the (optional) heads-up display of data messages()

on the graphics screen. Such graffiti grabs your attention and invites immedi-
ate experimentation independent of other documentation.16 The indispensible
companion feature to keyboard and mouse input is a verbal echo on the screen.
While most keypresses also have a visible echo in the effect on the animation
they produce, these tend to be qualitative. At screen location (x,y) the macro
LABEL(x,y,W,u) write text W, formatted as in the printf family of C-functions,
and uses one variable u. The char2wall() factor uses a handy character gen-
erator which will prove useful for placing text into a 3D scene as well. We
use a 2-dimensional coordinate system for the graphics window, calibrated from
lower-left at (0,0) to upper right at (3000,3000). Thus the bullseye is reliably in
the dead center of whatever window we choose to look through.

There is a mnemonic embedded in the graffiti in that keys that can be pressed
are enclosed in parentheses. The square-bracket indicates SLevy gadgets. If you
want to add graffiti, note that the current spacing for letters is 70 units vertically.

The autotymer() is a poor-man’s clockwork animator. It is designed to autotymer()

make it easy to simulate keypresses which manage parameters. When you toggle
the (H)-key, the torus shrinks nearly into a rectangle, and then expands again
to almost close up. Here is how the autotymer() does it. The first time it is
called, a static flag called first is set. It is also set when the autotymer is
re-called as part of the (Z)ap gadget. It is, once again set at the end of the
animation so it can start over.

Each instance of the TYME macro has an internal counter which we can give
a mnemonic name to, or you can just call each one foo, if you like. The first
time through, each counter is set to its maximum value, given by the second
argument of TYME. Once all clocks are wound up, first=0, and the animation
begins. The first 150 times the autotymer() is called is decrements the shrink
counter, and executes the code written into the third argument of TYME. Namely,
the minimum angles th0, ta0 are incrmented by one degree, and the maximum
values are decremented. When this clock is exhausted (shrink==0, the second
clock is addressed. It does nothing for 20 cycles, and then the third clock grows
the rectangle back into the torus. You can insert and delete as many TYMEs as
you please, but the last one must be the finish clock, which resets first.

You should experimentally design an different animation before checking out
just how the TYME macro does its job. It is a block with a static integer cnt
which the first time is set to its max value. Thereafter, it is decremented.
If cnt==0, it skips its act and passes the ball to the next clock. Otherwise,it

compiling or the waste of space in duplicating nearly identical versions of the same program.
16We retain the name, “messages”, for back compatibility. The recommended new name,

“graffiti”, is more descriptive and less likely to be confused with other program function. In
the older illiShell’s heads-up writing was done differently on the console and the CAVE.

8

decrements cnt, does its act, and jumps to the :Break label. Yes, Virginia,
contrary to what your high-school computer science teachers told you, C does
have a goto command, which on rare occasions such as here, is quite useful.

6 Scenery generating functions.

The illiSkel has a two objects equipped with their own place matrices. They are
the stars and the torus. The stars do not move across the screen in TURNMODE,
but rotate with the object in FLYMODE. Being fixed to the virtual firmament,
they do not translate. The torus, on the other hand, can be made to do all
of these motions. Let us examine each of these objects before we look at their
interaction.

The function drawstars() is self-initializing. The first time it is called it
loads up MANYSTARS into the star[] array. First, it puts them into a unit
cube, then it projects them to the unit sphere.17 Then, and thereafter, it
multiplies a duplicate of the current matrix on the the GL_MODELVIEW stack by
its proper matrix starmat[]. It chooses a bluish-white color, and plots the
stars by handing the OpenGL graphics library the 3-vector of floats marking
the star’s position on the unit sphere. You might prefer the wire-fram teapot
to the stars. Try it!

Take a peek at drawcons() where drawstars() is called before the function
drawall() which draws the rest. We do not want the stars to appear in front
of stuff beyond the unit sphere. So drawstars() clears GL_DEPTH_BUFFER_BIT,
effectively putting them at “infinity”.

The drawtor() comes in two pieces. One vertex is created and lighted in drawtor

drawvert(), given the θ, τ angular coordinates of the torus. This function is
usually factored again into functions that calculate the position of the vertex,
the color of the vertex, and the color modified by the angle between the light
source and the normal of the surface. For compactness, all three are shoehorned
into one funciton, making it easy to survey in one screen, but a chore to puzzle
out the details.

Recall that a torus is a circle of circles. Indeed, so is a sphere, except that
it is more properly a circle’s worth (the equator) of semicircles (the meridians.)
To make a torus, you merely push each meridian great circle a distance away
from the polar axis. That’s done in the very end of drawvert(). So, using
polar coordinates, nn[] is both a position on the sphere and a normal to it
there. The Lambert cosine lmb is a fraction that measures how close the point
is to noon.18 The Lambert or it diffuse-lighting model applies only this fraction
to each componenet color. It is appropriate to an ideal surface which scatters
light energy received equally in all directions. A blackbody absorbs all light, and
a mirror reflects light in a purely specular way.

Since objects tend to look surreal without some backlighting, we re-value
the back-facing lmb to 20 percent. Even for front facing patches, there is always

17Lucky that the random generator is likely to miss the dead center of the cube, eh?
18The sun is directly overhead where your normal points to it.

