
B Y R O B E R T K A U F M A N

F O R

M A T H 1 9 8 F A L L , 2 0 1 5

Generating and Displaying Mazes
in Two and Three Dimensions

Background

 A maze is a simple puzzle
in which a set of walls
divide an area

 The goal is to get from
one point to another

Project Purpose

 Generate and display 2D
mazes

 Generate and display 3D
mazes

 Automatically solve both
2D and 3D mazes

 Manually solve 2D and
3D mazes

Mazes as Trees

 Mazes can be viewed as a spanning tree of a graph
with a grid of vertices each connected to all their
neighbors with equally weighted edges.

 Means that any spanning tree algorithm can create a
maze

 The dimension of the maze does not matter as it can
just be represented by a 2n-ary spanning tree for a
nD maze (ex: 2D has a 4-ary spanning tree, 3D – 6-
ary, 4D – 8-ary)

Mazes as Trees

Recursive Back-tracker

 Pattern:
 Pleasing, random

appearance

 Relatively long sections
before a branch

 Algorithm:
 Works by randomly selecting

a path until there are no
more valid moves (there are
no unvisited adjacent cells).

 Next moves back until
another move is possible.

 Continues until the whole
maze has been visited.

Recursive Division

 Pattern:

 Lots of intersections
between paths

 Long straight lines of walls

 Algorithm:

 Randomly places a wall
dividing the maze in two
and picks a random
opening

 Then does that same
division with the two new
sections

Prim’s Algorithm

 Pattern:
 Looks like a mix between

previous two

 Many intersections between
paths

 But shorter and more
random wall segments

 Algorithm:
 Picks a random starting

point

 Continuously picks a random
cell from the unvisited
neighbors of the current
visited cells

Growing Tree

 Pattern:

 It depends on the parameters

 Can look like Prim’s, Recursive
Back-tracker, both and more

 Algorithm:

 Pick a random cell and store it
in a list

 Randomly pick more cells
until no longer possible

 Once a dead-end is hit, use
some condition to pick the
next cell to iterate from, ex:
 Most recent added cell:

performs like a back-tracker

 Random cell: looks similar to
Prim’s algorithm

Solution Algorithm

 Implemented with a
depth-first search
 Starts at the start (yellow

cell)

 Recursively checks if each
neighbor cell can lead to
the path

 Checks neighbors one at a
time; the order of
neighbors traversed may
help efficiency

 Stops once the end (green
cell) is reached, marks
solution path

2D Mazes

 Displayed using canvas
in HTML5

 Interactivity:

 Change size

 Change generation
algorithm

 Solve
manually/automatically

 Reset

 Zoom in/out, pan over
maze

3D Mazes

 Displayed using WebGL
and ThreeJS

 Interactivity:

 Change size

 Change generation
algorithm

 Solve
manually/automatically

 Rotate maze, zoom
camera

 Switch to layer view

Questions/Comments

References

 Maze Algorithms:
 https://en.wikipedia.org/wiki/Maze generation algorithm

 http://weblog.jamisbuck.org/2011/2/7/maze-generation-
algorithm-recap

 Images:
 Recursive Division Completed Example

 http://weblog.jamisbuck.org/2011/1/12/maze-generation-
recursive-division-algorithm

 Prim’s Algorithm Completed Example

 http://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-
algorithm

 Other Images: Robert Kaufman

