Koch Surface Designer

Sam Sagan

December 18, 2014

Abstract

Koch curves are fractals formed with self-repeating alterations to line seg-
ments. Every line segment is replaced by some formation of smaller line seg-
ments, and then repeated. I extend this to three dimentions in what I call Koch
surfaces. My Koch surface starts with an object with congruent, regular poly-
gon sides. What I call a fractal pattern is then applied to each of the regular
polygon faces. Users of my code define their fractal pattern in real time. Due to
the recursive nature of these fractals, the fractal pattern built on n-gons must
also consist of n-gons.

Code Overview: Built in c++ using OpenGL and GLUT, my code draws shapes
and lines to the screen, illuminated by internal glut lighting sources. The fractal
itself is stored in a tree structure, which is generated, edited, and read recursively.
Every shape that is drawn to the screen is stored in an instance of my Polygon class,
and all three-dimentional locations are stored in my Vector class.

Files and Classes: This provides a file/class specific overview of functionality.

e main.cpp: Initializes GLUT windows and rendering, registers display and
event-handling callbacks, and starts the game-loop.

e class ShapeTree: Stores polygons in a tree structure used to build and
draw fractals. Templated to work with any primitive, numerical data type
and polygons of any number of sides. Also contains the fractal pattern’s
parameters and draws the gui accordingly.

e class Vector: Represents a three-dimentional vector; storing generic primi-
tive, numerical data types as the coordinates. Useful algebraic vector functions
are included in the implementation.



e class Polygon: Stores instances of Vector as vertices of a flat, yet three-
dimentionally existing polygon.

e class Singleton: Uses a singleton pattern to maintain at most one instance of
the class at any time. This allows for storage of useful variables and functions
pertaining to event-handling, window indexing, and camera angle. A pointer
to the sole instance of ShapeTree is stored here as well.

Breaking down the ShapeTree: The tree structure of the ShapeTree class is the
backbone of this code. Here I explain this class in greater detail. The building block
of the tree is the ShapeNode struct. Each ShapeNode contains a Polygon shape, a
std::vector of child ShapeNode pointers, and a level. As the tree builds outward,
ShapeNodes of the outer level have an empty vector of children.

As one would expect, the major public functions that act on the tree are addLevel(),
removeLevel(), and draw(). The overall functionalities of these are clear from their
names. Actual implementation is slightly less intuitive. Each has a private helper
function that takes a pointer to a ShapeNode as its parameter. These helper func-
tions are the recursive functions that act on the ShapeNode which was pointed to,
and then call themselves on all of that ShapeNode’s children.

addLevel() only call the recursive helper function to add on to an existing base
object, however. This is generated with the private addBaseLevel() function which
hard codes the tetrahedron and cube that you see upon execution of the tri_koch and
quad_koch executables respectively. Based on the value of private member variable
mazx_level, addLevel() calls the suitable helper function.

Many member functions and variables are tasked with managing the fractal pat-
tern and accompanying gui. The fractal pattern is stored in two private arrays.
Array extrusion_edges divides each edge into segments that define smaller sections
of the face. These are to be extruded/stellated by an amount proportional to the
square root of the section’s area multiplied by the corresponding value in array ez-
trusion_heights. Users may edit only one of the fractal pattern parameters at any
time, and that parameter index is stored in private variable uiParam; toggled with
public nextUlparam() and prevUlparam(). The previously described arrays come
with public functions to set and get. These account for user error, preventing nega-
tive extrusions and out-of-bounds edge divisions. Public member function drawUI()
creates the visualization of the fractal parameters in the lower-right corner.

The point of entry into the tree is through its root node; stored in private member
ShapeNode pointer root. The root has a default Polygon for its shape, which has
zero area. Its children are the ShapeNodes that make up the base tetrahedron or



cube; this is handled in addBaseLevel(). The root’s level is zero, making the base
level one.

Other functions are the constructor, destructor, copy constructor, and assignment
operator. These all operate as expected; some using recursive helper functions
clear(ShapeNode * subroot) and copy(const ShapeNode * subroot). These are all
necessary, as memory is dynamically allocated within the ShapeTree class.

Conclusions and Next Steps: The original plan included both robust fractal
design capabilities and numerical convergence testing. The fractal design is user-
friendly and powerful. I was able to repeat mentor Yuliya Semibratova’s findings
of simplest-form tetrahedral convergence to a cube. Yuliya also brought up the
question of simplest-form cube to octohedron convergence. While viewing this case
along any one Cartesian axis strongly suggests this convergence, looking at the full
three-dimentional model does not make a visually compelling case for this supposed
covergence.

Next steps in fractal design could be allowing for higher-order regular polyheda base
figures, or even breaking out of the regular polyhedra mold entirely. Another option
to explore would be negative (inward) extrusions.

Next steps in convergence testing would fit a test shape to a high-level koch surface
and return a numerical convergence score based on average distance between the
test shape and surface at random, discrete points on the surface.

Next steps in general program quality would allow for smooth rotation and enhanced
user interface.

Overall, this project was fun to work on and excellent practice in generic program-

ming, tree structures, memory management, makefiles, and the singleton pattern.
Thank you.

References

[1] Semibratova, Yuliya. Higher-Dimentional Koch Curves (2006).
new.math.uiuc.edu/math198/MA198-2013/semibra2/



