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Introduction

Cylindrical projection
Derivation of equations
Truncation and Scale Factor
Loxodromes and Geodesics
Calculating Distance

Figure 1 : Mercator’s Projection
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Projecting the Globe

Figure 2 : Geometry of a cylindrical projection.

Geographic coordinates of latitude φ and longitude λ
Tangential to globe at equator
Radius of a parallel is Rcos(φ)
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Small Element Geometry

tanα = Rcos(φ)δλ
Rδφ and tanβ = δx

δy

Parallel Scale Factor k(φ) = P′M′

PM = δx
Rcos(φ)δλ

Meridian Scale Factor h(φ) = P′K ′

PK = δy
Rδφ
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Deriving Mercator’s Projection

tanβ = Rsecφ
y ′(φ) tanα, k = secφ, h = y ′(φ)

R

Equality of Angles: α = β −→ y ′(φ) = Rsec(φ)
Equality of Scale Factors: h = k −→ y ′(φ) = Rsec(φ)

Therefore,

x = R(λ− λ0) and y = Rln[tan(π4 + φ
2 )]

And inversely,

λ = λ0 + x
R and φ = 2tan−1[e(

y
R
)]− π

2
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Truncation and Scale Factor

The ordinate y approaches infinity as the latitude approaches the poles.

φ = 2tan−1[e(
y
R
)]− π

2
= 2tan−1[eπ]− π

2
= 1.48842 radians

= 85.05133 ◦

Figure 3 : Graph of Scale Factor vs. Latitude.
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Loxodromes and Geodesics

Loxodromes

Paths, also known as rhumb lines, which cut a meridian on a given surface
at any constant angle.
All straight lines on the Mercator’s Projection are loxodromes.

Figure 4 : Loxodromes vs Geodesics
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Calculating Distance

Representative Fraction

The fraction R
a is called the representative fraction.

It is also known the principal scale of the projection.
For example, if a map has an equatorial width of 31.4 cm, then its global
radius is 5 cm, which translates to an RF of approximately 1

130M .

There are two main problems when it comes to calculating distance using
Mercator’s projection:

Variation of scale with latitude

Straight lines on the map do not correspond to great circles

Short Distances: True Distance = rhumb distance ∼= ruler distance × cosφ
RF

For example, a line of 3mm, its midpoint at 40 ◦, and an RF of 1
130M , the

true distance would be approximately 300km
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Calculating Distance

Measuring longer distances requires different approaches

On the equator: True distance = ruler distance
RF

On other parallels: Parallel distance = ruler distance × cosφ
RF

On a meridian: m12 = a|φ1 − φ2|

On a rhumb: r12 = a secα|φ1 − φ2| = a secα∆φ
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Sources

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/

Mercator_projection.html

http://en.wikipedia.org/wiki/Mercator_projection

http:

//www.public.asu.edu/~aarios/resourcebank/maps/page10.html

http://kartoweb.itc.nl/geometrics/map20projections/body.htm

http://www.progonos.com/furuti/MapProj/Normal/CartProp/

ShapePres/shapePres.html
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