
Modeling, Controlling, and Solving a Rubik’s
Cube with VPython

Robert Kaucic

10 November 2015

Abstract

A Rubik’s Cube is a fantastic toy and an equally fantastic geo-
metric puzzle. Programming one graphically presents the challenge
of developing a clear model, intelligent controls, and an effective so-
lution method. For my project I model a Rubik’s Cube in VPython
and allow users to manipulate it through a series of intuitive keyboard
inputs. A key feature of my Rubik’s Cube model is the intuitive con-
trols; almost every model of a Rubik’s Cube readily available online
has sloppy or confusing controls, making it harder to understand how
to input commands than to actually solve the cube itself. Algorith-
mic solutions to the Rubik’s Cube are quite difficult, so my attempt
focuses on accuracy rather than efficiency.

1 Introduction and Backstory

In 1974, Hungarian professor of architecture Erno Rubik constructed the first
Rubik’s Cube in an effort to construct a model that would help him better
understand three dimensional geometries. To better keep track of how the
parts of the cube moved, he colored each face. Once he scrambled the cube,
however, it took him an entire month to successfully re-solve the it. While
the cube’s value in understanding three dimensional geometry was limited,
Rubik quickly realized the entertainment value of the cube as a toy and a
puzzle. Four decades later, the Rubik’s Cube is one of the most successful
toys of all time. World Championships hold contests to solve the cube the

1



fastest, and countless hours have been dedicated to finding short, easy, and
quick solutions to the scrambled cube [1].

Since the is a game borne from a geometric model, it is a prime candi-
date for being translated into an RTICA, especially for a novice graphical
programmer thanks to its relative simplicity. The key components of my
project are the model of the cube itself, the controls for the cube, and an
algorithmic solver. Thanks to the nature of VPython, the modeling of the
cube is relatively easy. The controls for the cube, however, are surprisingly
complex. Finally, algorithmically solving the Rubik’s Cube—especially when
I don’t actually know how to solve a real cube—is a fairly complicated and te-
dious process with many intricacies that must be handled perfectly to achieve
the desired result. The bulk of the learning for the project will take place in
the implementation of the solver.

2 Modeling the Rubik’s Cube in VPython

All code for the project was written using the standard VPython code li-
brary.1 No additional libraries were utilized.

2.1 Translating the Physical Cube into Code

A physical Rubik’s Cube consists of 26 small cubelets which each have one
to three faces visible, depending on their location in the cube. A cubelet
is a cube in which each face can be a different color. Corner cubelets have
three faces visible, edge cubelets have two, and cubelets in the center of
one of the faces of the Rubik’s Cube have only a single face visible. Each
cubelet is connected to a rotator mechanism housed inside the Rubik’s Cube
itself, and each cubelet maintains its position relative to other cubelets via
its connection to the rotator mechanism.

This structure, while ingenious for physical Rubik’s Cubes, is unneces-
sarily complex for a computer-simulated Rubik’s Cube. Instead, I created a
three-by-three-by-three collection of cubelets that looks just like a Rubik’s
Cube. The cubelets are instantiated with geometric centers starting at (-1,
-1, -1) and going to (1, 1, 1), using only integer values for coordinates. The

1The standard VPython code library provides the basic features needed to cre-
ate and manipulate three dimensional scenes. Full documentation is available at
http://vpython.org/contents/docs/index.html

2



colors on each cubelet’s face are hardcoded into the initialization of the cube,
as shown in Fig 1 below.

Fig 1: A visual of the Rubik’s Cube model. The blue face in each picture is
oriented in the positive-y direction. The green face (not shown) is oriented
in the negative-y direction. In the left picture, the white face is oriented in
the positive-z direction and the red face in the positive-x direction. In the
right picture, the yellow face is oriented in the negative-z direction and the

magenta face in the negative-x direction.

The advantage to this was not needing to design the tricky rotator mecha-
nism, but the drawback was abandoning the traditional method of connecting
cubelets to one another.

2.2 Building Cubelets with VPython

As mentioned before, a cubelet is a cube where each face can be a different
color. VPython has a number of 3D objects as part of its standard code
library, and unfortunately cubelet is not one of them. The object that seems
most immediately useful is the box object. A box takes a position, a length, a
width, a height, and a color as parameters, and creates a visible rectangular
prism of the given color geometrically centered at the given position with the
given dimensions. By passing length, width, and height of equal value into
the constructor, the box appears to be a cube.

