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Overview 

• The Newtonian model and potential energy 

• Lagrangian and examples 

• Hamiltonian and equations of motion 

• Phase space and “proper” physical systems 

• Statement and meaning of Liouville’s Theorem 

• Math relevant to the project 

 

 



Canonical Coordinates 

• Note: 𝑞𝑖 =
𝑑

𝑑𝑡
𝑞𝑖 

• Any set of coordinates which uniquely describe a system, 
labeled 𝑞𝑖 and 𝑞𝑖  (later, 𝑝𝑖 will be used) 

• Examples: 

• Cartesian coordinates 

• Polar coordinates 

• Rotating reference frames 

• The degree of freedom of a system is the number of 
coordinates which can independently vary (for a mechanical 
system, this will be even) 



http://en.wikipedia.org/wiki/Generalized_coordinates  
http://en.wikipedia.org/wiki/Spherical_coordinate_system  
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Newtonian Model 

• Formulated by Isaac Newton in 1687 

• Given a force vector 𝐹 𝑞, 𝑡 , solve using Newton’s law: 

𝐹𝑖 𝑞, 𝑡 = 𝑚𝑞𝑖  

• Example: A ball in a gravitational field, with  

𝐹 = 0𝑥 + 0𝑦 −𝑚𝑔𝑧  

𝑥 = 0, 𝑦 = 0, 𝑧 = −𝑔 

• For a potential energy function 𝑈(𝑞), 𝐹 = −𝛻𝑈(𝑞) 



http://www.lehigh.edu/~josa/hwk2.html  
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Lagrangian Mechanics 

• Formulated by Joseph Lagrange in 1788 

• Given a Lagrangian 𝐿(𝑞, 𝑞 , 𝑡) for a system, a path (p) between 
two different states (s) will make stationary  the action (S): 

𝑆 =  𝐿
𝑠2

𝑠1

𝑑𝑝 

• Stationary means small changes in the path do not change the 
action, called the principle of least action 

http://youngsubyoon.com/Lagrangian.htm  
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• Examples: 

• Pendulum in a gravitational field, with 𝑞1 = 𝜃 from vertical: 

𝐿 =
𝑚

2
𝑙2𝑞1 

2 +𝑚𝑔𝑙cos 𝑞1  

•  Single particle in potential 𝑈(𝑞), with 𝑞1 = 𝑥, 𝑞2 = 𝑦, 𝑞3 = 𝑧: 

𝐿 =
𝑚

2
𝑞1 

2 + 𝑞2 
2 + 𝑞3 

2 − 𝑈 𝑞  

• Particle in Cartesian reference frame rotating about 𝜔  

𝐿 =
𝑚

2
𝑞 +𝜔 × 𝑞 2 − 𝑈(𝑞) 

• Generally, 𝐿 = 𝑇 − 𝑉, where 𝑇 is kinetic and 𝑉 is potential energy  

• Compared to Newtonian mechanics: 

• Allows arbitrary coordinates 

• More useful description (will be shown), especially for odd cases like 

magnetism, where there is no potential energy 

• However, overkill for simple problems 

 

 

 

 

 



Conjugate momentum 

• Defined as: 

𝑝𝑖 =
𝜕𝐿

𝜕𝑞𝑖 
 

• For a free particle labeled by Cartesian coordinates,  

𝑝𝑖 =
𝜕𝐿

𝜕𝑞𝑖 
= 𝑚𝑞𝑖 , or 𝑝 = 𝑚𝑞  

• For a pendulum,  

𝑝1 =
𝜕𝐿

𝜕𝑞1 
= 𝑚𝑙2𝑞1  

• While the definition seems arbitrary, it gives familiar answers, 
and more importantly things we may want to measure 

 



Hamiltonian 

• Formulated by William Hamilton in 1833 

• Defined as  

𝐻(𝑞, 𝑝, 𝑡) = (𝑞𝑖 𝑝𝑖)

𝑖

− 𝐿 

• Usually represents the energy of a system (not in odd cases, 
such as particles in magnetic fields) 

• Depends on 𝑝 instead of 𝑞 , and 𝑝 comes from the Lagrangian 

• Used as an intermediate step to find equations of motion 



Phase Space 

• Space of all possible states of the system 

• For mechanical systems, this can be the set of all 𝑞𝑖 and 𝑞𝑖  or 
all 𝑞𝑖 and 𝑝𝑖. Both of these completely describe the system 

• In general, and for the purpose of Liouville’s theorem, I will 
use 𝑞𝑖 and 𝑝𝑖 

• Position and momentum are treated as separate variables, 
even though they are usually related through some derivative 

• Interested in how systems move through phase space 



http://www.pha.jhu.edu/~javalab/pendula/pendula.files/users/olegt/pendulum.pdf  

Constant energy lines for the phase space of a pendulum. 
𝑥-axis is 𝜃; 𝑦-axis is 𝑝𝜃  
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Equations of Motion 

• Hamiltonian directly gives two first order differential 
equations:  

𝜕𝑝𝑖

𝜕𝑡
= −

𝜕𝐻

𝜕𝑞𝑖
 and 

𝜕𝑞𝑖

𝜕𝑡
=

𝜕𝐻

𝜕𝑝𝑖
  

• These dictate a flow in phase space 

• For the pendulum, we already calculated: 

