
Physible: Making Physics Visible

MA198 Narrative

Brian Campbell-Deem
Professor George Francis

December 15th 2015

Abstract

Physible combines four smaller, physics-related programs into one pack-
age. Each subprogram features a 3-D simulation of some physical system,
which are interactive to varying degrees. Ranging from simple kinematics
to quantum mechanics, Physible will demonstrate visually the mathemat-
ics behind simulations of real-world physical systems, thereby making the
physics visible.

1 Introduction and Background

Physible combines four sub-programs into one main project. The user runs
the program they wish to view and is prompted to give inputs which alter
the system (except for the hydrogen model, which has limited user interaction
possibilities). The inputs they give change the resulting animation dynamically,
allowing them to experience how different parameters affect certain systems
and gain a more intuitive understanding for the math behind those systems.
These four sub-programs vary in conceptual complexity and are samples of the
following disciplines:

• kinematics

• chaos theory

• quantum mechanics

• thermal and statistical physics

The sub-programs of my project are more surface-level explorations of the above
areas in comparison to what is possible with them; they are meant to quickly
show the basic properties of a system and how it changes with certain parame-
ters.

1

2 Theory

2.1 Kinematics

The kinematics project is the most simple: it displays the path of motion of
some thrown object under the effects of gravity. The relevant equations are
derived from the assumption of constant gravitational force and the definitions
of acceleration and velocity:

~ay =
d~vy
dt

= −gŷ

~vy =
d~y

dt
=

∫ t

0

~aydt = (vy0 − gt)ŷ

~y =

∫ t

0

~vydt = (y0 + vy0t−
1

2
gt2)ŷ

and so given an initial velocity and position, one knows the position of the
object for all times t. Because there are no forces in the x̂ or ẑ directions, their
accelerations are zero and thus their velocities constant (until the object hits
the ground).

2.2 Chaos Theory

The chaos project features the paradigm of chaos: a double-pendulum sys-
tem. This system is most easily described through the approach of Lagrangian
mechanics[1]. With this, one can describe the position of each pendulum as a
function of its angle with respect to its pivot, and using the Euler-Lagrange
equations, can solve for their motion. Figure 1 displays how the coordinates are
measured.

Figure 1: Coordinate measurements for the Lagrangian approach of solving the
double pendulum.[1]

2

The Euler-Lagrange equations read

L(q, q̇, t) ≡ T (q̇, t)− U(q, t)

∂L

∂q
=

d

dt

∂L

∂q̇

where the dot notation indicates a derivative with respect to time. As shown
in Figure 1, there are two coordinates for q: θ1 and θ2. To solve this system,
one needs the energies of each mass. This is most easily accomplished by using
their x and y positions as such:

x1 = l1 sin θ1

y1 = −l1 cos θ1

x2 = x1 + l2 sin θ2 = l1 sin θ1 + l2 sin θ2

y2 = y1 − l2 cos θ2 = −l1 cos θ1 − l2 cos θ2

The potential energy U is simple in a gravitational field of strength g: U =
mgy. Namely,

U = m1gy1 +m2gy2 = −m1gl1 cos θ1 −m2(l1 cos θ1 + l2 cos θ)

The kinetic energy may be written via its classical mechanics definition:

T =
1

2
m1(ẋ1

2 + ẏ1
2) +

1

2
m2(ẋ2

2 + ẏ2
2)

=
1

2
m1l1

2θ̇1
2

+
1

2
m2

[
l1

2θ̇1
2

+ l2
2θ̇2

2
+ 2l1l2θ̇1θ̇2 cos(θ1 − θ2)

]
Thus, using the above definition of the Lagrangian, the system’s Lagrangian

is

L =
1

2
(m1 +m2)l1

2θ̇1
2

+
1

2
m2l2

2θ̇2
2

+m2l1l2θ̇1θ̇2 cos(θ1 − θ2) (1)

Now, using this form for the Euler-Lagrange equations yields the two equa-
tions of motion for each mass:

(m1 +m2)l1θ̈1 +m2l2θ̈2 cos(θ1−θ2)+m2l2θ̇2
2

sin(θ1−θ2)+g(m1 +m2) sin θ1 = 0
(2)

m2l2θ̈2 +m2l1l2θ̈1 cos(θ1θ2)−m2l1θ̇
2
1 sin(θ1 − θ2) +m2g sin θ2 = 0 (3)

The solutions to these differential equations for θ1 and θ2 may be found
numerically in the program to display realistic behavior.

