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Abstract

Physible conglomerates four smaller, physics-related programs into one
package. Each subprogram features a 3-D simulation of some physical
system, which are interactive to varying degrees. Ranging from simple
kinematics to quantum mechanics, Physible will demonstrate visually the
mathematics behind simulations of real-world physical systems, thereby
making the physics visible.

1 Introduction and Background

Physible will combine four sub-programs into one, user-browsable interface. The
user may not only view each program at their leisure, but will be able to interact
with them by actually entering values to view how they reflect differences in the
outcome. These four sub-programs vary in conceptual complexity and are sam-
ples of the following disciplines: kinematics, chaos theory, quantum mechanics,
and thermal and statistical physics. Because of the number of sub-programs,
which could easily be programs on their own if delved into deeply enough, they
will be more surface-level explorations and examples, but could be later added
onto for another project.

1.1 Kinematics

The kinematics project is the most simple: it displays the path of motion of
some thrown object under the effects of gravity. The relevant equations are
derived from the assumption of constant gravitational force and the definitions
of acceleration and velocity:

~ay =
d~vy
dt

= −gŷ

~vy =
d~y

dt
=

∫ t

0

~aydt = (vy0 − gt)ŷ
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~y =

∫ t

0

~vydt = (y0 + vy0t−
1

2
gt2)ŷ

and so given an initial velocity and position, we know the position of the
object for all times t. Because there are no forces in the x̂ or ẑ directions, their
accelerations are zero and thus their velocities constant (until the object hits
the ground).

1.2 Chaos Theory

The chaos project features the paradigm of chaos: a double-pendulum system.
This system is most easily described through the approach of Lagrangian me-
chanics1. With this, we can describe the position of each pendulum as a function
of its angle with respect to its pivot, and using the Euler-Lagrange equations, we
can solve for their motion. Figure 12 displays how the coordinates are measured.

Figure 1: Coordinate measurements for the Lagrangian approach of solving the
double pendulum.

L(q, q̇, t) ≡ T (q̇, t)− U(q, t)

∂L

∂q
=

d

dt

∂L

∂q̇

Where the dot notation indicates a derivative with respect to time. As shown
in Figure 1, we have two coordinates for q: θ1 and θ2. To solve this system, we
need the energies of each mass. This is most easily accomplished by using their
x and y positions as such:

1http://scienceworld.wolfram.com/physics/DoublePendulum.html
2http://scienceworld.wolfram.com/physics/dimg270.gif
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x1 = l1 sin θ1

y1 = −l1 cos θ1

x2 = x1 + l2 sin θ2 = l1 sin θ1 + l2 sin θ2

y2 = y1 − l2 cos θ2 = −l1 cos θ1 − l2 cos θ2

The potential energy U is simple in a gravitational field of strength g: U =
mgy. Namely,

U = m1gy1 +m2gy2 = −m1gl1 cos θ1 −m2(l1 cos θ1 + l2 cos θ)

The kinetic energy may be written via its classical mechanics definition:

T =
1

2
m1(ẋ1

2 + ẏ1
2) +

1

2
m2(ẋ2

2 + ẏ2
2)

=
1

2
m1l1

2θ̇1
2

+
1

2
m2

[
l1

2θ̇1
2

+ l2
2θ̇2

2
+ 2l1l2θ̇1θ̇2 cos(θ1 − θ2)

]
Thus, using the above definition of the Lagrangian, our system’s Lagrangian

is

L =
1

2
(m1 +m2)l1

2θ̇1
2

+
1

2
m2l2

2θ̇2
2

+m2l1l2θ̇1θ̇2 cos(θ1 − θ2) (1)

Now, plugging this in for the Euler-Lagrange equations yields our two equa-
tions of motion for each mass:

(m1 +m2)l1θ̈1 +m2l2θ̈2 cos(θ1−θ2)+m2l2θ̇2
2

sin(θ1−θ2)+g(m1 +m2) sin θ1 = 0
(2)

m2l2θ̈2 +m2l1l2θ̈1 cos(θ1θ2)−m2l1θ̇
2
1 sin(θ1 − θ2) +m2g sin θ2 = 0 (3)

The solutions to these differential equations for θ1 and θ2 may be found
numerically in the program to display realistic behavior.

1.3 Quantum Mechanics

The quantum mechanics project plans to demonstrate the quintessential hydro-
gen atom wavefunctions.
The most fundamental equation in (non-relativistic) quantum mechanics is the
Schrödinger equation; once solved, you have the wave function and thereby ev-
erything there is to be known about the system. The Schrödinger equation
reads

ih̄
∂

∂t
Ψ(~r, t) = ĤΨ(~r, t) (4)
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where Ψ is the wavefunction and Ĥ is the Hamiltonian operator

Ĥ = − h̄2

2m
∇2 + V (r, t)

where m is the mass of the particle, ∇2 is the Laplace operator, and V (r, t)
is the given potential.