9

some ambient light, and we take this into account by not letting lmb drop below
the amb parameter. You can interactively play with amb and the pseudo-specular
pwr.

The specular point of a light-source on a surface is where the normal bisects
the light and the viewing directions. We save ourselves extra computation by
using the caustic point, which depends only on lmb. Furthermore, Phong light-
ing uses a power of the specular cosine. We use only the tangent of that power
function at 1, since that’s all that really matters. You should draw the graph of
spec as a function of lmb, pwr to see what I mean. After deciding on the color
of the vertex with Chris Hartman’s illiPaint, we take the larger of the diffuse
and the specular components.19

The illiPaint method is a poor-man’s texture map. Each vertex is given a
color whose RGB components are linear function of two variables dog, cat.
These, in turn, are fractions of the way across the source patch [τ0, τ1]× [θ0, θ1].
Thus, the red component varies linearly with dog, and the blue component varies
contra-linearly with cat. Can you explain what the green component does?

Exercise. Knowing this little about drawvert() you should be able to cre-
ate remarkable surfaces and painting effects. How about a toroidal surface both
of whose radii vary with the parameter angles. For now only the autotymer()
can change the source patch. Make this interactive with new gadgets. Make the
surface fine and coarse meshed on demand.

All the drawtor() function has left to do is create the mesh of triangles
which constitutes the numerical torus. Depending on how fine we want this
mesh (good colors) and how nimbly we want it to move (few vertices) we will
choose the number of MERIDIANS, LATITUDES. The torus is actually drawn as
a series of parallel strips. And that’s why we can have such a cheap gap making
gadget.

Exercise. Install a second object in the same world as the torus. For
instance, a cube or a hypercube in drawcube().

The collection of all objects in the world (not the stars, though) are packed
into drawall(). Once you have several objects you can practice your IFCLICK
skills to place, size, and color them properly.

The final function is the display callback of the GLUT-libary, here called
drawcons(). This is where we integrate our own functions with those of Op- drawcons()

neGL and GLUT. Line by line, this is what happens each time through the
glut-mainloop. The color buffer bit and the depth buffer bit are cleared. By
default, the color is black. But you can put a nicer background in here with
glClearColor(0.1,0.2,0.3,0). We set one or two viewports, depending on
whether the binocular flag is up or not. The viewport is usually coextensive
with the drawing window. Here is an illustration why there is a difference: the
same window has two viewports.

19Standard lighting models, such as the one proper to OpenGL, uses a polynomial of frac-
tions rather than the maximal envelope of ambient, diffuse and specular components. This
difference makes illiLight simpler to understand, easier to handle, and more robust, but all at
the expense of sublety and versatility.

10

First we call for a perspective20 projection with glFrustum(xmin, xmax, ymin, ymax, near, far).
In the raw, the six arguments of this funtion describe the frustum of a cone. The
cone is produced by looking from the origin through a rectangular window21 lo-
cated a distance near down the negative z-axis, and clipped in -far < z < -near < 0.
This eternally confusing convention guaranteess a right-handed coordinate sys-
tem with the x-axis pointing to the right, and the y-axis pointing upward. You
may notice how we have rewired the conical viewing box to be controlled by
more geometrical parameters. First we make sure that the aspect ratio remains
constant so that when you re-mouse the window, the object doesn’t become
oblongated. Second, we have a fraction mysiz, which couples the focal distance
near=mysize*focal with the size of the rectangular canvas the view is painted
on at near. The name derives from the task of making yourself so small that
you can fly into an object without having it clipped by a large value of near.
Try it! Play with the f(O)cal and the my s(I)ze gadgets.

We next modify affine (or GL_MODEL_VIEW) matrix, which will be multiplied
into the projection matrix eventually. Starting with the identity we draw the
stars. (Recall, the stars manage their own place with the starmat[].) We then
shift a little off center to account for the left-eye right-eye displacement, equal to
twice the nose to eye distance. Now multiply by aff[], the matrix that places
the world relative to the origin in the way it would look if you moved about a
stable world.22

We next draw the entire scene into the other eye, widen the viewport fully
for the graffiti, and swap graphics buffers. This last call to GLUT draws all
that is currently in the frame buffer to the screen, repeatedly, until a new frame
complete and ready to replace the old one.

7 Navigation in Euclidean space.

Since we are construcing a graphics program, the management of the geometry
pipeline for each frame is truly the main activity. The principle of OpenGL
is very simple but its ramifications are extensive and can be mysterious and
confusing without a clear mathematical idea to guide us. A geometrical figure
is constructed out of points, line segments and planar patches. Even is the
lines and patches appear curved (and they are intended to so appear), they are
nevertheless made up of subliminally small straight lines and flat patches. A
polylateral23 curve is completely described the succession of vertices along it.

20Photographers and computer graphics systems that are less versatile than OpenGL favor
on-axis or centered perspective with parameters based on the aperture angle, aspect ration,
near and far. It is simple to implement this in the Frustum command.

21Indeed, this command is more aptly named “window” in IrisGL. It is unfortunate that
this aptly named function had to be renamed in the OpenGL vocabulary. The term “window”
had become too strongly tied to a resizeable viewport. So, avoid misunderstanding, OpenGL
adopted the hardly euphonic word “fructrum”, meaning a section of any solid between two
parallel planes, often mispelled as “frutrum”.