This is the method Bruce Sherwood uses in his doublependulum.py program;
for convenience he calculates the moments of inertia of each bar due to their
length and masses as an extra factor, but otherwise the analyses of the systems
are the same.

3

2.3 Quantum Mechanics

The quantum mechanics project plans to demonstrate the quintessential hydro-
gen atom wavefunctions.
The most fundamental equation in (non-relativistic) quantum mechanics is the
Schrödinger equation; once solved, you have the wavefunction and thereby ev-
erything there is to be known about the system[2]. The Schrödinger equation
reads

ih̄
∂

∂t
Ψ(~r, t) = ĤΨ(~r, t) (4)

where Ψ is the wavefunction and Ĥ is the Hamiltonian (energy) operator

Ĥ = − h̄2

2m
∇2 + V (r, t)

where m is the mass of the particle, ∇2 is the Laplace operator, and V (r, t)
is the (given) potential.

This differential equation may be solved by assumption of form, guessing
only one of many possible solutions, and then combining these to form the
general solution. Thus, assume the form

Ψ(~r, t) = ψ(~r)φ(t)

Using this solution in the Schrödinger equation and then dividing by the
assumed form for Ψ results in

ih̄
1

φ

dφ

dt
= − h̄2

2m

1

ψ
∇2ψ + V

For this case, if one assumes the potential depends only on r (which is
the case for most real situations, including the hydrogen atom) then the two
equations are separated; that is, each side is a function of a different independent
variable than the other side. Because r and t are independent, this implies both
sides of the equation are constant; if one variable is changes and the other does
not, the equality relation must still hold; the only way this can be true is if both
sides are equal to some constant. The time solution may be written as

ih̄
1

φ

dφ

dt
= E

which has the solution

φ(t) = e−iEt/h̄ (5)

It so happens that this constant E is actually the energy of the system, and
for various Ψn, the nth excited state has energy En. The general wave function
may be constructed as a sum of these solutions, called stationary states:

4

Ψ(~r, t) =
∑

cnψne
−iEnt/h̄ (6)

Now, working on the spatial part, a potential function must first be specified;
one of special interest (and the case which will be modeled by the project) is that
of the Hydrogen atom, where the potential is the Coulomb potential between
the electron and the proton nucleus, which is defined by

VH =
1

4πε0

q1q2

r
= − 1

4πε0

e2

r

where e is the elementary charge and ε0 is the permittivity of free space. It
is natural to use spherical coordinates for this system1; by using the spherical
form of the Laplace operator, the Schrödinger equation reads

− h̄2

2m

[
1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ
+

1

r2 sin2 θ

(
∂2ψ

∂φ2

)]
+ V ψ = Eψ

As before, the attempt to solve this comes via separation of variables, using
a spacial wavefunction in the form ψ(r, θ, φ) = R(r)Y (θ, φ). If this form is used
and the result divided by ψ, as well as multiplying by a factor −2mr2/h̄2, it
produces

{
1

R

d

dr

(
r2 dR

dr

)
−2mr2

h̄2

[
V (r)−E

]}
+

1

Y

{
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

}
= 0

The first term is a function only of r while the second is a function of only
θ and φ. Like previously, these must each be constants, which are chosen to be
written as such:

1

R

d

dr

(
r2 dR

dr

)
− 2mr2

h̄2

[
V (r)− E

]
= l(l + 1)

1

Y

{
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

}
= −l(l + 1)

To solve the angular equation first, again try separation of variables with
Y (θ, φ) = Θ(θ)Φ(φ); using this form and dividing by Y gives{

1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ l(l + 1) sin2 θ

}
+

1

Φ

d2Φ

dφ2
= 0

1the convention for θ and φ are exchanged in standard physics notation in comparison to
standard math notation: here φ is the azimuthal (horizontal) angle and θ the polar angle
(measured from the z-axis .

