Generating and Displaying Mazes
in Two and Three Dimensions

O

Background

O

» A maze is a simple puzzle
in which a set of walls
divide an area

» The goal is to get from
one point to another

Generate and display 2D
mazes

Generate and display 3D
mazes

Automatically solve both
oD and 3D mazes

Manually solve 2D and
3D mazes

Mazes can be viewed as a spanning tree of a graph
with a grid of vertices each connected to all their
neighbors with equally weighted edges.

Means that any spanning tree algorithm can create a
maze

The dimension of the maze does not matter as it can
just be represented by a 2n-ary spanning tree for a
nD maze (ex: 2D has a 4-ary spanning tree, 3D — 6-
ary, 4D - 8-31'}7)

Recursive Back-tracker

» Pattern: @

o Pleasing, random | | | |
appearance

o Relatively long sections
before a branch |

» Algorithm:

o Works by randomly selecting | | |
a path until there are no |
more valid moves (there are — -
no unvisited adjacent cells).

o Next moves back until |
another move is possible. — | J

o Continues until the whole L
maze has been visited. | — " 1| T |—I |

Recursive Division
o Pattern:

o Lots of intersections

between paths _ 1T [

o Long straight lines of walls |
o Algorithm: |

o Randomly places a wall
dividing the maze in two |
and picks a random |
opening

o Then does that same
division with the two new — -
sections

Prim’s Algorithm

O

Growing Tree

o Pattern:
It depends on the parameters

Can look like Prim’s, Recursive
Back-tracker, both and more

» Algorithm:
Pick a random cell and store it
in a list
Randomly pick more cells
until no longer possible
Once a dead-end is hit, use

some condition to pick the
next cell to iterate from, ex:

Most recent added cell:
performs like a back-tracker

Random cell: looks similar to
Prim’s algorithm

O

Solution Algorithm

O

» Implemented with a
depth-first search

Starts at the start (yellow
cell)

Recursively checks if each
neighbor cell can lead to
the path

Checks neighbors one at a
time; the order of
neighbors traversed may
help efficiency

Stops once the end (green
cell) is reached, marks
solution path

» Displayed using canvas
in HTML5
 Interactivity:
Change size

Change generation
algorithm

Solve
manually/automatically

Reset

Zoom in/out, pan over
maze

|
_II-I_I_I_

1

Il__.l_l_ll

=57

i
=

Displayed using WebGL
and ThreedJS
Interactivity:

Change size

Change generation
algorithm

Solve
manually/automatically

Rotate maze, zoom
camera

Switch to layer view

References

» Maze Algorithms:

https://en.wikipedia.org/wiki/Maze generation algorithm

http://weblog.jamisbuck.org/2011/2/7/maze-generation-
algorithm-recap

» Images:
Recursive Division Completed Example

http://weblog.jamisbuck.org/2011/1/12/maze-generation-
recursive-division-algorithm

Prim’s Algorithm Completed Example

http://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-
algorithm

Other Images: Robert Kaufman