22The Copernican versus the Ptolemaic weltanschauung. OpenGL favors the latter.
23There is some difference between common math speak, and common computer graphics

lingo. In graphics, a “polygon” means a patch enclosed by a polylateral. In geometry, a

11

Moreover, these vertices can be placed anywhere in space, so the polytaerals
aren’t planar, or convex, and we won’t call them polygons.

The first problem to be solved in drawing surfaces is how to reduce their
description to vertex streams. A surface made up of planar, polylateral patches
is a polyhedral surface. Only a triangle (or “trilateral”) is unambiguously planar.
Consider four non-coplanar vertices in space and tetrahedron so formed. A
particular succesion of the vertices separates the skin of the tetrahedron into
two dihedrals corresponding to the two ways of triangulating a quadrilateral.
Thus the triangle is the geometrical primitive, and all surfaces in computer
graphics are triangulated.

There are two useful ways a succession of vertices V0, V1, ..., Vn describes a
succession of triangles. The GL_TRIANGLE_STRIP produces a ribbon with with
two rails, one traced out by the even vertices, V0, V2, V4, ..., and the other by the
odd vertices, V1, V3, V5, The polylateral following the original vertex stream
zig-zags back and forth between the rails, like the rungs of a bridge tressle. Of
course, vertices may be repeated in the list. For example, if V4 = V0, V5 = V1

then the triangle strip covers a tetrahedron.
Exercise. An intriguing geometrical question is which polyhedral surfaces

can be drawn by a single triangle strips, without covering a facet twice. Maybe
you can so “bandage” every polyhedral surface. For instance, how would you
“bandage” a cube, an octahedron, dodecahedron, and icosahedron? What about
the graph z = f(x, y) over a rectangular grid in the xy-plane? Hint: There is a
“Columbus Egg” solution to this problem.

So, being vertex based, the geometry pipeline24 feeds on a stream of vertices,
bracketed by the appropriate glBegin() and glEnd(), performing a series of
geometric transformations on each vertex, and producing the desired graphic
on the screen. Regardless how these transformations are implemented (hard-
ware, high or low level library functions, etc) they are represented by a 4x4
matrix of real numbers. The composition of operations is represented by matrix
multiplication.

Each vertex stream, X, encounters three matrices at the top of their respec-
tive pushdown stacks: the current modelling (a.k.a. affine) matrix A, followed
by the current projection matrix Π, followed by the viewport matrix, Ψ, about
which we say very little. Thus, column mode25 we see the effect of ΨΠAX.

A useful way to relate the viewport to the window is to imagine looking There is some
expository
redundancy
here. Maybe
saying it again
isn’t so bad for
now.

at the scene with the camera at the origin, and looking through a rectangular
window with corners as specified, and a distance near from the camera, all in

“polylateral” is synonymous with a polygon. We will deviate from common speech only to
avoid misunderstanding.

24Strictly speaking, a pipeline refers to a process which accepts new input before having
finished its job on the previous input. Think of Ford’s assembly line. But whether the pipeline
is real or virtual, the conceptual structure is the same in OpenGL.

25After ten years of writing vectors as rows on the left of their matrix transformations in
IrigGL, OpenGL reverted to the scientific notation which writes vectors as columns on the
right of their matrix multipliers. This way, linear transformations compose like functions,
from right-to left. You’ll have to learn how to handle this source of confusion and errors
effectively. Algebra is the right language for this.

12

world coordinates. However, the image in the window is magnified or shrunk to
fit into the viewport. Only the portion of the world located in the frustum of
a rectangular cone between near and far is visible. Thus the near parameter
serves two purposes: it establishes the perspective proportion and the near
clipping plane. We decouple these functions by extracting a common factor,
called mysiz. Note that changing mysiz with the IKEY slides the window back
and forth in the rectangular viewing cone. Thus the scene does not change size,
shape or location in the viewport. The front clipping plane can thus be moved
back and forth at will. To change the angle of the viewing cone, it is necessary to
change the effective focal distance with the OKEY. The two keys are so calibrated
that pressing both at the same time, with or without the SHIFT-KEY, has the
desirable effect of keeping the near clipping plane in the same place.

The stars are drawn next. Being infinitely far away, they are seen the same
way by both eyes. But, to see the finite scene in binocular vision, the object
needs to be shifted right or left half the distance between the eyes, as given
by nose parameter on the NKEY. Since the left viewport is to be seen by the
right eye in the crossed-eye26 viewing mode, we shift the first image to the left,
ER. Thus ΠERAX is the order of matrix multiplication on a vertex X for the
right eye. In the monocular viewing mode, ER = I, is the identity and we are
wasting a matrix multiplication, but skip the left eye projection to the right
viewport, ΠELAX. It is useful to associate the matrix products ΠR = ΠER

and ΠL = ΠEL. The multiple viewport may be used to other purposes than for
binocular pairs. For example, the front and rear view of the same object. Or,
using many more viewports, a succession of small multiples in a homotopy.

