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In 3D, this
ax2 + by2 + cz2 + dxy + eyz + fzx + gx + hy + kz + m = 0

is the formula for a quadric surface. The quadric surface is the locus of points (x, y, z) that satisfy
the equation. The 10 parameters a, b, c, ....,m determine the shape of the quadric. We would like
to know how they do this.

In 1D, the familiar quadratic equation ax2 + bx + c = 0 was studied to death in high school. But
we’re not quite done with it. Here it will serve us as the bottom rung of the dialectic, a.k.a.
dimensional ladder, that will enable us to peek into the 10D paramater space for quadrics.

Unfortunately, in 1D the entire solution is described by the familiar

ax2 + b2 + c = 0 if and only if x =
−b±

√
b2 − 4ac

2a

which consists of a single point when b2 = 4ac, and has two or no (real) solutions, depending on
b2 < or > 4ac. Why don’t you graph the critical surface in 3-dimensional a, b, c space using
DPGraph. This surface, b2 = 4ac, is called the discriminant of the quadratic equation, and for
(a, b, c) on the discriminatn surface, there is only one solution. On one or the other sides of the
surface there are none, or two solutions.

Solution: DPGraph shows y2 = 4xz very well, but because the axis of this double cone is not
aligned with the xyz-axes, it is easily mistaken for some other quadric. If we make the substitution

x← x− z

2

y ← x + z

2
z ← z
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we get the more recognizable equation

y2 = x2 − z2 or x2 + y2 = z2

whose locus has horizontal (x, y) sections circles of radius |z|. For x = 0 we factor

0 = z2 − y2 = (z − y)(z + y)

for the equation of two crossing lines. Thus the discriminant surface is a double cone.

Now, lets (try) to do the same thing to 2D. Note that the quadratic equation is just a (somewhat
very!) special case of the equation for a quadric surface, namely b = c = c = e = f = h = k = 0.
The loci of the 2D quadratic equation

ax2 + bxy + cy2 + dx + ey + f = 0

are called the conics because these curves are all obtained by cutting a (double) cone in 3D by a
plane (you learned that in high school, right?)

One approach to solving quadratic equations is very geometrical (as will be apparent much later.)
It consists of turning the quadratic equation into a homogeneous equation. We do this by first
setting a new variable w = 1 and then mutliplying through by 1 a number of times.

Let’s see how this works in 1D. We write ax2 + bxw + cw2 = 0. Note that this is a special case for
the 2D quadratic equation (d = e = f = 0), provided we release w = 1 and let it be 2nd variable
in 2D xw-space. (Our letters may vary from paragraph to paragraph, but not their roles. Letters
at the end of the alphabet are spatial coordinates, and the parameters are at the beginning of the
alphabet.)

We now solve the 1D homogogenous quadratic equation as follows.

If a = 0 and b 6= 0 (if it were, we’d have nothing to look at, right?) then the LHS factors into
w(bx + cw) = 0, which is true if w = 0 or if (bx + cw) = 0, both of which are equations of straight
lines in xw-space. To get back to 1D, we set w = 1 (which is still another line) and look at the
intersection the locus (loci) makes with the special line w = 1.

If a 6= 0 then we can eliminate it by dividing through the equation. Note that the RHS 0/a = 0
doesn’t change, so the locus can’t change either when we solve
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4a2
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b2
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b

2a
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b2 − 4ac

2a
w)2
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b

2a
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√
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2a
)w)(x + (

b

2a
−
√

b2 − 4ac

2a
)w) = 0

The last line is the equation of two lines crossing at the origin. When we set w = 1 again, these
two lines cross this horizontal at the two solutions to the quadratic equations.

The foregoing was an example of how to solve an inhomogenous equation in some dimensions, by
solving a homogeneous equation in one dimension higher. Working in homogenous coordinates is
an essentail aspect of computer graphics as it has been in algebraic geometry for hundreds of years.

Note that by solving the 1D quadratic equation in the foregoing way, also solved the special case
of the 2D quadratic equations x2 + bxy + cy2 = 0, only with different letters. We next consider
the “latter half” of the entire quadratic equation, namely the case of linear equations in the plane,
dx + ey + f = 0, except that we rewrite this equation again, as ax + by + c = 0. This time we
want to know how to characterize each line such an equation defines. In high school you knew
lines by their “point-slopes”, or by two points the line passes through, or some other geometrical
property of the line. Now we want to understand the lines in the plane as the points in some
space, which we shall call the moduli space of lines in the plane. More familiar names for this
might be configuration space. In the present case, it is not the same as the parameter space, which
is the 3D abc-space. Why? Because the point (a, b, c) is not unique to the line. The equation
tax + tby + tc = 0 describes the exact same line, provided that t 6= 0, of course. (Think: what is
the locus when t = 0.) The Greeks would have said that it isn’t the triple (a, b, c) that determines
the line, but their ratio a : b : c. So, now we want to know how to imagine the space of all ratios
a : b : c, except a = b = c = 0.

£ = {a : b : c|0 6= a2 + b2 + c2 = r2} and a : b : c = {(ta, tb, tc)|t 6= 0}

.

To solve this visualization problem we shall need some topology. First off, we chose a special value,
t = 1/

√
a2 + b2 + c2, so that (a/r, b/r, c/r) is where the line pierces the unit sphere, written S2.

Unfortunately, we still have two points specifying the line, because (−a/r,−b/r,−c/r) is a point
on the unit sphere in abc-space for the same line in the xy-plane. These two points are antipodes
because they are opposite each other through the center of the sphere.
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In some circles of topology people would content themselves by saying that the moduli space, P 2,
we are seeking to visualize is the sphere with antipodes indentified to single points,

P 2 = S2/(a, b, c) ∼ (−a,−b,−c)

. But this is too hard to visualized. So we proceed by throwing away one of each pair of antipodes,
leaving only one equatorial hemisphere. Each of the points strictly below the equator correspond
to a unique line in the xy−plane. But on the equator we still need to identify antipodes. We could
throw away half the equator, and we would have a picture of the moduli space. But it have a very
“raw edge” on the equator. Sow we proceed to try and suture this raw edge. While there is a nice
visualization of this procedure, it’s not the easiest to appreciate without computer graphics1. So
we back up a little.

Start with the sphere and decompose it into three pieces, a belt along the equator that extends the
same distance above as below the equator. What remains are two disjoint polar caps. Every point
in one cap has its antipode in the other. So we discard one of the caps and keep the other. Just
remember we have to sew it back to the equatorial belt eventually.

The belt also contains antipodes. This time we cut it in half, leaving an “east strip” and and “west
strip”. Again each point in one strip has its antipode in the other (and vice versa), so we discard
one of them. We’re not done. The vertical (short) cuts on the west strip are antipodes. But now
we can identify these, provided we put a half-twist into the strip. We get a Moebius strip. This has
a single circle for an edge, to which we propose to glue the remaining cap. Of course we can’t do
that in 3-space.

If we contort the Moebius strip and the cap just right, and allow the surface to pass through itself,
then we can, and so obtain what is known as a Boy surface, because Werner Boy first figured out
how to do that.

Now we are done. We have proved that the moduli space for the lines in the plane is a Boy surface.
For entirely different reasons, it is also called the projective plane. Visualizing a Boy surface is
visualization problem left for another time.

1See the illiSnail real-time interactive compuer animation.
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