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In 3D, this
ax2 + by2 + cz2 + dxy + eyz + fzx + gx + hy + kz + m = 0

is the formula for a quadric surface. The quadric surface is the locus of points (x, y, z) that satisfy the
equation. The 10 parameters a, b, c, ....,m determine the shape of the quadric. We would like to know how
they do this.

In 1D, the familiar quadratic equation ax2 + b2 + c = 0 was studied to death in high school. But we’re not
quite done with it. Here it will serve us as the bottom rung of the dialectic, a.k.a. dimensional ladder, that
will enable us to peek into the 10D paramater space for quadrics.

Unfortunately, in 1D the entire solution is described by the familiar

ax2 + b2 + c = 0if and only ifx =
−b±

√
b2 − 4ac

2a

which consists of a single point when b2 = 4ac, and has two or no (real) solutions, depending on b2 < or >
4ac. Why don’t you graph the critical surface in 3-dimensional a, b, c space using DPGraph. This surface is
called the discriminant of the quadratic equation, and for (a, b, c) on the discriminatn surface, there is only
one solution. On one or the other sides of the surface there are none, or two solutions.

Solution: DPGraph shows y2 = xz very well, but because the axis of this double cone is not aligned with
the axes, it is easily mistaken for some other quadric. If we make the substitution x← x− z, y ← x + z we
get the more recognizable equation

y2 = x2 − z2 or x2 + y2 = z2

whose locus has horizontal (x, y) sections circles of radius |z|. For x = 0 we factor

0 = z2 − y2 = (z − y)(z + y)

for the equation of two crossing lines. Thus the discriminant surface is a double cone.

Now, lets (try) to do the same thing to 2D. Note that the quadratic equation is just a (somewhat very!)
special case of the equation for a quadric surface, namely b = c = c = e = f = h = k = 0. The loci of the
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2D quadratic equation
ax2 + bxy + cy2 + dx + ey + f = 0

are called the conics because these curves are all obtained by cutting a (double) cone in 3D by a plane (you
learned that in high school, right?)

One approach to solving quadratic equations is very geometrical (as will be apparent much later.) It consists
of turning the quadratic equation into a homogeneous equation. We do this by first setting a new variable
w = 1 and then mutliplying through by 1 a number of times.

Let’s see how this works in 1D. We write ax2 + bxw + cw2 = 0. Note that is is a special case for the 2D
quadratic equation (d = e = f = 0), provided we release w = 1 and let it be 2nd variable in 2D (x,w) space.
(Our letters may vary from paragraph to paragraph, but not their roles. Letters at the end of the alphabet
are spacial coordinates, and the parameters are at the beginning of the alphabet.)

We now solve the 1D homogogenous quadratic equation as follows.

If a = 0 and b 6= 0 (if it were, we’d have nothing to look at, right?) then the LHS factors into w(bx+cw) = 0,
which is true if w = 0 or if (bx + cw) = 0, both of which are equations of straight lines in (x,w) space. To
get back to 1D, we set w = 1 (which is still another line) and look at the intersection the locus (loci) makes
with the special line w = 1.

If a 6= 0 then we can eliminate it by dividing through the equation. Note that the RHS 0/a = 0 doesn’t
change, so the locus can’t change either when we solve
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b
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b2

4a2
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− c

a
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√

b2 − 4ac

2a
)w)(x + (

b

2a
−
√
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2a
)w) = 0

The last line is the equation of two lines crossing at the origin. When we set w = 1 again, these two lines
cross this horizontal at the two solutions to the quadratic equations.

The foregoing was an example of how to solve an inhomogenous equation in some dimensions, by solving a
homogeneous equation in one dimension higher. Working in homogenous coordinates is an essentail aspect
of computer graphics as it has been in algebraic geometry for hundreds of years.

Note that by solving the 1D quadratic equation in the foregoing way, also solved the special case of the 2D
quadratic equations x2 + bxy + cy2 = 0, only with different letters. We next consider the “latter half” of
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the entire quadratic equation, namely the case of linear equations in the plane, dx + ey + f = 0, except that
we rewrite this equation again, as ax + by + c = 0. This time we want to know how to characterize each
line such an equation defines. In high school you knew lines by their “point-slopes”, or by two points the
line passes through, or some other geometrical property of the line. Now we want to understand the lines
in the plane as the points in some space, which we shall call the moduli space of lines in the plane. More
familiar names for this might be configuration space. In the present case, it is not the same as the parameter
space, which is the 3D a, b, c space. Why? Because the point (a, b, c) is not unique to the line. The equation
tax + tby + tc = 0 describes the exact same line, provided that t 6= 0, of course. (Think: what is the locus
when t = 0.) The Greeks would have said that it isn’t the triple (a, b, c) that determines the line, but their
ratio a : b : c. So, now we want to know how to imagine the space of all ratios a : b : c, except a = b = c = 0.

£ = {a : b : c|0 6= a2 + b2 + c2 = r2} and a : b : c = {(ta, tb, tc)|t 6= 0}

.

To solve this visualization problem we shall need some topology.
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