
The 3D Chaos Game

Joey Bloom

November 2 2015

Abstract

The Chaos Game is a method of fractal image generation. It is
a particle system that draws points one by one according to a set of
rules, and the points drawn will approach an attractor which may be
a fractal. Many well known fractals in the euclidean plane can be
produced by the Chaos Game. I would like to see what images I can
produce with the Chaos Game in 3-space or higher dimensions. My
goal is to develop an RTICA using HTML5 Canvas and Javascript
to display these fractals and allow the user to manipulate the initial
conditions to produce their own fractals.

1 The Rules of the Game

1.1 Basic/simple/accessible version

The Chaos Game at a minimum requires a finite set of points S = {A0, A1, A2, ..., Ak}
and a ratio r where 0 < r < 1.

1. Choose at random a point A ∈ S.

2. Choose at random a point B ∈ S.

3. Let d represent the distance from A to B. Move point A a distance of
rd in the direction of B. That is, A := rA + (1− r)B.

4. Draw the new point A.

5. Repeat from step 2 until a a good enough approximation of the at-
tractor is produced.

1

1.2 Formal definition

An affine transformation maps each point in a space R to another point
in R such that colinearity and distance ratios are preserved. Examples
of affine transformations are translations, rotations, dilations, shears, and
compositions thereof. Mathematically, an affine transformation T has the
form T (x) = Ax + t where A is a matrix and t is a column vector.

An iterated function system, or IFS, is a finite set of affine transforma-
tions that are all contractive. An affine transformation T (x) is contractive if
for all displacement vectors a and b, |T (a)−T (b)| < k|a−b| where 0 ≤ k ≤ 1.
In English, any two points will be strictly closer to each other after T is ap-
plied to them. Furthermore, when T is applied iteratively on any two points,
the distance between them approaches zero.

1.3 Visualizing IFS

There are two main methods for visualizing an IFS. The first is the deter-
ministic method. Given a starting point, each of the transformations in the
IFS are applied to the point and the result points are drawn. Then, for each
result point from the previous step, each of the transformations in the IFS
are applied to the point and those result points are drawn. This tree-like
pattern continues to apply all possible sequences of transformations in the
IFS of an arbitrary length.

The second method of visualizing an IFS is the chaos game. Where the
deterministic method carefully enumerated all possible sequences of trans-
formations, the chaos game randomly chooses one transformation, applies
it to the starting point, and then chooses another transformation at ran-
dom and applies it to that. The chaos game continues to iteratively apply
randomly chosen transformations, often producing a desirable image more
efficiently than the deterministic approach.

2 RTICA Design

I made a demo of the “basic/simple/accessible” chaos game in two di-
mensions. It is in my repository at class198f15/jpbloom2/javascript/

chaosGame/simple.html.
The central feature of my RTICA would be an HTML5 Canvas element

on which I would use Javascript to draw fractals. Below the canvas is a
drop down menu from which the user can select well-known fractals like the
Sierpinski gasket, Sierpinski carpet, and a Barnsley fern. Finally comes the

2

transformation editor, where the user can edit each of the affine transfor-
mations in the IFS.

Figure 1: The Transformation
Editor

My idea of the transformation editor is
to allow the user to manipulate the affine
transformations of the IFS. The user should
be able to directly edit the numbers of each
affine transformation. I will also include a
tool to specify transformations as a compo-
sition of translation, rotation, dilation, and
shear.

I would visualize each transformation
in the transformation editor by showing a
unit square/cube and then the same unit
square/cube after the transformation has
been applied. A sketch is shown in Figure 1
at the right. The square with the light col-
ored vertices is the original and the square
with the dark colored vertices is the trans-
formation.

To best show how the Chaos Game builds images point by point, the
user should be able to click a “Draw Point” button to cause one more point
to be drawn. I will also include a “Run” button which will draw points at
a constant rate, specified in a “Points per second” text box available to the
user. In the 3D RTICA, I will allow the arrow keys to rotate the fractal
image while it is being drawn.

3 Timeline

• F8: Check out “Fractals Everywhere” by Barnsley from Grainger; use
this to help formalize my understanding of IFS.

• F9: Proposal 2nd draft completed, with more research into the math-
ematics of IFS.

• FA: Implement the chaos game in 2D; modify my existing chaos-
Game2D.html to use affine transformations instead of the basic/simple/
accessible version. The user interface for making transformations will
come later.

• FB: Extend my implementation of the chaos game to 3D. This will

3

require using 3D-math.js to project 3D points onto the 2D HTML5
Canvas.

• FC: Visualize the 2D affine transformation editor; make it easy to
control with little instruction needed.

• FD: Visualize the 3D affine transformation editor; make it easy to
control with little instruction needed.

4 Bibliography

Barnsley, Michael F. “Fractals Everywhere.” Academic Press, Inc, 1988.
Call Number 516 B267f at Grainger Engineering Library, UIUC.

Barnsley, Michael F. and Andrew Vince. “The Chaos Game on a General
Iterated Function System.” http://arxiv.org/pdf/1005.0322v1.pdf.

Francis, George. “BASIC Pocket Graphics Programs” UIUC Math 198 Hy-
pergraphics 2001 Class Notes. http://new.math.uiuc.edu/public198/

pcPocketry/gasketry/gasket.pdf.

Hart, John C. “Fractal Modeling.” Lecture Slides for CS 418 at UIUC.

Weisstein, Eric W. “Affine Transformation.” From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/AffineTransformation.
html.

4