We may solve this differential equation by assumption of form, guessing
only one of many possible solutions, but then finding that these solutions are
complete and combine to form the general solution. We assume the form

Ψ(~r, t) = ψ(~r)φ(t)

We may plug this solution into the Schrödinger equation, and then divide
by our assuming form for Ψ, resulting in

ih̄
1

φ

dφ

dt
= − h̄2

2m

1

ψ
∇2ψ + V

For our case, if we assume the potential depends only on r, then the two
equations are separated; because they must always be equal, should we change
one parameter e.g. t while holding the other constant, it must still be true;
because r and t are independent however, this implies both sides of the equation
are constant. We may write the time solution as

ih̄
1

φ

dφ

dt
= E

which has the solution

φ(t) = e−iEt/h̄ (5)

We find that this constant E is actually the energy of the system, and for
various Ψn, the nth excited state has energy En. We may construct our general
wave function as a sum of these stationary states:

Ψ(~r, t) =
∑

cnψne
−iEnt/h̄ (6)

Now, working on the spacial part, we must first specify a potential function;
one of special interest (and the case which will be modeled by the project) is that
of the Hydrogen atom, where the potential is the Coulomb potential between
the electron and the proton nucleus:

VH =
1

4πε0

q1q2

r
= − 1

4πε0

e2

r

where e is the elementary charge and ε0 is the permittivity of free space. It
is natural to use spherical coordinates for this system3; by using the spherical
form of the Laplace operator, the Schrödinger equation reads

3NB: the convention for θ and φ are exchanged in standard physics notation in comparison
to standard math notation i.e. φ is the azimuthal angle and θ the polar angle
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− h̄2

2m

[
1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ
+

1

r2 sin2 θ

(
∂2ψ

∂φ2

)]
+ V ψ = Eψ

Again, we attempt solving via separation of variables by looking for a spacial
wavefunction in the form ψ(r, θ, φ) = R(r)Y (θ, φ). If we plug this form in and
divide by ψ as well as multiplying by a factor −2mr2/h̄2 we get

{
1

R

d

dr

(
r2 dR

dr

)
−2mr2

h̄2

[
V (r)−E

]}
+

1

Y

{
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

}
= 0

The first term is a function only of r while the second is a function of only θ
and φ. Like previously, these must each be constants, which we choose to write
as such:

1

R

d

dr

(
r2 dR

dr

)
− 2mr2

h̄2

[
V (r)− E

]
= l(l + 1)

1

Y

{
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

}
= −l(l + 1)

To solve the angular equation first, we again try separation of variables with
Y (θ, φ) = Θ(θ)Φ(φ); plugging this in and dividing by Y gives us{

1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ l(l + 1) sin2 θ

}
+

1

Φ

d2Φ

dφ2
= 0

again indicating two individual pieces which are functions of only one vari-
able, implying they are constant; this time they are set to be

1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ l(l + 1) sin2 θ = m2

1

Φ

d2Φ

dφ2
= −m2

The φ equation is simply solved:

Φ(φ) = eimφ (7)

Where m may run negative to cover all possible solutions. The requirement
that Φ(φ+ 2π) = Φ(φ) is periodic limits m to integer values.

The θ equation has been solved to have the solution

Θ(θ) = APml (cos θ) (8)

Where Pml is the associated Legendre function
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Pml (x) ≡ (1− x2)|m|/2
( d
dx

)|m|
Pl(x)

where Pl(x) is the lth Legendre polynomial

Pl(x) ≡ 1

2ll!

( d
dx

)l
(x2 − l)l

both of which are, in our case, functions of cos θ i.e. x = cos θ. There are
two other solutions (because the differential equation is second order) however
they are unphysical, and thus ignored. Because the total probability must be
1, we need to normalize the wavefunction, which is done convieniently for each
piece separately. Doing this, we end up with our final answer for Y :

Y ml (θ, φ) = ε

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

eimφPml (cos θ) (9)

where ε = (−1)m for m ≥ 0 and ε = 1 for m ≤ 0. These are notably the
spherical harmonics.

For solving the radial equation, it is convenient to make the substitution
u(r) ≡ rR(r) (and thus dR/dr = rd2u/dr2; doing so and plugging in our
Coulomb potential for the hydrogen atom gives us

− h̄2

2m

d2u

dr2
+

[
− e2

4πε0

1

r
+
h̄2

2m

l(l + 1)

r2

]
u = Eu

This is solved by looking at the asymptotic behaviors of u and introducing
some extra functions to create the in-between behavior. We introduce κ ≡√
−2mE
h̄ (which is real, since bound state energies are negative and the electron

is bound) and ρ ≡ κr and ρ0 ≡ me2

2πε0h̄2κ
. We introduce the “helper” function

v(ρ) and find that the radial equation now reads

ρ
d2v

dρ2
+ 2(l + 1− p)dv

dρ
+
[
ρ0 − 2(l + 1)