𝐿 =
𝑚

2
𝑙2𝑞1 

2 +𝑚𝑔𝑙cos 𝑞1  

𝑝1 =
𝜕𝐿

𝜕𝑞1 
= 𝑚𝑙2𝑞1  

𝑞1 =
𝑝1
𝑚𝑙2

 

• Use these statements to find the Hamiltonian, and then the 
equations of motion (continued) 

 

 

 

 



𝐻 = (𝑞𝑖 𝑝𝑖)

𝑖

− 𝐿 

Simplify: 

=
𝑝1
𝑚𝑙2

𝑝1 −
𝑚

2
𝑙2

𝑝1
𝑚𝑙2

2

−𝑚𝑔𝑙cos 𝑞1   

=
𝑝1
2

𝑚𝑙2
−
1

2

𝑝1
2

𝑚𝑙2
−𝑚𝑔𝑙cos 𝑞1  

=
1

2

𝑝1
2

𝑚𝑙2
−𝑚𝑔𝑙cos 𝑞1  

This gives the equations of motion: 

𝜕𝑝1
𝜕𝑡

= −
𝜕𝐻

𝜕𝑞1
= 𝑚𝑔𝑙sin 𝑞1  

𝜕𝑞1
𝜕𝑡

=
𝜕𝐻

𝜕𝑝1
=

𝑝1
𝑚𝑙2

 

 



Recap 

• Discover a Lagrangian, either through experimentation, a 
textbook, or a guess 

• Calculate the conjugate momentum to each coordinate using 

the equation 𝑝𝑖 =
𝜕𝐿

𝜕𝑞𝑖 
 

• Calculate the Hamiltonian using 𝐻(𝑞, 𝑝, 𝑡) =  (𝑞𝑖 𝑝𝑖)𝑖 − 𝐿 

• Calculate the equations of motion with 
𝜕𝑝𝑖

𝜕𝑡
= −

𝜕𝐻

𝜕𝑞𝑖
 and 

𝜕𝑞𝑖

𝜕𝑡
=

𝜕𝐻

𝜕𝑝𝑖
 

 

 

 



Proper Systems 

• Consider “laws of physics” as shown by the graphs 

• A node is a system state; an arrow is an update law 

• Two rules for a proper system: 

• Each state maps to one state 

• Only one state maps to each state (reversibility) 

• Top system is acceptable, the bottom two are not 

• Equivalently, if I know the system is at one of 𝑛  
nodes at some time, I always know exactly 𝑛 nodes  
the system could at be at any time 

 

 

Made with 
http://illuminations.nctm.or
g/Activity.aspx?id=3550 
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Liouville’s Theorem 

• Derived by Joseph Liouville in 1838, although developed by 
Josiah Gibbs (Gibbs free energy) in the 1870s 

• Stronger statement about proper systems, as applied to 
continuous cases 

• Very formally, given a phase space distribution 𝜌(𝑝, 𝑞, 𝑡), the 
following equation holds: 

𝜕𝜌

𝜕𝑡
+ (

𝜕𝜌

𝜕𝑞𝑖
𝑞𝑖 +

𝜕𝜌

𝜕𝑝𝑖
𝑝𝑖 )

𝑖

= 0 

• Less formally (and less precisely),  the divergence of the flow 
of phase space is 0, so volumes in phase space are conserved 

http://en.wikipedia.org/wiki/Liouville's_theorem_(Hamiltonian)  
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If the state is initially in the first box and let to evolve, the state will end in the 
final shape. These two shapes must have the same volume. 
 
Blue lines represent different system evolutions. 



Meaning/Application 

• If a system is in a small volume of phase space, we know that 
system very precisely, and so we always will (with enough 
simulation) 

• Began the idea of information as a fundamental concept in 
physics, especially in quantum mechanics 

• The uncertainty principle is a lower bound on the size of these 

volumes, given by: Δ𝑞Δ𝑝 ≥
ħ

2
 

• Impossible to copy a qubit (quantum bit) without destroying 
the original 

• Led to many other properties of this flow in phase space, such 
as being topologically persevering 



My Project 

• Implement the equations of motions for different systems 
(currently, the pendulum and a sliding mass on a slope) 

• Visually show Liouville’s Theorem 

• Phase space is drawn as a 2D plane with points corresponding to 
system states 

• The user selects an initial set of points in this phase space 

• These points are evolved with time 

• The resulting set of points will appear to have the same area as 
the original 

• Numerically validate Liouville’s theorem 

• Start with an initial hyper-cube of phase space, evolve it for a 
small amount of time, and recalculate its volume 



Runge-Kutta Method 

• Peculiarly fast and accurate method for approximating 
derivatives, given by: 

 

 

 

 

 

 

 

• Possible to validate using Taylor Series 

http://en.wikipedia.org/wiki/Runge–Kutta_methods  
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Estimating the Volume Change 

• Start with an initial hypercube with side vectors 𝑎1, 𝑎2, 𝑎3… 

and volume 𝑉 and let it evolve for a short time 

• Assume the new shape is a parallelotope with side vectors 

𝑎′1, 𝑎′2, 𝑎′3⋯, which is accurate for small enough changes in 

time 

•  Calculate the new volume using: 

𝑉′ = det[𝑎′1, 𝑎′2, 𝑎′3, ⋯ ] 

• Assuming Liouville’s theorem, 
𝑉

𝑉′
= 1 

 

 

http://planetmath.org/parallelotope  
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