The primary problem with using the box object, however, is that it can
only have one color. Cubelets need to have up two three colors, depending

3



on how many faces are visible. So the box object does not work. Instead, I
devised a scheme for creating cubelets using the pyramid object that is part
of the VPython standard code library. The pyramid object takes a position,
length, width, height, and color, and constructs a rectangular pyramid, where
the rectangular base lies in the yz-plane and has dimensions length by width.
The geometric center of the base is located at the given position and the
vertex of the pyramid is located height units away from the geometric center
in the positive x direction by default. The entire pyramid is the specified
color.

By putting six of these pyramids together such that their vertices all lie
at the same point (which is the center of the cubelet), but they are oriented
in six different directions (the positive and negative x, y, and z directions), I
constructed a cubelet where the base of each pyramid is one of the cubelet’s
faces (Fig 2). Since each of the pyramids, which now correspond to each
of the cubelet’s faces, can be colored differently, this structure can be used
to create something that looks exactly like a cube but has different-colored
faces.

Fig 2: A visualization of the orientations of the cubelet faces. Note that in
this image, vertices of the pyramids do not all lie at a single point. This
was done intentionally for visual clarity, and does not accurately represent

an actual cubelet.

4



I then defined the cubelet class to be a collection of six pyramids with
square bases and heights equal to one half their side length, all with vertex at
a single given position, oriented in six different directions and colored (red,
green, blue, magenta, white, or yellow) based on their orientation during
the initialization of the Rubik’s Cube. The Rubik’s Cube itself was then a
3 × 3 × 3 list (analogous to a three-dimensional array in Java) of cubelets
where each cubelet’s center position was set to be the cubelet’s three-part
index (i.e. [x][y][z] corresponds to the position (x, y, z)), meaning that the
cubelet center positions ranged from (-1, -1, -1) to (1, 1, 1), as stated in the
”Translating the Physical Cube into Code” subsection.

2.3 Controlling the Cube

The controls are a series of keyboard inputs I designed after some basic
testing for speed and intuitiveness. They are not perfect, but they are rel-
atively simple and effective. The arrow keys move the camera position in
90°increments, to allow the user to view any side of the cube. The q, w,
e, a, s, d, z, x, and c keys are used for selection and rotation. The
aforementioned keys q through c are arranged in a 3× 3 grid on QWERTY
keyboards. The locations of these keys in the grid correspond to the loca-
tions of the cubelets that they select ; e.g. (q) will select the top-left cubelet
from the user’s point of view. Selecting a cubelet highlights it by lowering
its opacity so that it is visually differentiated from the other cubelets.2 and
enables the second part of keyboard input needed to perform a rotation. For
the second rotation, only the q, w, e, a, d, and x keys are enabled. These
correspond to the direction that the selected cubelet (and the cubelets in its
row, column, or face, depending on the rotation) will be rotated. w, a, d,
and x are the most intuitive; (w) rotates the column of the selected cubelet
up, (x) rotates the column of the selected cubelet down, and (a) and (d)
rotate the row of the selected cubelet left and right, respectively. The q and
e keys are for face rotations. Pressing q, regardless of the selected cubelet,
will rotate the entire front face of the Rubik’s Cube counterclockwise (front
face being the nine cubelets that compose the side of the Rubik’s Cube that

2It can be argued that ”highlight” is a poor word for visual differentiation by lowered
opacity, since highlight generally means increasing visibility, and decreasing a cubelet’s
opacity actually decreases its visibility by making it translucent. But a decrease in opacity
makes it clear which cube has been selected and is quite easy to do. So in a sense it
highlights the fact that the cube has been selected, if not the cube itself.

5



the user is looking at). Pressing e works just like pressing q except that the
rotation is clockwise.