Exercise. Small Multiples. Modify drawcons() to show the front and
rear view of the same object. Use four viewports, placing orthographic plan
and elevation in three of them, with a perspective in the fourth. Use four
viewports to show the four orthographics projections of a 4D object into 3D.
Devise a system of many viewports that display a homotopy some time steps
apart in a system of temporal small multiples in the sense of Tufte.27

The principal navigation is effected in chaptrack(), whose arguments are chaptrack(),
mousepushed()the input from the mouse (or the wand in the CAVE) as reported by the callback

function mousepushed(). 28 The output is an update of the two affine matrices,
aff[], starmat[].

The displacements, dx, dy of the mouse from the center of the window
(xwide/2, yhigh/2) are clamped to have a 100 square-pixel dead zone, whihc
makes the mouse less responsive. These displacements are interpreted as a
small rotation about the x-axis, which points East, and the y-axis, which points

26Some people call it the “cross-eyed” mode, since it is (erroneously) thought to induce this
malady.

27Edward Tufte, The Visual Display of Quantitative Information, Graphics Press, 1983.
28For illustrative purposes, this callback includs some arcane code which translates which

of the three buttons were pressed into a 3-bit flag PAW, a 1-bit flag, SHIF for the shift-button
on the keyboard, and two integral coordinates of the mouse, XX, YY. It is not essential that
mousepushed() be written this way, but you will find such constructions elsewhere and you
may want to use them yourself for special purposes. In particular, in many cased bit-field flags
are more efficient for passing and storing control messages than streams of entire integers.

13

North. The left and right mouse buttons are used to effect a large or small
rotation about the z-axis, which points into the screen. The fraction, torq,
adjusts the responsiveness of the mouse. Since rotations are non-destructive,29

one starts by loading the identity matrix onto the stack. In the FLYMODE, which
is easier to understand, the incremental rotation, U , on the stack is relative to
the camera, which assumed to be at he origin of the world coordinate system.30

Since the stars are only rotated, we make a duplicate of U on the stack with
a glPushMatrix(), glPopMatrix() bracket. Inside this bracket, we update
starmat[] on the left. It updates the star matrix by multiplication. Thus, if
the mouse is parked slightly off the bullseye, a succession of small rotations are
applied, so that after n-cycles later, a star is placed at UnUn−1...U2U1X.

Pressing the middle mouse button effects a translation in the Z-direction
by a vector increment, dZ. The fraction speed adjusts the apparent speed of
forward motion. The shifted middle mouse flies backwards. We may regard the
composition dA = dU dZ as an incremental change of the affine matrix in the
Euclidean group. After n cycles, the affine matrix, A = I dAn dAn−1 ... dA2 dA1 ,
is just the integral of all the little differential affine motions chaptrack() has
implemented.

It should be noted here, that just like a Euclidean translation matrix, T (m)
depends on a single vector m of motion, a Euclidean rotation matrix, U(a)
depends on a vector a whose direction â and magnitude α is the axis and angle
of rotation. We shall consider the arithmetic of the group of rotations later, and
suppress the rotation vector in the notation. For now it is useful to know that
the affine matrix of a Euclidean motion may be factored, A = T (m)U , with
composition, commutation and inversion rules given by:

T (m1)U1T (m2)U2 = T (m1 + U1m2)U1U2

T (m)U = UT (UT m)

(T (m)U)−1 = T (−UT m)UT .

The superscript T emphasizes the fact that the inverse of a rotation matrix
is just its transpose.31

However, in the TURNMODE the object is to be rotated about its own center.
In that case, we use the translation vector,m, of A = T (m) U to translate a
point X back to the origin, apply dA, and translate back. In the column vector
mode, the affine matrix A = T (m)U is

aff[] =

A[0] A[4] A[8] A[12]
A[1] A[5] A[9] A[13]
A[2] A[6] A[10] A[14]
A[3] A[7] A[11] A[15]

 . =

U00 U10 U20 m0

U01 U11 U21 m1

U02 U12 U22 m2

0 0 0 1

 ..

29Most pipeline operations are cumulative, i.e. they act on what is already there by matrix
multiplication.

30The letter R is unsuitable for the name of a rotation matrix. We use U instead.
31Care must be taken to distinguish between Euclidean transformations in 3-space, and

their representation as 4-dimensional matrices as they apply to the so-called homogeneous
coordinates of points in 3-space.

14

Thus once through chaptrack() in TURNMODE with dA = dTdU , has the
effect of replacing A by

A1 = T dA T−1 A = T dT dU T−1 T U = dT T dU U.

Consequently, after n iterations, the net change is,

An = dTn dTn−1...dT1 T dUn dUn−1 ... dU1 U.

and the illiRotor has smoothly accumulated the translation and rotation in-
tended by the mouse displacements.

The last thing chaptrack() does is to rotate the light source direction by
the inverse of the rotation component of aff[]. The the inverse of an affine
matrix is

(T (m)U(a))−1 = U(a)−1T (m)−1 = U(a)T T (−m)

. Since we don’t translate the stars, we need only the matrix multiplication by
the transpose of to top-left 3x3 minor of aff[].

Exercise. Six-way Navigator.
Build a navigator which has all six translations. For example, let a click of
the middle mouse button represent a switch into translation mode, with the
mouse deviation from the center representing translation. Note that this way
it is not possible to fly because the mouse manages two modes consecutively
instead of simultaneously. To recover the simultaneity, use buttons to manage
translations.

