MATH198 Weekly Update

Professor George Francis
Brian Campbell-Deem

October 23", 2015
Week 8

Abstract

A simple 3-D kinematics simulator has been built which displays a
“thrown” object traveling at a randomized initial velocity, and a simple
ground is drawn which scales to how far the object is expected to travel.
Animation speed has been attempted to reflect real-time, and displays
accuracy to within 0.5%.

1 Code Progress

I began writing the code to simulate a simple 3-D Kinematics system,
i.e. a the trajectory of a thrown ball. Following the previous particle example,
drawing the ball and ground as well as animating the ball’s position were easy.
I currently have the velocity values v, and v, (which lie in the plane of the
ground, as drawn by VPython) to be random values in the range [—40,40]; to
have the ball thrown up (and remain up for a decent time) v, is limited to
the range [20,40]. The check for the size of the ground is drawn based on the
absolute magnitude of the velocity, making sure the square is always big enough
but never overly large. I discovered an attribute of the sphere which allows me
to easily display a trail, which enhances the kinematics simulation by showing
its path of travel.
In order to get the timing correct, I have a variable to track how long the
program runs and compares it (percent error calculation) to the expected time
the ball should last, as determined by real physics. To aid in the correspondence
of timing, I have the infinitesimal time step dt = 0.001 and the animation
rate r = 1000 as inverses of each other, so that the animation will update
approximately in real time, ignoring external factors. Problematically, drawing
extra objects causes the run-time to slow down meaning the animation rate
needs to vary based on what is being drawn. A stationary velocity vector, for
example, which displays the ball’s velocity but remains locationally fixed causes
the timing error to triple to around 1.5%.



2 Plans For Next Week

I want to work on animating multiple objects for the kinematics.py exam-

ple while also retaining a real-time display. With multiple objects, the example
could be extrapolated to a more interesting application, such as explosion sim-
ulation or fireworks display. I also want to work on the realism of the particle
bounce in bs.py, which I didn’t get around to this week.
For another new program to put together for my project, I want to start work-
ing on the double pendulum next, whose physics are easily described with the
Lagrangian approach. Thereafter, adding at least a third pendulum should not
be drastically difficult, although run-time is again a problem.