5

again indicating two individual pieces which are functions of only one vari-
able, implying they are constant; this time they are set to be

1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ l(l + 1) sin2 θ = m2

1

Φ

d2Φ

dφ2
= −m2

The φ equation is simply solved:

Φ(φ) = eimφ (7)

Where m may run negative to cover all possible solutions. The requirement
that Φ(φ+ 2π) = Φ(φ) is periodic limits m to integer values.

The θ equation has been solved to have the solution

Θ(θ) = APml (cos θ) (8)

Where Pml is the associated Legendre function

Pml (x) ≡ (1− x2)|m|/2
(d
dx

)|m|
Pl(x)

where Pl(x) is the lth Legendre polynomial

Pl(x) ≡ 1

2ll!

(d
dx

)l
(x2 − l)l

both of which are, in this case, functions of cos θ i.e. x = cos θ. There are
two other solutions (because the differential equation is second order) however
they are unphysical, and thus ignored. Because the total probability must be
1, there is a need to normalize the wavefunction, which is done conveniently for
each piece separately. Doing this results in the final answer for Y :

Y ml (θ, φ) = ε

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

eimφPml (cos θ) (9)

where ε = (−1)m for m ≥ 0 and ε = 1 for m ≤ 0. These are notably the
spherical harmonics.

For solving the radial equation, it is convenient to make the substitution
u(r) ≡ rR(r) (and thus dR/dr = rd2u/dr2; doing so and entering in the
Coulomb potential for the hydrogen atom gives

− h̄2

2m

d2u

dr2
+

[
− e2

4πε0

1

r
+
h̄2

2m

l(l + 1)

r2

]
u = Eu

This is solved by looking at the asymptotic behaviors of u and introducing

some extra functions to create the in-between behavior. Introduce κ ≡
√
−2mE
h̄

(which is real, since bound state energies are negative and the electron is bound)

6

and ρ ≡ κr and ρ0 ≡ me2

2πε0h̄2κ
. Now introduce the “helper” function v(ρ) and

find that the radial equation now reads

ρ
d2v

dρ2
+ 2(l + 1− p)dv

dρ
+
[
ρ0 − 2(l + 1)

]
v = 0

By expressing v(ρ) as a power series and using the derivatives, one finds
that the coefficients are determined by a recursive formula. It is also found
that the series must terminate after some maximal index number jmax because
if it didn’t it would produce unphysical results (u(ρ) as an exponential of ρ).
Defining the principal quantum number n ≡ (jmax + l + 1) determines ρ0 and
thereby the energies:

En = −

[
m

2h̄2

(
e2

4πε0

)2]
1

n2
(10)

and finally the radial function

Rnl(r) =
1

r
ρl+1e−ρv(p) (11)

where v(p) is a polynomial of degree jmax whose coefficients are determined
by the recursive formula

cj+1 =
2(j + l + 1− n)

(j + 1)(j + 2l + 2)
cj

and thus the final solution for the constituent pieces of the stationary states
of the wavefunction are found. Because they are orthogonal and complete,
being careful of normalization one may use linear combinations of them to build
whatever wavefunction they like, in a manner exactly like Fourier analysis. More
explicitly, the spacial term is

ψnlm −

√(2

na0

)3 (n− l − 1)!

2n[(n+ l)!]3
e−r/na

(2r

na0

)l[
L2l+1
n−l−1(

2r

na0
)
]
Y ml (θ, φ) (12)

where

Lpq−p(x) ≡ (−l)p
(d
dx

)p
Lq(x)

Lq(x) ≡ ex
(d
dx

)q
(e−xxq)

and a0 is the Bohr radius a0 = (rπε0h̄
2)/(me2).

