Mercator's Projection

Andrew Geldean

Computer Engineering

November 14, 2014

Introduction

- Cylindrical projection
- Derivation of equations
- Truncation and Scale Factor
- Loxodromes and Geodesics
- Calculating Distance

Figure 1 : Mercator's Projection

Projecting the Globe

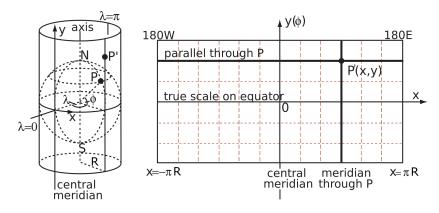
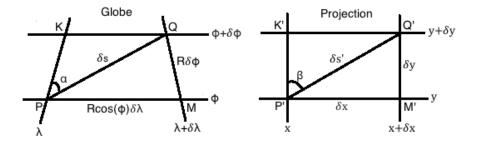


Figure 2 : Geometry of a cylindrical projection.

- Geographic coordinates of latitude ϕ and longitude λ
- Tangential to globe at equator
- Radius of a parallel is $Rcos(\phi)$

Small Element Geometry



$$tan lpha = rac{Rcos(\phi)\delta\lambda}{R\delta\phi}$$
 and $tan eta = rac{\delta x}{\delta y}$

Parallel Scale Factor $k(\phi) = \frac{P'M'}{PM} = \frac{\delta x}{Rcos(\phi)\delta\lambda}$ Meridian Scale Factor $h(\phi) = \frac{P'K'}{PK} = \frac{\delta y}{R\delta\phi}$

Andrew Geldean (Computer Engineering)

Deriving Mercator's Projection

$$taneta=rac{Rsec\phi}{y'(\phi)}tanlpha,\ k=sec\phi,\ h=rac{y'(\phi)}{R}$$

Equality of Angles: $\alpha = \beta \longrightarrow y'(\phi) = Rsec(\phi)$ Equality of Scale Factors: $h = k \longrightarrow y'(\phi) = Rsec(\phi)$

Therefore,

$$x = R(\lambda - \lambda_0)$$
 and $y = Rln[tan(\frac{\pi}{4} + \frac{\phi}{2})]$

And inversely,

$$\lambda = \lambda_0 + \frac{x}{R}$$
 and $\phi = 2tan^{-1}[e^{(rac{y}{R})}] - rac{\pi}{2}$

Truncation and Scale Factor

The ordinate y approaches infinity as the latitude approaches the poles.

$$\phi = 2tan^{-1}[e^{(\frac{y}{R})}] - \frac{\pi}{2}$$

= 2tan^{-1}[e^{\pi}] - \frac{\pi}{2}
= 1.48842 radians
= 85.05133°

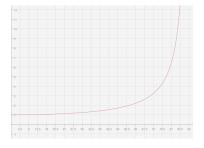


Figure 3 : Graph of Scale Factor vs. Latitude.

Andrew Geldean (Computer Engineering)

Mercator's Projection

Loxodromes and Geodesics

Loxodromes

Paths, also known as rhumb lines, which cut a meridian on a given surface at any constant angle.

All straight lines on the Mercator's Projection are loxodromes.

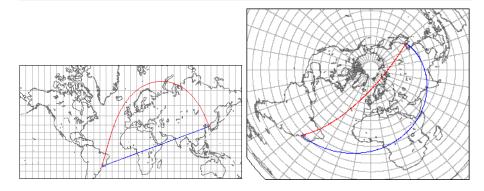


Figure 4 : Loxodromes vs Geodesics

Andrew Geldean (Computer Engineering)

Mercator's Projection

Calculating Distance

Representative Fraction

The fraction $\frac{R}{a}$ is called the representative fraction. It is also known the principal scale of the projection. For example, if a map has an equatorial width of 31.4 cm, then its global radius is 5 cm, which translates to an RF of approximately $\frac{1}{130M}$.

There are two main problems when it comes to calculating distance using Mercator's projection:

- Variation of scale with latitude
- Straight lines on the map do not correspond to great circles

Short Distances: True Distance = rhumb distance \cong ruler distance $\times \frac{\cos\phi}{RF}$ For example, a line of 3mm, its midpoint at 40°, and an RF of $\frac{1}{130M}$, the true distance would be approximately 300km Measuring longer distances requires different approaches

On the equator: True distance = $\frac{ruler \ distance}{RF}$

On other parallels: Parallel distance = ruler distance $\times \frac{\cos\phi}{RF}$

On a meridian: $m_{12} = a |\phi_1 - \phi_2|$

On a rhumb: $r_{12} = a \sec \alpha |\phi_1 - \phi_2| = a \sec \alpha \Delta \phi$

Sources

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/ Mercator_projection.html

http://en.wikipedia.org/wiki/Mercator_projection

http: //www.public.asu.edu/~aarios/resourcebank/maps/page10.html

http://kartoweb.itc.nl/geometrics/map20projections/body.htm

http://www.progonos.com/furuti/MapProj/Normal/CartProp/ ShapePres/shapePres.html