All that remains is to assemble all of these components into main(). In
the overture of main() we set up the state of the RTICA . These routines are
done only once, and the order in which they occur does matter somewhat. We
read the arguments() from the command line after the deFault() in case the
user wishes some changes. Since deFault() is called by the (Z)ap-key, and at
present, arguments() does not change the default values, zapping reverts to
the hard coded defaults. Note that a useful modification would be for (Z)ap
to become a cycler which moves through various default sets, including the one
from the command line (exercise!)

Since the star-object was factored into initstars() and drawstars(), the
former is called here, the latter in the eternal loop. Recall that the other object,
drawcube(), initializes ‘itself’ the first time it is called.

The switch on the window flag defaults to a voluntary window for win=0, to
a borderless window in the correct position for shipping to an NTSC32 projector
for win=1, and a full screen forwin=2. Since we now use the GLUT library, the
remainder of main() has already been described a the beginning of this chapter.

Exercise. illiOctahedron
Put the octahedron from oc1.cl into skel.c to obtain illiOctahedron.

32To fit into a standard NTSC video screen we use 640×480 pixels

15

/*****************************2002*************************************/
/**** skel.c = OpenSkelGlut.c = Noosh97 with CAVE removed ****/
/**** (C) 1994--2002 Board of Trustees University of Illinois ****/
/**** A Model Real-Time Interactive C/OpenGL/GLUT Animator ****/
/**** George Francis, Stuart Levy, Glenn Chappell, Chris Hartman****/
/**** e-mail gfrancis@math.uiuc.edu : revised 2jan02 by gkf ****/
/**/
#include <stdlib.h>
#include <stdio.h>
#include <gl\glut.h> /* sgi <glut.h> */
#include <sys/timeb.h> /* sgi <sys/time.h> */
#include <math.h>
#pragma warning (disable:4305) /* constant double-to-float */
#define MAX(x,y) (((x)<(y))?(y):(x))
#define MIN(x,y) (((x)<(y))?(x):(y))
#define CLAMP(x,u,v) (x<u? u : (x>v ? v: x))
#define ABS(u) ((u)<0 ? -(u): (u))
#define FOR(a,b,c) for((a)=(b);(a)<(c);(a)++)
#define DOT(p,q) ((p)[0]*(q)[0]+(p)[1]*(q)[1]+(p)[2]*(q)[2])
#define NRM(p) sqrt(DOT((p),(p)))
#define M_PI (355./113) /* sgi already defins \pi */
#define DG M_PI/180
#define S(u) sin(u*DG)
#define C(u) cos(u*DG)
#define CLAMP(x,u,v) (x<u? u : (x>v ? v: x))
#define random rand /* library dependent name */
#define IFCLICK(K,a){static ff=1; if(getbutton(K))ff=1-ff; if(ff){a} }
#define MERIDIANS 32
#define LATITUDES 32
#define MANYSTARS 10000
/************************** global variables **************************/
int win=1; /* used once to choose window size */
float gap, gap0=1.; /* deFault() uses gap0 set by arguments() */
float lux[3]={1.,2.,3.}; /* world light non unit vector */
float luxx[3]; /* object space direction vector */
float amb, pwr; /*ambient fraction, pseudo-specular power */
float mysiz,speed, torq, focal, wfar; /* navigation control variables */
unsigned int PAW,XX,YY,SHIF; /* used in chaptrack gluttery */
int xwide,yhigh; /* viewportery width and height */
int mode,morph,msg,binoc; /* viewing globals */
int th0, th1, dth, ta0, ta1, dta; /* torus parameters */
#define FLYMODE (0) /* yellow: turns around head as center */
#define TURNMODE (1) /* purple: turns around object center */
int ii, jj, kk; float tmp, temp; /* saves gray hairs later */
float aff[16], starmat[16], mat[16]; /* OpenGL placement matrices */
int binoc; /* flag for binocular stereo */

16

float nose; /* to eye distance in console */
char clefs[128]; /* which keys were pressed last */
/*********************** steering *************************************/
void autotymer(int reset){ /* cheap animator */
#define TYME(cnt,max,act) {static cnt; if(first)cnt=max; else\

if(cnt?cnt--:0){ act ; goto Break;}}
static first = 1; /* the first time autymer is called */
if(reset)first=1; /* or if it is reset to start over */
TYME(shrink , 150 , th0++;th1--;ta0++;ta1--)
TYME(pause , 20, 0)
TYME(grow , 150,th0--;th1++;ta0--;ta1++)
TYME(dwell , 30, 0)
TYME(finish , 1 , first = 1) /* this TYME must be the last one */
first = 0;
Break: ; /* yes Virginia, C has gotos */

}
/**/
void deFault(void){ /* (Z)ap also restores these assignments */
th0=5; th1=355; ta0=5; ta1=355; gap = gap0; /* torus parameters */
msg=1; binoc=0; nose=.06; mode=TURNMODE; /* gadget parameters */
speed=.02; torq=.02; focal = 2.; wfar=13; mysiz=.01; morph=0;
FOR(ii,0,16) starmat[ii]=aff[ii] = (ii/4==ii%4); /* identity matrix */
amb = .3; pwr = 10; /* lighting params */
tmp=NRM(lux); FOR(ii,0,3)lux[ii] /= tmp; /* normalize light vector */
aff[12]=0; aff[13]= 0; aff[14]= -4.2; /* place where we can see it */
autotymer(1); /* reset autotymer to start at the beginning */

