
4D Cantor Fractals

Andrew Kazenas

December 9, 2015

1 Abstract

4-space is an abstract theoretical concept that can be difficult to
understand without helpful visual aids. Fractals are an example of
this. Combine the two, and the result can be quite complicated
and confusing. My project is Javascript code that will allow its
users to study the Menger Hypersponge and Sierpinski 5-cell by
rotating these objects in various directions. This allows for better
visualization and can be used to create some interesting fractal art.

2 Background

Fractals are bizarre mathematical objects that exist between the
standard three dimensions that humans are used to. Unlike simple
lines and shapes that clearly have integer dimensions, fractals have
so called fractional dimension which causes properties like a closed
planar figure having an area of 4 inches and a perimeter of infinite
length. The most simple and common fractals are created by start-
ing with an ordinary shape like a cube or a triangle, and applying
some sort of process to it which results in multiple smaller versions
of the original object. You can then apply the same process to the
smaller versions of the original. The limit of repeating this infinitely
many times will often be a fractal. For example, to get the Sierpin-
ski Carpet, start with a square and divide it into 9 equal squares.
Remove the middle square, and then divide the remaining 8 squares
into 9 squares each. Remove the middle square from each of these
groups, and continue infinitely. There are other kinds of fractals,
but those are much more complicated and will not be the focus of
this project.

1



Many fractals have analogs in higher dimensions. For example,
the Cantor Set, which exists in 1-space, can be generalized to either
the 2D Cantor Dust or the Sierpinski Carpet in 2-space, and then
to the 3D Cantor Dust or the Menger Sponge in 3-space. Using sim-
ilar methods, it is possible to generalize fractals into 4-space. This
is a coordinate system obtained by taking standard 3-dimensional
space and adding an additional spatial axis. This way, you can have
fractals with dimension above 3 but not quite 4, some of which will
have infinite volume but zero 4th dimensional “girth.”

It is common for fractals to be represented graphically by showing
each iteration of the fractal up until the differences become too small
to notice without zooming in. This is pretty simple when dealing
with fractals in 1 through 3 space, but displaying a 4-dimensional ob-
ject in a 3-dimensional reality can get tricky. To solve this problem,
we use the same method used to represent 3-dimensional objects
on flat surfaces like pieces of paper or computer screens: shadows.
Whenever you see a diagram of a cube or a pyramid, all you are see-
ing is a projection of the 3-dimensional object onto a 2-dimensional
plane. Computers can make these 2-dimensional projections appear
3-dimensional by rotating the direction in which the projecting is
being done in a way that makes it look like the object is spinning in
more than just the two dimensions on the screen. You can use simi-
lar tricks to project 4-dimensional objects into 3-dimensional space,
and then onto a 2-dimensional screen. It’s a lot of projection, but
color-coding parts of the object can help you keep track of what’s
moving where and picture what the object is supposed to look like.

For my project, I will use Javascript to create a webapp that uses
colored shadows to display the nth iteration of the Menger Hyper-
sponge or the Sierpinski 5-cell for intellectual and artistic purposes.

3 Completed Goals

1. Become proficient in Javascript.

2. Create a web app that is able to display a shadow of the first
three iterations of the Menger Hypersponge and Sierpinski 5-
cell.

3. Allow the user to rotate the object in all 6 directions.

2



4. Create a version of the Sierpinski 5-cell that is compatible with
Firefox and mobile browsers.

4 How the Code Works

The first section of the code sets constants, and initializes variables
that I will use later. The most confusing part is that the program
is both keeping track of the directions of the axes in four-space (the
otus variables) and keeping track of what positions these directions
map to on the canvas (the coord variables). Keeping track of which
is which can be confusing, especially because the names of the axes
we’re keeping track of are obviously the same as the names of the
coordinate axes in 4-space we are using to track their position. As
a general rule, if it comes in only “x” or “y” varieties, it’s a canvas-
based variable, and if it comes in “x,” “y,” “z,” and “w” varieties,
it refers to one of the axes that rotates around. The 4-space coordi-
nates that we’re using to measure position are only represented as
indexes of an array.

Next, you find the “rotate” function. This function is called to
rotate the axes, thus changing our view of the object. All methods of
manipulation call this function to get the job done. The first thing
the function does is determine which two coordinates are being af-
fected. I numbered the 6 directions of rotation 0 through 5, and the
activeDirections array is created with a “1” in the index of any co-
ordinate which is being affected and a “0” in the coordinates which
are being left alone. The program then runs through all 4 axes and
translates their two affected coordinates from Cartesian to polar. It
then increases the theta coordinate by however much the rotation
called for before translating the polar coordinates back into Carte-
sian. Once this is done, the axes have successfully been rotated, so
the “render” function is called so that the display accurately reflects
the changed internal values.

“updateAxisLocations” is a function that translates the axes’ 4-
space coordinates into locations on the canvas, then sets the canvas
location variables to these new values. It’s called only at the begin-
ning of the render function, and is separated so the render function
can be clean and easy to edit. The render function is next, and it
does exactly what you’d expect. It finds the canvas on the page,
clears it, finds the middle of the page, puts the pen there, and ex-

3



ecutes the instructions to draw the object. “updateCoords” is a
function that takes the canvas locations of the axes and scales them
up or down so that the same drawing instructions can be called for
different levels of the fractal and produce the correct shape at what-
ever size and layer is currently appropriate based on what the user
has manipulated on the page.

This brings us to “recursiveDraw,” which is the part of the pro-
gram that actually draws the fractal. It takes a size variable and a
layer variable. If the layer variable is set to 0, the function will draw
a 5-cell of whatever size it gets fed at the current location of the
pen. If the layer is bigger than 0, it will jump around to the origin
points of each of the six smaller 5-cells that result from iterating the
fractal, and at each point it will call the function itself with half of
the size that was input and one less layer. This recursion allows the
fractal to be drawn with an arbitrary number of layers.

The final three functions all have to do with user input. The
“acceptKeyInput” is simple. It calls the rotate function with the
direction that whatever key is being pressed maps to and the rota-
tion amount equal to whatever has been entered into the speed box.
This function will be called whenever the EventListener on the page
picks up a keydown event. The “iterate” and “deiterate” functions,
which are called by the similarly named buttons on the page, will
simply move the number of iterations variable up and down. There
are checks in place to prevent the number of iterations from going
below zero and warn the user if they are about to push the num-
ber of iterations high enough that rendering the fractal would be
especially taxing on their web browser.

4