7

2.4 Thermal and Statistical Physics

The thermal and statistical physics project simulates a gas in a box i.e. the
interaction of many particles in an enclosed space.
The goal of these areas of physics is to model the behavior of large collections
of particles (order 1020 or larger). Because of the nature of the program, most
equations won’t hold (as well) because they are made with approximations based
on the fact that the number of particles N is very large. However, one relevant
equation is the simple yet fundamental equation for conservation of momentum

N∑
i

~pi,i =

N∑
j

~pj,f when
d~P

dt
= 0 (13)

which says that when there are no external forces (~Fnet ≡ d~P/dt, where P
is the total momentum), the momentum of the system will be conserved. This
applies to the collision of particles, meaning that their total momentum remains
unchanged by a collision (Newton’s Third Law says no net force is exerted on
either due to each other). Thus, though they bounce in different directions,
knowing their momenta must have the same vector sum before and after allows
us to solve for their final individual momenta. Also necessary (if the given
parameters do not suffice) is conservation of energy:

N∑
i

1

2
miv

2
i,i =

N∑
j

1

2
mjv

2
j,f (14)

which says that the total (kinetic, as there is no potential) energy of the
system remains constant. This holds true as long as the collisions are elastic
(no internal force or energy changes to hold them together) and no net force
acts on the system. It is somewhat redundant, as because ~p = m~v for particles

of constant mass, E = p2

2m , so if momentum is conserved then energy would be
as well. However the extra equation constrains more parameters, should they
be needed, to solve for the final state of the system after a collision.
By choosing to modify Bruce Sherwood’s gas.py an inherent included section
of math comes from the Maxwell velocity distribution which describes the prob-
ability distribution of velocities for ideal gases obeying Maxwell-Boltzmann
statistics[3]. From standard thermodynamics, the probability of finding a par-
ticle in a given state is proportional to its Boltzmann factor e−E/kT where E
is the energy of that state, k is the Boltzmann constant, and T is the absolute
temperature. For a particle moving at a speed v the kinetic energy will mean
the probability density of the velocities will be proportional to e−mv

2/2kT .
To evaluate the true factor, velocity space is introduced and imagined as a sphere
on which a given speed v lives with radius v. A larger speed corresponds to a
larger sphere and thereby more possible velocity vectors; a speculative claim
then is that the probability distribution is also proportional to the surface area
of the velocity sphere, namely its surface area 4πv2.

8

Taken together, the form of the distribution is

D(v) = C(4πv2)(e−mv
2/2kT)

for some constant C. This constant may be solved by the same probability
analysis as in the quantum section: the distribution must integrate to 1. The
integral to be solved then is

1 = 4πC

∫ ∞
0

v2e−mv
2/2kT dv

Solving for C gives the Maxwell velocity distribution:

D(v) =
(m

2πkT

)3/2

4πv2e−mv
2/2kT (15)

3 Goals (Pre-completion)

The overall project should be self-contained in the sense that the user may
navigate the programs and back through some “hub” without explicitly having
to run separate files. Each sub-project should be interactive and display a
physical system in some realistic capacity. Below are the individual goals for
each sub-project:

3.1 Kinematics

• Allow the user to pick mass, radius, velocity (or choose them to be random)
for the launched object.

• Draw the launched object in a field and show the path of motion it travels

• Possibly add external forces e.g. winds, drags that will alter the motion
in some more complex manner

3.2 Chaos Theory

• Allow the user to enter masses and lengths of the pendula, as well as initial
angles.

• Go beyond the double pendulum into a triple pendulum and possibly even
an n-pendulum system.

3.3 Quantum Mechanics

• Allow the user to enter the quantum numbers to view different eigenstates
of the hydrogen atom.