}
/*************************** scenery **********************************/
void drawvert(int th, int ta){ /* make one properly lighted vertex */
float bb,gg,rr;
float lmb,spec,nn[3], dog, cat;
/* radius of unit sphere is also unit normal to the torus */
nn[0] = C(th)*C(ta);
nn[1] = S(th)*C(ta);
nn[2] = S(ta);
/* illiLight by Ray Idaszak 1989 uses max{amb*lmb, rgb*lmb, spec} */
lmb = DOT(nn,luxx); lmb =(lmb<0 ? .2 : lmb); lmb = MAX(amb, lmb);
spec = CLAMP((1.1 - pwr+pwr*lmb), 0., 1.);
/* illiPaint by Chris Hartman 1993 maps R2(cat,dog)->R3(r,g,b) */
dog = (ta-ta0)/(float)(ta1-ta0); cat = (th-th0)/(float)(th1-th0);
rr = MAX(spec, lmb*dog);
gg = MAX(spec, lmb*(.25 + ABS(cat -.5)));
bb = MAX(spec, lmb*(1 - cat));
glColor3f(rr,gg,bb);
/* torus has unit small diameter and unit big radius */
glVertex3f(C(th) + .5*nn[0],

S(th) + .5*nn[1],
0 + .5*nn[2]);

} /* end drawvert */
/**/
void drawtor(void){ /* illiTorus with gaps */
int th, ta;
dth = (int)((th1-th0)/MERIDIANS); /* this many meridian strips */

17

dta = (int)((ta1-ta0)/LATITUDES); /* and triangle pairs per strip */
for(th=th0; th < th1; th += dth){
glBegin(GL_TRIANGLE_STRIP);
for(ta = ta0 ; ta < ta1 ; ta += dta){

drawvert(th,ta); drawvert(th+gap*dth,ta);}
glEnd();
}/* end for.theta loop */

}/* end drawtor */
/**/
void drawcube(void){ /* transfer from skel.c as an exercise */ }
/**/
void drawall(void){ drawtor(); drawcube();}
/**/
void drawstars(void){ /* replace with SLevy’s much prettier stars */
static float star[MANYSTARS][3]; static int virgin=1;
if(virgin){ /* first time through set up the stars */

FOR(ii,0,MANYSTARS){ /* in a unit cube then on unit sphere */
FOR(jj,0,3)star[ii][jj] =(float)random()/RAND_MAX - 0.5;
tmp=NRM(star[ii]); FOR(jj,0,3)star[ii][jj]/=tmp;

}
virgin=0; /* never again */
}
glMatrixMode(GL_MODELVIEW);
glPushMatrix(); /* optional insurance or superstition */
glMultMatrixf(starmat);
glColor3f(0.8,0.9,1.0);
glBegin(GL_POINTS);
FOR(ii,0,MANYSTARS)glVertex3fv(star[ii]);

glEnd();
/* glutWireTeapot(1); if you prefer one on the firmament instead */
glPopMatrix(); /* optional insurance or superstition */
glClear(GL_DEPTH_BUFFER_BIT); /* put the stars at infinity */

}
/************************ steering ***********************************/
void arguments(int argc,char **argv){ /* Pat Hanrahan 1989 */

while(--argc){++argv; if(argv[0][0]==’-’)switch(argv[0][1]){
case ’w’: win =atoi(argv[1]); argv++; argc--; break;
case ’g’: gap0 =atof(argv[1]); argv++; argc--; break;
case ’L’: lux[0]=atof(argv[1]);

lux[1]=atof(argv[2]);
lux[2]=atof(argv[3]); argv +=3; argc -=3; break;

}}}
/**/
int number, hasnumber, decimal, sign; /* globals for SLevy’s gadgets */

/* these are assigned in keyboard() but used by these factor fcns */
float getnumber(float dflt){ /* from keyboard, factor of bump() */

float v = (sign ? -number : number); /* positive or negative nr */
if(!hasnumber) return dflt; /* if no new nr use old on */
return decimal>0 ? v/(float)decimal : v;

}
void bump(float *val, float incr){ /* SLevy 98 */
float by = fabs(incr); /* wizard speak ... best not mess with it */
char fmt[8], code[32];

18

int digits = 1;
if(hasnumber) {
*val = getnumber(0);
return;

}
if(by <= .003) digits = 3;
else if(by <= .03) digits = 2;
sprintf(fmt, "%%.%de", digits);
sprintf(code, fmt, *val * (1 + incr));
sscanf(code, "%f", val);