2.4 Solving a Rubik’s Cube

Solving a Rubik’s Cube is considered a relatively daunting task for humans,
since there are numerous complicated algorithms that one must remember
in order to manipulate each cubelet into the desired position without detri-
mentally changing the position of other cubelets. Solving a Rubik’s Cube is
considerably harder for a computer; not because a computer has difficulty
remembering complicated algorithms, but because a computer has trouble
analyzing the state of a Rubik’s Cube at each moment and determining the
next algorithm to use in order to get some cubelet into the right position.
Currently I have yet to implement the Rubik’s Cube solver. I have, however,
looked at a handful of resources including the official Rubik’s Cube website’s
beginner solving technique [2] as well as some algorithms, such as Thistleth-
waite’s algorithm [3] designed specifically for computers, and talked with my
helpful roommate Orlando [4] who knows how to solve a Rubik’s Cube, in
order to learn how to implement a rudimentary Rubik’s Cube solver. The
algorithm is conceptually as follows:

1. Establish a list of states of the Rubik’s Cube such that the nth state
must be achieved before the n+1 th state.

2. Identify the important positions of cubelets on the Rubik’s Cube that
contribute to the state (i.e. figure out what cubelets need to be in what
positions in order to achieve the state).

3. For each important position, scan the Rubik’s Cube to determine where
the cubelet that needs to be in the important position under consider-
ation currently is.

4. Once the current position of the desired cubelet is identified, check to
see if any of the pre-written algorithms (which have certain precon-
ditions for what beginning and ending positions they can accept as
parameters) is capable of moving the desired cubelet from its current
position to the important position under consideration.

5. If such an algorithm exists, perform it. If such an algorithm does not
exist, continue.

6



6. Continue this process until each important position has been checked.

7. At this point either all of the important positions will have the correct
cubelets in them or they will not. If the not all of the important
positions have the correct cubelets in them, repeat steps 3 through
6 until all important positions have the appropriate cubelets. This
may seem like it will not work, but according to my research and my
roommate, if a cubelet is not in a position that works for the available
algorithm(s) during the first iteration of these steps, it will be in at
least one of the subsequent iterations, due to the nature of the Rubik’s
Cube.3

Depending on how much time I have, the solver may have features such
as a step-by-step solution, to allow the user to step through each move and
follow the algorithms, or it may have a feature that reads the current state
of the cube that the user is trying to solve and performs the next algorithm
needed to place the correct cubelet in the next unsolved important position.
At a minimum I intend to implement a feature that scrambles the Rubik’s
Cube and then plays out the solution without user input. One very simple
way to do this would be to store the rotations used to scramble the cube, and
perform those rotations in reverse order. Hopefully I am capable of writing
a more legitimate algorithm than that.

3 Performing Rotations

To actually perform a rotation of a set of cubelets in three-dimensional space,
you must know the position of each cubelet, the axis of rotation, and the ori-
gin of rotation. When a rotation command is executed, it runs VPython’s
object.rotate(...) command on each of the faces of each of the cubelets.
One of the key features of a rotation in three-dimensional space is the path
that the object travels along. For a single rotation in a Rubik’s Cube, this
path is a quarter-circle. The axis of rotation is the coordinate axis (remem-
bering that the way we built the Rubik’s Cube places its geometric center
at the origin) for which every cubelet being rotated has the same coordi-
nate value for that axis (e.g. if you are rotating the set of cubelets with

3I understand this is somewhat vague. I fully intend to have a stronger and clearer
grasp of the mechanics behind applying algorithms to a Rubik’s Cube by the time of my
final presentation.

7



x-coordinate = 1, the axis of rotation is the x-axis). The origin of rota-
tion specifies the center point of the circular path that would be taken if the
cubelet were to be rotated a full 360°. Finally, the position of the cubelet is
used to calculate the radius of the circular path that would be taken if the
cubelet were to be rotated a full 360°. Using this information, VPython’s
object.rotate(...) method calculates and sets the new orientation and
position of the rotating object.

The object.rotate(...) method is convenient, but it is not actually
applicable to cubelets. Cubelets are a collection of six pyramids, as well as
a bit of other data, so VPython’s object.rotate(...) method doesn’t ac-
tually know how to rotate them. To handle this, I defined a .rotate(...)
method in the cubelet class that class .rotate(...) on each of the pyramids
in the cubelet. However, object.rotate(...) still does not animate the ro-
tation of the cubelet, which is important for being able to keep track of where
each cubelet on the screen has rotated to. In order to animate rotations, a
complete 90°rotation of a row or column is actually split into 30 3°rotations,
which are performed once every 30th of a second. The degree of each smaller
rotation and the rate at which the rotations are performed can be changed,
but for simplicity’s sake I standardized them throughout my program.

