
Liouville’s Theorem for Hamiltonian Systems
Documentation

Samuel Stephens

16 December 2014

Abstract

Physical systems can be described in many ways, one of the most
significant is by their Hamiltonian function, an equation for the en-
ergy of a system. This formulation gave rise to Liouville’s theorem,
a theorem about reversibility in classical systems. This project will
explore the meaning of this theorem through visualizations of phase
space, the set of possible states for a system, and numerically validate
it for the cases of a pendulum, double pendulum, and a gravitational
mass on a fixed track.

1 Introduction

Any physical system has a multitude of different possible states. For example,
a pendulum can be angled downward and swinging fast, or stationary but
vertical, or more. The phase space for a system is the set of all possible states
of that system, labeled by a set of coordinates. For example, the state of a
pendulum can be labeled by the angle it makes with the vertical as well as its
angular momentum. The method of choosing these coordinates is explained
in more detail in the math section. As a state evolves, its location in phase
space will move. Liouville’s theorem states that volume is conserved in phase
space. The program shows this by allowing the user to select a region of
phase space and letting it evolve with time, which will (roughly) maintain its
volume. The program numerically validates this by calculating the volume
of the region at each instance of time.
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2 Running the program

To execute the program, run liouvillestheorem.py using python. OpenGL is
required.

3 Interacting with the program

3.1 Interpreting output

In the middle of the screen is the plot for many states in phase space, la-
beled by the coordinates specified in the top left. Note that nothing is drawn
for the double pendulum because the phase space is four dimensional. Each
point, or corner grid line, represents a state in the phase space, which evolves
according to Hamilton’s equations. By Liouville’s Theorem, the area of any
section of phase space should maintain its volume with time.

In the top left, the current system is labeled as well as the axes. In the
bottom left are the statistics on the evolution. The current time is the time of
evolution, in seconds. The initial volume statistic is the area of phase space
when the time was zero, and the current volume is the volume occupied by
the phase space at that moment in the simulation. The box mean volume
statistic is the average volume of each of the smaller sub-boxes which make
up the entire volume, and the box volume STD is the standard deviation
of these box volumes. Initially each box is the same size, so the standard
deviation is zero. If the simulation were perfect, by Liouville’s theorem the
box volume STD should always be zero and the current volume and initial
volume should always be the same.

3.2 User input

Both the keyboard and mouse are required. The help menu can be open/closed
by pressing the h key. More detail on key presses:
h : Pauses simulation, disables drawing, and opens the help menu.
q : Quits the program.
p : Pauses the simulation (automatically occurs when the help menu is
opened).
g : Toggle drawing grid lines on and off.
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s : Toggle show the text in the top left and bottom left about the simulation.
r : Reset the simulation to time 0.
a : Toggle drawing the axes on the graph.
1,2,3 : Select the system. 1 is for the single pendulum, 2 is for an object on
a fixed track above a gravitational body, and 3 is for the double pendulum.
+, - : Increase or decrease the simulation speed. Higher speeds will result in
less accuracy.

To use the mouse, select an area of the phase space by by clicking and
dragging. The program will fill that area of phase space with sample states
in a grid like pattern, which will then evolve with time. This does not work
for the double pendulum, as no phase space is shown.

4 The math

4.1 Coordinates

Given a system, a set of coordinates describe every possible state within that
system. For example, the state of a fixed-length pendulum can be described
by the current angle of the arm and the speed at which the arm is rotating.
A point in free space can be described by its x, y, and z coordinates with the
time derivatives of each of these coordinates, for a total of 6 coordinates. No-
tice that for each spatial coordinate, labeled by qi(t), there is a corresponding
time derivative, labeled by q̇i(t).

4.2 The Lagrangian

The Lagrangian is a way of describing a physical system. Between any time
two times, a system will make stationary the action, denoted S, given by:

S =
∫ t2

t1
L(q̇(t), p(t))dt

Stationary means that very small variations in the path of the system do
not change the value of this integral (similar to minimize or maximizing the
value of a function). This is very often called the principle of least action,
although this is a slight misnomer, as the action need not be minimized. Here,
L denotes the Lagrangian, a function of the current state of the system. In
general, L = T − V , where L is kinetic and V is potential energy.
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4.3 Conjugate momentum

From the Lagrangian comes the idea of conjugate momentum, labeled pi and
defined by:

pi =
∂L

∂q̇i

For a free particle in a potential field, the classic momentum equation p = mv
results:

pi = mq̇i

For a pendulum, this definition give angular momentum:

pi = ml2q̇i

This momentum is not necessarily conserved. Similarly to how the set of qi

and q̇i can label a state of a system, the set of qi and pi can also label a
state. The set of all qi and pi for a system is known as the phase space for
the system.

4.4 Hamiltonian and movement in phase space

The Hamiltonian, H, is defined as:

H =
∑

i

q̇ipi − L

This represents the total energy of the system. The Hamiltonian gives equa-
tions of motion in phase space:

∂pi

∂t
= −∂H

∂qi

∂qi

∂t
= +

∂H

∂pi

4.5 Liouville’s theorem

Liouville’s Theorem states:

∂ρ

∂t
+

∑
i

∂ρ

∂qi

q̇i +
∂ρ

∂pi

ṗi = 0

Less formally, this means volumes are conserved in phase space, and this is
what my program will show. If at a given point in time, a state is known
very precisely, then the state can always be known precisely, and vice versa.
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4.6 Runga Kutta

There is no closed form solution for the exact values of p(t) and q(t) for many
Hamiltonians. Instead, the program uses Runge-Kutta to predict the new
values for p and q after a small amount of time ∆t. Label the state, W of
the system with:

W (t) =


p1(t)

q1(t)

p2(t)

q2(t)


From Hamilton’s equations:

Ẇ (t) =


−∂H(t)

∂q1

+∂H(t)
∂p1

−∂H(t)
∂q2

+∂H(t)
∂p2

 = f(W (t))

To compute W (t + ∆t):
k1 = f(W (t))

k2 = f(W (t) +
1

2
k1∆t)

k3 = f(W (t) +
1

2
k2∆t)

k4 = f(W (t) + k3∆t)

W (t + ∆t) ≈ W (t) +
∆t

6
(k1 + 2k2 + 2k3 + k4)

4.7 Volume change

The program calculates the volume of the phase space at each instance of
time by evolving a set of parallelotopes and calculating their volume. The
volume of a paralleltope with edges a, b, c, d is given by the determinant of
the matrix:

V =


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4
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5 Further improvements

There are many natural extensions to this project. I tried to find a projection
of the 4-dimensional phase space of the double pendulum that would still be
meaningful to the project by preserving volumes, but none worked. One
improvement is adding a way of showing the double pendulum phase space.
I implemented Hamilton’s equations at the level of the Hamiltonian, so other
systems could be easily added rather than the ones provided. I had originally
intended that this project show chaotic systems, so this program could be
adapted to show the chaotic nature of the double pendulum with the correct
initial conditions.
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