• Display either the wave function or the probability density for each state

9

3.4 Thermal and Statistical Physics

• Have realistic particle bounce which obeys the laws of physics

• Allow user some input such as average velocity of particles or number of
particles

• Implement some method of displaying average characteristics of the par-
ticles, which is the point of this discipline

4 Methods (Pre-completion)

This program will be written entirely in Python using primarily the VPython
library for the graphics and some of the included mathematical libraries such
as NumPy. The files will be separate but navigable via either the terminal or
(more preferably) the actual window in which the simulation is displayed, so
that running the main file will allow you to examine all of the files.
VPython has plenty of resources available to make these projects possible; the
ease of creating mutable objects leaves most of the work into simply efficiently
coding the math in. For example, the double pendulum program is made much
simpler through frames and .rotate(θ) methods. VPython was built for physics
simulations, which means it is the perfect platform for my project.

5 Implementation and Narrative

Having finished my project, there are of course parts of my original plan (in-
cluded in the Goals section) which I didn’t get to; nonetheless I believe I have
achieved my chief goal of creating a heuristic set of physics programs which
display how certain physical systems behave. The main piece of the project
that I was unable to achieve was tying the programs all together through one
main.py which would allow easy navigation (as opposed to separately running
each file manually). I believe the ability is there, however the methods I at-
tempted proved faulty and easily broken, and this was quickly scrapped in favor
of completing the “meat” of the project in time. Additionally, due to time con-
straints I had to modify two already-written programs as opposed to writing
them myself; while this is bad for my own practice, it saved a lot of time and
allowed me to use two already excellent programs.

5.1 kinematics.py

The kinematics.py program begins by asking the users for a y-component of ve-
locity. The x− and z−components are generated randomly to create a dynamic
effect, but because the analysis of motion is chiefly based on the y coordinate
of the ball, the camera is initialized to always be perpendicular to the plane

10

of motion. Once the user enters their value, the animation loop begins run-
ning; the sphere is located on “grass” surrounded by a “sky”, both for visual
effect. The animation loop updates the position of the sphere using an integra-
tion approximation based on the kinematics equations described in the theory
section. While the ball is moving, another window is additionally updated; this
window contains three plots of magnitude vs. time; the magnitudes graphed
are the ball’s y-components of acceleration, velocity, and displacement. The
graphs are updated in real time with the ball animation, giving another, more
mathematical view of what is happening in the system. Once the ball contacts
the ground, the animation loop ceases and the user is prompted with the choice
of running the program again. Because the entire program runs in a loop, if
the user chooses ’yes’ the windows are closed and reset, and the next iteration
continues.

Figure 2: kinematics.py

5.2 doublependulum.py

For doublependulum.py, most of the work was already completed by Bruce Sher-
wood. It initiates several bars into frames with each other, and then through
an animation loop it does an approximation with extremely small time steps to
simulate a solution to the differential equations governing the motion. Because
of the complexity of the system, not only must the positions and velocities be
updated in time, but even the accelerations; this extremely fine dependence on

11

time is exactly what gives the system its chaotic behavior. Using these accel-
erations and velocities, it rotates the frame positions accordingly to simulate
the motion of a double-pendulum. For the portion I wrote, I essentially copied
the code to execute again in a second window; for this other system I have a
small offset, entered by the user, which slightly alters the starting position in
comparison to the “original” double-pendulum. This slight offset quickly leads
to erratically different behaviors, whose difference is easily distinguished in the
side-by-side view. I also coded in a sphere to the bottom of the lower pendulum,
which moves along with the system (outside of the frame) allowing a trail of
the traveled path to be drawn, should the user indicate they want it to appear.
When the program first runs, the user is also prompted to enter two masses for
each pendulum, giving them an extra parameter whose effect they may explore.

