
Visualizing Data Structures
Dan Petrisko

What is an Algorithm?
● A method of completing a function by proceeding from some

initial state and input, proceeding through a finite number of
well defined steps, and terminating at a final ending state

● Notable examples:
○ Solving a rubix cube
○ Finding the GCD of two numbers (Euclid’s Algorithm)
○ Finding the shortest path between graph vertices
○ Various Searching and Sorting Algorithms

Algorithmic Analysis
● Big-O Notation describes the limiting

behavior of an algorithm

● f(x) = O(g(x)) iff f(x) < cg(x) for all x > k

where c and k are some positive values

● n is O(n2), n2 is O(n3) , log(n) is O(n)

Recurrence Relations
● T(n) is a function that takes the

size of the data and returns
the running time (in arbitrary
computational units).

● Generally T(n) is given in two
parts: the recursive definition
and the base case

● We can unroll the recursive
definition until we reach the
base case to get the closed
form

Sample Analysis - Bubble Sort
Bubble Sort works by iterating through the data set,
comparing each element with the element adjacent
to it

Recurrence: T(n) = T(n-1) + n
Base Case: T(0) = 1

T(n) = T(n-1) + n = T(n-2) + n + n = T(n-3) + 3n
T(n) = T(0) + n*n = 1 + n2

We say that bubble sort is O(n2)

2 4 1 3

2 1 4 3

2 1 3 4

1 2 3 4

Iterative Sorting Algorithms
● Process the set one step at a time, either:

○ Fully determining an element’s position

○ Moving closer to a fully sorted set

● Generally O(n2) performance

● Simple to program, very little memory usage

● Selection Sort

● Bubble Sort

● Insertion Sort

● Cocktail Sort

Linear Search
1. Go to each element
2. Check if the key matches the search key
3. If the end of list is reached, the list does not contain the search key

1 2 3 4 5 6 7 8 9 10

3 4 7 2 1 10 9 8 7 6

Linear Search
1. Go to each element
2. Check if the key matches the search key
3. If the end of list is reached, the list does not contain the search key

1 2 3 4 5 6 7 8 9 10

3 4 7 2 1 10 9 8 7 6

O(n)

Divide and Conquer Approach
● Attack the problem by dividing it into smaller

problems

● ex: Split the list in half recursively and search

each half

● This splitting indicates a logarithmic

dependence on the data size: The most

effective sorting algorithms have a lower

efficiency bound of O(nlog(n))

● Mergesort

● Quicksort

● Binary Search

● Quickselect

Binary Search
1. Go to the middle of the list
2. Check if the key matches the search key
3. If the search key is greater than the key, repeat on right sublist
4. Else repeat of left sublist

1 2 3 4 5 6 7 8 9 10

3 4 7 2 1 10 9 8 7 6

Binary Search
1. Go to the middle of the list
2. Check if the key matches the search key
3. If the search key is greater than the key, repeat on right sublist
4. Else repeat of left sublist

1 2 3 4 5 6 7 8 9 10

3 4 7 2 1 10 9 8 7 6

O(log(n)) (doesn’t work for unsorted)

Maintaining a Sorted Structure

1 2 3 4 6 7 8 9 10

1 2 3 4 6 7 8 9 10 5

Structure is broken! Back to O(n), or need to re-sort

What is a Data Structure?
● A particular way of storing and organizing data so that it can be processed

efficiently

● Most of the data structures we will examine can be related to graphs

● The data stored is easily comparable and benefits from sorting

● i.e. array of high scores in a game, not pixels in a PNG

● Usually we separate the data we want to analyze with a way to find it (key)

1

2

Big Important Object 1

Big Important Object 2

Arrays
● Arrays are one of the most basic structures: contiguous memory separated

into values
● Analogous to an disjoint, indexed set of unconnected vertices

Insertion:
Insertion (maintain sort):
Growth:
Find at position n:
Find in sorted:
Find in unsorted:

Arrays
● Arrays are one of the most basic structures: contiguous memory separated

into values
● Analogous to an disjoint, indexed set of unconnected vertices

Insertion: O(1)
Insertion (maintain sort): O(n)
Growth: O(1) amortized
Find at position n: O(1)
Find in sorted: O(log(n))
Find in unsorted: O(n)

Linked Lists
● Linked lists are data connected by pointers to one another, forward

and possibly backward
● Analogous to an unindexed, spanning graph of vertices with max in

degree 1 or 2 and out degree 1 or 2 for singly or doubly linked lists

Insertion:
Insertion (maintain sort):
Growth:
Find at position n:
Find in sorted:
Find in unsorted:

Linked Lists
● Linked lists are data connected by pointers to one another, forward

and possibly backward
● Analogous to an unindexed, spanning graph of vertices with max in

degree 1 or 2 and out degree 1 or 2 for singly or doubly linked lists

Insertion: O(1)
Insertion (maintain sort): O(n)
Growth: O(1)
Find at position n: O(n)
Find in sorted: O(n)
Find in unsorted: O(n)

Binary Trees
● Binary Trees are graphs
● Directed, connected, rooted,

ordered acyclic graphs with max
in degree 1 and out degree 2

Binary Search Trees
● A balanced tree takes log(n) to

maintain sortedness after
insertion

● Therefore, it takes nlog(n) time
to create a balanced binary tree:
Where have we seen this
before?

Binary Search Trees
● A balanced tree takes log(n) to

maintain sortedness after
insertion

● Therefore, it takes nlog(n) time
to create a balanced binary tree:
Where have we seen this
before?

● Creating a balanced binary
search tree is analogous to
completely sorting an array

Hash Tables
● Non comparative method of quick search

● Only 1 memory access

● Hash function takes a key and outputs a hash

value, where it is stored in an array

● Requires no sorting to find specific keys!

● But, no function is perfect: Collisions