}
/********************from SLevy 2jan02 ********************************/
int getbutton(char key) {

int uu = clefs[key & 127]; clefs[key & 127]=0; return uu;
}
/**/
void keyboard(unsigned char key, int x, int y){

clefs[key&127]=1; /* globalize the keys that were pressed */
#define IF(K) if(key==K)
#define PRESS(K,A,b) IF(K){b;} IF(K-32){A;} /* catch upper case */
#define TOGGLE(K,flg) IF(K){(flg) = 1-(flg); }
#define CYCLE(K,f,m) PRESS((K),(f)=(((f)+(m)-1)%(m)),(f)=(++(f)%(m)))
#define SLIDI(K,f,m,M) PRESS(K,(--f<m?m:f), (++f>M?M:f))
#define SLIDF(K,f,m,M,d) PRESS(K,((f -= d)<m?m:f), ((f += d)>M?M:f))
/* Only 127 ASCII chars are processed in this GLUT callback function */
/* Use the specialkeybo function for the special keys */

IF(27) { exit(0); } /* ESC exit */
TOGGLE(’v’,binoc); /* cross-eyed STEREO */
TOGGLE(’ ’,mode); /* space key */
TOGGLE(’h’,morph); /* autotymer on/off */
CYCLE(’w’,msg,3); /* writing on/off/speedometer+bullseye */
PRESS(’n’, nose -= .001 , nose += .001); /* for binoculars */
PRESS(’s’, bump(&speed,.02), bump(&speed,-.02));/* flying speed */
PRESS(’q’, bump(&torq, .02), bump(&torq, -.02)); /* turning speed */
PRESS(’o’, focal *= 1.1 , focal /= 1.1) /* telephoto */
PRESS(’i’, mysiz /= 1.1, mysiz *= 1.1) /* rescale the world */
PRESS(’p’, wfar *= 1.01 , wfar /= 1.01) /* rear clipping plane */
PRESS(’z’, deFault(), deFault()); /* zap changes */
PRESS(’g’,gap /= .9, gap *= .9); /* gap parameter */
PRESS(’a’,amb /= .9, amb *= .9); /* ambient fraction */
PRESS(’r’,pwr /= .9, pwr *= .9); /* pseudo-spec power */

/********** SLevy’s parser creates the input decimal ******************/
if(key >= ’0’ && key <= ’9’){ /* if key is a digit numeral */

hasnumber = 1; number = number*10+key-’0’; decimal *= 10; }
else if(key == ’.’) { decimal = 1; } /* it’s a decimal ! */
else if(key == ’-’) { sign = -1; } /* it’s negative ! */
else { hasnumber = number = decimal = sign = 0;} /* erase mess */
glutPostRedisplay(); /* in case window was resized */

}
/**/
void specialkeybo(int key, int x, int y){
clefs[0]= key ;
switch(key){ /* HOME END PAGE_DOWN RIGHT F1 etc see glut.h */

19

case GLUT_KEY_F1: th0++; th1--; break;
case GLUT_KEY_F2: th0--; th1++; break;
/*default: fprintf(stderr,"nonASCII char [%d] was pressed.\n", key);*/
}

}
/**/
float speedometer(void){ /* this one is for win32*/
double dbl; static double rate; static int ii=0;
static struct _timeb lnow, lthen;
if(++ii % 8 == 0){ /* 8 times around measure time */

_ftime(&lnow);
dbl = (double)(lnow.time - lthen.time)
+(double)(lnow.millitm - lthen.millitm)/1000;

lthen = lnow; rate = 8/dbl;
}

return((float)rate);
}
/**/
void char2wall(float x,float y,float z, char buf[]){

char *p; glRasterPos3f(x,y,z);
for(p = buf;*p;p++) glutBitmapCharacter(GLUT_BITMAP_9_BY_15,*p);

}
/**/
void messages(void){char buf[256];
/* console messages are done differently from cave */

#define LABEL(x,y,W,u) {sprintf(buf,(W),(u));char2wall(x,y,0.,buf);}
glMatrixMode(GL_PROJECTION); glPushMatrix(); /* new projection matrix */
glLoadIdentity(); gluOrtho2D(0,3000,0,3000); /* new 2D coordinates */
glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity();

if(mode==TURNMODE) glColor3f(1.,0.,1.); else glColor3f(1.,1.,0.);
LABEL(1500,1500,"%s","o"); /* place a bullseye dead center */
LABEL(80,80,"%4.1f fps",speedometer());
if(msg==2)return; //try this
LABEL(80,2840,\
"(ESC)ape (V)Binoc (MAUS2)Fore (BAR)%s (H)omotopy (W)riting",

mode?"TURNMODE":"FLYMODE");
LABEL(10,10,"illiSkel-2002 by Francis, Levy, Bourd, Hartman,\

& Chappell, U Illinois, 1995..2002 %s","");
LABEL(80,2770,"(N)ose %0.3f",nose);
LABEL(80,2700,"[S]peed %0.4f",speed);
LABEL(80,2630," tor[Q] %0.4f",torq);
LABEL(80,2560,"near clipper %g", mysiz*focal);
LABEL(80,2490,"f(O)cal factor %g",focal);
LABEL(80,2420,"my s(I)ze %.2g",mysiz);
LABEL(80,2350,"far cli(P)per= %.2g",wfar);
LABEL(80,2280,"(Z)ap %s","");
LABEL(80,2210,"(G)ap %.2g",gap);
LABEL(80,2140,"(A)mb %.2g",amb);
LABEL(80,2070,"pw(R) %.2g",pwr);

glPopMatrix();
glMatrixMode(GL_PROJECTION); glPopMatrix();