Figure 3: doublependulum.py

5.3 hydrogen.py

hydrogen.py simulates thousands of electron measurements across an ensemble
of hydrogen atoms, and represents them as points in a single hydrogen atom
(i.e. around a proton). The proton is represented by a red sphere, and the
scene is scaled to be in multiples of the fundamental Bohr radius, which is the
most probable radius for the electron. Depending on the amount of points to be
displayed at one time (the default is 4000) an array of hidden points is initial-
ized. Then, in the animation loop, a random point around the proton is chosen

12

based on the probability density for the ground state electron. To realize this, I
employed a brute-force method I devised to weight the included random() func-
tion to align with the probability density. I integrated the probability density
in small steps (usually a0/10) to find the percentage of time the electron would
be found there, and then a random seed is compared to that range. If the seed
is too large (indicating the electron is farther out), it moves on to check to see if
it lies in the next area of integration. The probability density mathetmatically
extends to infinity, but for practical purposes I had the possible radii cease at
5a0, which totaled to 99.7% of the total 100% probability. To conserve proba-
bility, I evenly distributed the remained 0.3% into the original ranges to keep
the distributions correct relative to one another. The angular coordinates are
chosen randomly, evenly, as the probability density has no angular dependence.
Once the coordinates are chosen, it moves a point to that point and loops again
to do the same for the next point; once it hits the end of the array, it flips back
to 0 to run through the points again, thereby always retaining the same amount
of points on the screen at once. The animation rate is also set very high so a
point doesn’t stay on the screen for more than half a second; combined with the
high number of points, this creates a cloud-like distribution reminiscent of the
familiar electron-cloud image. The density gradient allows the user to see the
most probable radii and how it quickly drops off with increasing radius.
An additional static graph is created that shows the wavefunction, probability
density, and probability plots for the ground state.

Figure 4: hydrogen.py

13

5.4 gas.py

Here again most of the work is done by Sherwood. In a rather brilliant method,
he initializes the particles in an array, and then using a separate array of their
momenta, updates their positions all at once. After doing so, a method he wrote
deduces any colliding pairs, and consequently causes them to bounce. Because
of the efficiency of his method, there can be several hundred animated particles
bouncing at once with no noticeable lag. The collision check also keeps the
particles confined to the drawn box they reside in; a special particle is colored
yellow, as opposed to cyan, and has an ephemeral trail following it, allowing the
user to easily follow the motion of a single particle through the box.
Sherwood also implemented a bin-sort method, which creates bins of velocity
ranges, and counts the particles that reside in each range. These bins update
in real time and are plotted against the Maxwell velocity distribution, demon-
strating that distribution equilibrates to follow its prediction nearly exactly.
There wasn’t a great deal for me to change, so I added user interactivity to
choose how many particles are displayed, allowing them to see how as N grows
the equations begin to become better approximations for the system more and
more quickly. I additionally added a graph which updates, once per second, the
average collisions per second, demonstrating that they begin high and eventu-
ally relax to some value. Unfortunately, I couldn’t find good (fitting) theory
that described this situation well, and the length of time it takes to relax to a
steady value implies that N is not large enough for such accuracy as it is for the
Maxwell velocity distribution. Nonetheless, I left the graph in with no theory
comparison to demonstrate a separate type of equilibrium that the particles
achieve.

Figure 5: gas.py

14

6 Conclusion and What Comes Next

With my project finished, though I didn’t achieve every goal I set out to do,
I’m nonetheless very happy with the results. I wrote two physics programs from
scratch which I believe model real systems in an understandable manner, as well
as modifying two existing programs to make them more catered to my goal. Each
project still retains huge possibility for exploration: the kinematics example can
include more real-world effects such as drag and bounce; the hydrogen atom has
an infinite number of states to explore beyond the ground, and no real-world
energy perturbations were taken into account; etc. Even outside of the physical
systems, the subprograms have yet to be tied together into one truly cohesive
program, and each still has minor bugs which could be fixed. Though I’m
finished with the project, there are still huge areas to improve upon here–with
the range of possibilities, it wouldn’t be difficult to continue Physible as another
project.

References

[1] http://scienceworld.wolfram.com/physics/DoublePendulum.html

[2] Griffiths, David J. ”Chapter 4: Quantum Mechanics in Three Dimensions.”
Introduction to Quantum Mechanics. 2nd ed. Upper Saddle River, NJ: Pear-
son Prentice Hall, 2005. 131-57. Print.

[3] Schroeder, Daniel V. An Introduction to Thermal Physics. San Francisco,
CA: Addison Wesley, 2000. Print.

15