]
v = 0

We try expressing v(ρ) as a power series and using the derivatives find that
the coefficients are determined by a recursive formula. We also find that the
series must terminate after some maximal index number jmax because if it didn’t
we’d get unphysical results (u(ρ)asanexponentialofρ). Defining the principal
quantum number

n ≡ jmax + l + 1

we determine ρ0 and thereby the energies:

En = −

[
m

2h̄2

(
e2

4πε0

)2]
1

n2
(10)

and finally our radial function
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Rnl(r) =
1

r
ρl+1e−ρv(p) (11)

where v(p) is a polynomial of degree jmax whose coefficients are determined
by the recursive formula

cj+1 =
2(j + l + 1− n)

(j + 1)(j + 2l + 2)
cj

and thus we have finally solved for the constituent pieces of the stationary
states of our wavefunction. Because they are orthogonal and complete, be-
ing careful of normalization we may use linear combinations of them to build
whatever wavefunction we like, in a manner exactly like Fourier analysis. More
explicitly, the spacial term is

ψnlm −

√( 2

na

)3 (n− l − 1)!

2n[(n+ l)!]3
e−r/na

( 2r

na

)l[
L2l+1
n−l−1(2r/na)

]
Y ml (θ, φ) (12)

where

Lpq−p(x) ≡ (−l)p
( d
dx

)p
Lq(x)

Lq(x) ≡ ex
( d
dx

)q
(e−xxq)

and a is the Bohr radius a = (rπε0h̄
2)/(me2).

1.4 Thermal and Statistical Physics

The thermal and statistical physics project simulates a gas in a box i.e. the
interaction of many particles in an enclosed space.
The goal of these areas of physics is to model the behavior of large collections
of particles (order 1020 or larger). Because of the nature of the program, most
equations won’t hold because they are made with approximations based on the
fact that the number of particles N is very large. However, one relevant equation
is the simple yet fundamental equation for conservation of momentum

N∑
i

~pi,i =

N∑
j

~pj,f when
d~P

dt
= 0 (13)

which says that when there are no external forces (~Fnet ≡ d~P/dt, where P
is the total momentum), the momentum of the system will be conserved. This
applies to the collision of particles, meaning that their total momentum remains
unchanged by a collision (Newton’s Third Law says no net force is exerted on
either due to each other). Thus, though they bounce in different directions,
knowing their momenta must have the same vector sum before and after allows
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us to solve for their final individual momenta. Also necessary (if the given
parameters do not suffice) is conservation of energy:

N∑
i

1

2
miv

2
i,i =

N∑
j

1

2
mjv

2
j,f (14)

which says that the total (kinetic, as we have no potential) energy of the
system remains constant. This holds true as long as the collisions are elastic (no
internal force or energy changes to hold them together) and no net force acts
on the system. It is somewhat redundant, as because ~p = m~v for particles of

constant mass, E = p2

2m , so if momentum is conserved then energy would be as
well. However the extra equation constrains more parameters, should we need
them, to solve for the final state of the system after a collision.

2 Goals

The overall project should be self-contained in the sense that the user may
navigate the programs and back through some “hub” without explicitly having
to run separate files. Each sub-project should be interactive and display a
physical system in some realistic capacity. Below are the individual goals for
each sub-project:

2.1 Kinematics

• Allow the user to pick mass, radius, velocity (or choose them to be random)
for the launched object.

• Draw the launched object in a field and show the path of motion it travels

• Possibly add external forces e.g. winds, drags that will alter the motion
in some more complex manner

2.2 Chaos Theory

• Allow the user to enter masses and lengths of the pendula, as well as initial
angles.

• Go beyond the double pendulum into a triple pendulum and possibly even
an n-pendulum system.

2.3 Quantum Mechanics

• Allow the user to enter the quantum numbers to view different eigenstates
of the hydrogen atom.

• Display either the wave function or the probability density for each state
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2.4 Thermal and Statistical Physics

• Have realistic particle bounce which obeys the laws of physics

• Allow user some input such as average velocity of particles or number of
particles

• Implement some method of displaying average characteristics of the par-
ticles, which is the point of this discipline

3 Methods

This program will be written entirely in Python using primarily the VPython
library for the graphics, but also using some mathematical libraries such as
NumPy. The files will be separate but navigable via either the terminal or
(more preferably) the actual window in which the simulation is displayed, so
that running the main file will allow you to examine all of the files.
VPython has plenty of resources available to make these projects possible; the
ease of creating mutable objects leaves most of the work into simply efficiently
coding the math in. For example, the double pendulum program is made much
simpler through frames and .rotate(θ) methods. VPython was built for physics
simulations, which means it is the perfect platform for my project.
Currently, a simple kinematics program has been finished, and a particle bounce
system with two particles has been built (but realistic bounce between particles
not yet implemented). A rudimentary system of navigating the files through
the terminal causes the current program to be halted, and a new scene drawn
with the imported program, which simulates execution of another file.
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