}
/************************ navigation **********************************/

20

void chaptrack(int paw,int xx,int yy,int shif){/* Glenn Chappell 1992 */
long dx,dy;
dx = xx -.5*xwide; dx = abs(dx)>5?dx:0; /* 5 pixel latency */
dy = yy -.5*yhigh; dy = abs(dy)>5?dy:0;
glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity();
if(mode==TURNMODE) glTranslatef(aff[12],aff[13],aff[14]);
glRotatef(dx*torq,0.,1.,0.); glRotatef(dy*torq,1.,0.,0.);
if(paw&(1<<GLUT_RIGHT_BUTTON))glRotatef(shif?-10:-1,0.,0.,1.);
if(paw&(1<<GLUT_LEFT_BUTTON))glRotatef(shif?10:1,0.,0.,1.);
if(mode==FLYMODE){

glPushMatrix();
glMultMatrixf(starmat);
glGetFloatv(GL_MODELVIEW_MATRIX,starmat);
glPopMatrix(); }

if(paw&(1<<GLUT_MIDDLE_BUTTON))glTranslatef(0.,0.,shif?-speed:speed);
if(clefs[0]==GLUT_KEY_UP) glTranslatef(0.,0., speed);
if(clefs[0]==GLUT_KEY_DOWN) glTranslatef(0.,0., -speed);
if(clefs[0]==GLUT_KEY_LEFT) glTranslatef(-speed,0.,0.);
if(clefs[0]==GLUT_KEY_RIGHT) glTranslatef(speed,0.,0.);
if(clefs[0]==GLUT_KEY_PAGE_UP) glTranslatef(0., speed,0.);
if(clefs[0]==GLUT_KEY_PAGE_DOWN) glTranslatef(0.,-speed,0.);
if(mode==TURNMODE) glTranslatef(-aff[12],-aff[13],-aff[14]);
glMultMatrixf(aff);
glGetFloatv(GL_MODELVIEW_MATRIX,aff);
FOR(ii,0,3){luxx[ii]=0; FOR(jj,0,3)luxx[ii] +=aff[ii*4+jj]*lux[jj];}
glPopMatrix();

}
/************************* scenery ************************************/
void reshaped(int xx, int yy){xwide=xx ; yhigh=yy;} /*win width,height*/
/**/
void drawcons(void){ float asp =(float)xwide/yhigh; /* aspect ratio */
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(0,0,0,0); /* base color, try (.1,.2,.3,0.) */
if(binoc) glViewport(0,yhigh/4,xwide/2,yhigh/2);
glMatrixMode(GL_PROJECTION); glLoadIdentity();
glFrustum(-mysiz*asp,mysiz*asp,-mysiz,mysiz,mysiz*focal,wfar);
glMatrixMode(GL_MODELVIEW); glLoadIdentity();
drawstars();
glTranslatef(-binoc*nose,0.0,0.0);
glMultMatrixf(aff);
drawall();
if(binoc){

glViewport(xwide/2,yhigh/4,xwide/2,yhigh/2);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
drawstars();
glTranslatef(binoc*nose,0.0,0.0);
glMultMatrixf(aff);
drawall();

}
glViewport(0,0,xwide,yhigh);
if(msg) messages();
glutSwapBuffers();

21

}
/************************** steering **********************************/
void idle(void){ /* do this when nothing else is happening */

if(morph) autotymer(0); /* advance autotymer */
glutPostRedisplay(); /* redraw the window */
IFCLICK(’=’,chaptrack(PAW,XX,YY,SHIF);) /* bypass navigation */
glDisable(GL_DEPTH_TEST); /* bypass depth buffer */
IFCLICK(’-’,glEnable(GL_DEPTH_TEST);) /* bypass depth buffer */

}
/**/
void mousepushed(int but,int stat,int x,int y){
if(stat==GLUT_DOWN) PAW |= (1<<but); /*key came down and called back*/
else PAW &= (-1 ^ (1<<but)); /* on the wayup erase flag*/
XX=x; YY=y; /* position in window coordinates (pos integers) */
SHIF=(glutGetModifiers()==GLUT_ACTIVE_SHIFT)?1:0; /* shift down too*/

}
/**/
void mousemoved(int x,int y){ XX=x; YY=y; }
/***************** one ring to rule the all ***************************/
int main(int argc, char **argv){

arguments(argc,argv); /* from the commandline */
deFault(); /* values of control parameters */

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE|GLUT_DEPTH);
switch(win){

case 0: break; /* manage your own window */
case 1: glutInitWindowSize(640, 480);

glutInitWindowPosition(100,100); break;
case 2: glutInitWindowPosition(0,0); break;

}
glutCreateWindow("<* illiSkel 2002 in C/OpenGL/GLUT *>");
if(win==2) glutFullScreen();
glEnable(GL_DEPTH_TEST); /* enable z-buffer */
glutDisplayFunc(drawcons);

/* the following are optional for interactive control */
glutKeyboardFunc(keyboard);
glutSpecialFunc(specialkeybo);
glutMouseFunc(mousepushed);
glutMotionFunc(mousemoved);
glutPassiveMotionFunc(mousemoved);

/* beyond here all are needed */
glutReshapeFunc(reshaped);
glutIdleFunc(idle);
glutMainLoop();

}
/**/

22