Finally, it is worth mentioning why I did not use frames to perform the
rotations. Simply put, each cubelet is not actually attached to the cubelets
adjacent to it. Depending on whether you move a row or a column, two
adjacent cubelets may move together or they may not. This functionality
is not possible using frames, unless the frames are deleted and re-calculated
before each rotation. As it happens, that is considerably more work than
calculating the list of cubelets that would be in the frame and rotating them
individually using the cubelet.rotate(...) method I wrote.

Fig 3: An example of a column of the Rubik’s Cube being rotated up,
around the axis (1,0,0).

8



3.1 Mathematical Methods

There are a handful of relatively rudimentary calculations behind rotations.
Principally, you must determine the center of rotation, the axis of rotation,
the radius of rotation, and the angle of rotation. For a Rubik’s Cube, these
calculations are further simplified by the fact that the axis of rotation will
always be one of the coordinate axes, and the angle of rotation will always
be 90°.

3.1.1 Defining the Axis of Rotation

Since the axis of rotation essentially confines the three-dimensional rotation
to a two-dimensional plane, all that matters for the rotation is the direction
of the axis; the magnitude of the axis has no effect. If we rotate clockwise
around the x-axis, for instance, it makes sense to set the axis of rotation to
(1, 0, 0). The sign of the non-zero component determines the direction of
rotation. Imagine that you are sitting at the origin and looking out along the
axis of rotation. VPython’s object.rotate(...) method will always rotate
clockwise around the axis of rotation from that point of view. So to make a
counterclockwise rotation about the axis (1, 0, 0) we simply set the axis of
rotation to (-1, 0, 0).

3.1.2 Defining the Origin of Rotation

Once again, due to the constraints of a Rubik’s Cube, the origin of rotation of
any given cubelet around some axis of rotation will be the origin, save for the
cubelet’s coordinate value for the non-zero component of the axis of rotation.
So for a cubelet centered at position (0, 1, 1) (which means that the cubelet’s
position attribute would be (0, 1, 1)) rotating around the axis (0, 1, 0), the
origin of rotation would simply be (0, 1, 0), since the cubelet’s coordinate
value for the non-zero component of the axis of rotation (the y-component,
for the example axis) is 1.

3.1.3 Defining the Radius of Rotation

Calculating radius of rotation, like the origin and axis of rotation, is simplified
by the fact that rotations for a Rubik’s Cube occur along coordinate axes.
Step one is to determine the non-zero component of the axis of rotation.
Step two is to perform a two-dimensional distance calculation between the

9



cubelet’s position and the origin of rotation using only the variables for which
the axis of rotation’s component for that variable equals zero.

For example: given a cubelet at (1, 1, 1) and an axis of rotation defined
by (0, 1, 0), we know (from above) that the origin of rotation must be (0,
1, 0). We exclude the y component from our distance calculation, since the
cubelet will be rotating in the y = 1 plane exclusively. So using the distance
equation, and the notation that cubelet.x refers to the x-coordinate value
of cubelet’s position (with similar notation for the origin of rotation):

d =
√

(cubelet.x - origin.x)2 + (cubelet.z - origin.z)2 (1)

We substitute our values in:

d =
√

(1− 0)2 + (1− 0)2 =
√

2 (2)

Since the actual numbers used in the construction of the Rubik’s Cube are
so simple, much of the math becomes rudimentary. You may notice that due
to the way that the origin of rotation is set, it would be completely valid to
use three-dimensional distance, since the third dimension will always cancel
out. That would work just fine, but I believe illustrating the math in two
dimensions (since that is all that is necessary) makes it somewhat easier to
visualize.

References

[1] ”The History of the Rubik’s Cube.” Rubik’s. Rubik’s Brand Ltd, n.d.
Web. 30 October 2015.

[2] Ferenc, Dénes. ”How to solve the Rubik’s Cube.” Ruwix. Ruwix.com. 16
December 2012. Web. 3 November 2015.

[3] Scherphuis, Jaap. ”Thistlethwaite’s 52-move algorithm.” Jaap’s Puzzle
Page. n.p. Web. 5 November 2015.

[4] Orlando Melchor-Alonso, personal communications, fall 2015.

10


